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Abstract: The development of new functional materials based on porphyrins requires fast and 

accurate prediction of their spectral properties. The available models in the literature for absorption 

wavelength and extinction coefficient of the Soret band have low accuracy for this class of 

compounds. We collected spectral data for porphyrins to extend the literature set and compared the 

performance of global and local models for their modelling using different machine learning 

methods. Interestingly, extension of the public database contributed models with lower accuracies 

compared to the models, which we built using porphyrins only. The later model calculated 

acceptable RMSE = 2.26 for prediction of the absorption band of 335 porphyrins synthesized in our 

laboratory, but had a low accuracy (RMSE = 0.52) for extinction coefficient. A development of 

models using only compounds from our laboratory significantly decreased errors for these 

compounds (RMSE = 0.5 and 0.042 for absorption band and extinction coefficient, respectively), but 

limited their applicability only to these homologous series. When developing models, one should 

clearly keep in mind their potential use and select a strategy that could contribute the most accurate 

predictions for the target application. The models and data are publicly available. 

Keywords: QSPR; Random Forest; local model; chromophores; porphyrins; absorbance maximum 

wavelength; molar extinction coefficient 

 

1. Introduction 

Porphyrins represent a unique class of heterocyclic tetrapyrrolic organic molecules 

which are classified as strong dyes (chromophore) due to their pronounced light-

absorbing properties. Their unique optical properties were intensively studied in recent 

decades and found to have a wide range of applications in medicine [1] biological imaging 

[2,3], photocatalytic [4], analytical [5], industrial [6], nonlinear optics (NLO) [7], and 

molecular photovoltaics [8,9]. The presence of a highly conjugated system allows 

porphyrin to have intense absorption of light in the visible region with very unique UV-

vis spectra. The main feature of porphyrin spectra is the presence of a very intense band 

at the 400 nm region (the so-called Soret band). It is known that the modification of the 

porphyrin macrocycle, namely, its meso-substitution, has a greater effect on the position 

and intensity of this band [10]. Consequently, the Soret band is a convenient and sensitive 

tool reflecting changes both in the structure of molecules and the effect of solvents on it.  

The development of new chromophores frequently critically depends on the 

expertise of the chemist and requires a large amount of time and synthetic efforts to 

synthesize new compounds with the desired optical and photophysical properties. 

Computational methods for predicting the optical properties of new porphyrins could 

allow them to be estimated in advance and reduce costs of synthesis. Such methods are 
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actively developed in the field now, in particular based on quantum chemistry 

calculations, but frequently they have some significant limitations. A four-orbital model 

introduced by Gouterman successfully explains the presence of peaks in the absorption 

spectra of porphyrin and metal-free porphyrins [11]. However, this theory is unable to 

explain why the maximum positions in the absorption spectra remain almost unchanged 

when measured in different solvents for certain kinds of porphyrins. The semi-empirical 

quantum-chemical methods PPP-MO [12] and ZINDO/S [13] require calibration using an 

experimental dataset to achieve accurate wavelength predictions [14]. Time-dependent 

density functional theory (TD-DFT) [15–17] and ab initio calculations [18] require high 

level calculations to account for both dynamical and non-dynamical electron correlation, 

which are computational demanding and limit the practicality of such methods to 

single/few molecules [19]. The results of quantum-chemical calculation frequently deviate 

from the experimental data by 0.2–0.3 eV [20,21]. 

In recent years, quantitative structure–property relationship (QSPR) modeling has 

become a powerful tool for predicting the optical properties of chromophores [22–28]. The 

QSPR approach is based on the assumption that the macroscopic properties of chemical 

compounds depends on the calculated molecular characteristics of the compounds, which 

are called molecular descriptors. The advantage of this approach lies in the fact that once 

model is developed, it requires only the knowledge of the chemical structure and does not 

dependent on any experimental properties [29]. Accurate computational prediction of 

spectral properties of new porphyrins could allow us to design new molecules with 

desired properties using traditional combinatorial chemistry approaches or structures 

generated by deep neural networks [30]. However, since QSPRs are statistical approaches, 

the accuracy of developed models critically depends on the quality of data and of 

adequacy of the training set to the compound to be predicted. Moreover, one can use 

either local (by using structurally related compounds) or global models (developed with 

diverse sets of compounds). The advantages of each approach for the prediction of 

spectral properties of compounds need to be better carefully evaluated and have not been 

performed so far. 

In this study, we tested a previous model of Joung et al. [27] as well as several new 

models developed with a large set of dyes and porphyrins collected from the literature to 

predict spectral properties of new compounds synthesized in our laboratory. 

2. Material and Methods 

 The absorption spectra for compounds synthesised in our laboratory were obtained 

by spectrophotometer Cary-100 (Aglient, Santa Clara, CA, USA) in the dichloromethane 

(chemically pure). 

2.1. Datasets 

The initial analysis was performed using data from an article of Joung et al. [27] 

which contained optical properties of organic compounds collected from the literature 

which were described in [31] and were publicly available at FigShare link [32]. While 

Joung et al. [27] reported in their article 26,098 and 12,159 training set values for 

absorption band maximum position and extinction coefficient, respectively, the publicly 

accessible data at FigShare [32] contained only 17,294 and 8041 values for these optical 

properties, respectively. We excluded from these data organic compounds in the solid 

state, since our goal was to predict porphyrins in a liquid medium. Compounds which 

could not be processed by the On-line CHEmical database and Modeling environment 

(OCHEM) platform (very large and/or molecules with many rings for which calculation 

of descriptors failed) were also excluded. The remaining set (hereinafter JOUNG set) 

contained 6271 unique organic chromophores in 27 solvents, yielding 15,380 

chromophore/solvent combinations for absorption band maximum position (Figure 1a) 

and 3753 unique organic chromophores in 25 solvents (7654 chromophore / solvent 
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combinations) for molar extinction coefficient (Figure 1b). The database included various 

chromophore classes, but contained only 30 porphyrins. 

 

Figure 1. Histogram of the distribution of JOUNG and a NOVEL set of 335 porphyrins synthesized 

in our laboratory by absorption wavelengths (a) and the value of the extinction coefficient (b). 

The second set (hereinafter PORPHYRINS) was collected in this work from more 

than 30 publications. It included data for the first absorption peak of Soret porphyrins and 

their analogs (2241 unique compounds in dichloromethane), as well as their values of the 

logarithm of the molar extinction coefficient (946 unique compounds in dichloromethane). 

The database included the following macroheterocycles: chlorins, protoporphyrins, 

porphyrins, inverted porphyrins, their metal complexes and substituted at α- and β-

positions by alkyl and aryl radicals, including halogens and radicals containing 

heteroatoms (Supplementary Data, Table S1). The Soret absorption wavelength values 

were in the region of 340–500 nm, with the majority of values in the range of 410–430 nm 

(Figure 2a). The values of the extinction coefficient were in range from 4.15 to 5.99, with 

most of them being in the range from 5 to 5.8 (Figure 2b). 

The third analyzed set was a combination of JOUNG and PORPHYRINS 

(COMBINED). 

 

Figure 2. Histogram of the distribution of PORPHYRINS and a NOVEL set of 335 porphyrins 

synthesized in our laboratory by absorption wavelengths (a) and the value of the extinction 

coefficient (b).` 

The accuracy of models was tested using cross-validation results as well as on a set 

of 335 newly synthesized 2,8,12,18-tetramethyl-3,7,13,17-tetraalkyl-5,15-diphenylporph-

yrins and 3,7,13,17-tetramethyl-2,8,12,18-tetraalkyl-5,15-diphenylporphyrins, as well as 

their zinc complexes, which were not present in any of the previous sets and were also 

not previously published by us (NOVEL set). The procedures for the synthesis of these 

compounds are described in the Experimental protocol section of the Supplementary 

Data. 
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2.2. Methods 

Quantitative models were developed using a variety of combinations of learning 

methods with a different set of descriptors, which were available in On-line Chemical Da-

tabase and Modeling Environment (OCHEM) [33]. The default parameters of these algo-

rithms as specified in OCHEM were used. Amid a preliminary analysis, we found that 

Random Forest Regression (RFR) [34] consistently contributed better results and therefore 

RFR was used for all analyses reported in this study. All descriptor packages available in 

OCHEM were used to provide a variety of chemical structure representations for spectral 

properties modeling. Amid them, several packages, namely ISIDA fragmentor descriptors 

[35], MOLD2 descriptors [36], alvaDesc [37], and SIRMS descriptors [38] consistently con-

tributed models with the highest performances. Most of these packages used 2D repre-

sentation of chemical compounds while the Corina program [39] was used to perform 2D 

to 3D conversion for the alvaDesc. [37] In addition to models based on descriptors, we 

also used Transformer Convolutional Neural Network [40], which is a representation 

learning method operating directly with text representation (SMILES [41]) of chemical 

structures. All descriptor packages and modelling methods were used with default values 

of parameters as described in details on the OCHEM website [42]. 

Five-fold cross-validation [43] was used to develop models. Once models for indi-

vidual descriptor packages were developed, we selected those with the highest perfor-

mance for the training set and used them to build a consensus, which was an average of 

individual models following methodology developed in our earlier studies [44–46]. The 

statistical parameters calculated by the consensus model were used to estimate predictive 

performance of machine learning methods. 

2.3. Statistical Parameters 

The quality of models was estimated using the squared correlation coefficient (R2) 

Equation (1) and root mean square error (RMSE) Equation (2): 

�� =
∑ (�����,� − �����) × (����,� − ����)
�
���

∑ (�����,� − �����)
� ×�

��� ∑ (����,� − ����)
��

���

 (1) 

  

���� = �
1

�
�(�����,� − ����,�)�
�

���

 (2)

where n is the number of data points; yexp,i is the experimental and ypred,i is the predicted 

value of the analyzed data point i. 

3. Results and Discussion 

Model Development and Testing 

Our initial attempt was to predict the optical properties of the porphyrins from the 

NOVEL set using the model published by Joung et al. [27]. This model was accessed on 

the website (http://deep4chem.korea.ac.kr, accessed date is 30.12.2021). The results of pre-

dicting the positions of the Soret band maximum and the values of the extinction coeffi-

cient demonstrated low correlation between the predicted and experimental values (Fig-

ures S1 and S2) and were RMSE = 200 (R2 = 0.01) and RMSE = 0.89 (R2 = 0.1) for the maxi-

mum absorption and extinction coefficient of porphyrins, respectively (see Tables 1 and 

2). Thus, the published model could not predict the optical properties of porphyrins.  
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Table 1. Statistical parameters of models developed using different training sets for prediction of 

absorption maximum band. 

Data Set 
Training Set, 5CV  

Prediction of NOVEL Set,  

n = 335 

n R2 RMSE R2 RMSE 

Published model of 

Joung et al. [27]  
26,098 0.926 a 31.6 a 0.01 200 

JOUNG 15,380 0.904 ± 0.003 31.5 ± 0.5 0.12 ± 0.02 204 ± 2 

COMBINED 17,621 0.9 ± 0.003 30.1 ± 0.5 

0.03 ± 0.01 21 ± 1 

COMBINED: 

JOUNG subset a 
15,380 0.902 ± 0.003 31.9 ± 0.5 

COMBINED: POR-

PHYRINS subset ab 
2241 0.43 ± 0.05 10.3 ± 0.7 

PORPHYRINS 2241 0.8 ± 0.01 5.4 ± 0.2 0 ± 0.005 2.26 ± 0.08 

NOVEL set 335 0.93 ± 0.01 0.5 ± 0.03   
a The results reported by Joung et al. [27]. b Statistical results were calculated for a respective sub-

set of compounds from the COMBINED set. 

Table 2. Statistical parameters of models developed using different training sets for prediction of 

the extinction coefficient. 

Data Set 
Training Set, 5CV  

Prediction of NOVEL Set, 

n = 335 

n R2 RMSE R2 RMSE 

Published model of 

Joung et al. [27]  
12,159 0.795 a 0.24 a 0.10 0.89 

JOUNG 7654 0.767 ± 0.009 0.286 ± 0.005 0.62 ± 0.02 0.84 ± 0.02 

COMBINED 8600 0.806 ± 0.007 0.279 ± 0.005 

0 ± 0.006 0.54 ± 0.02 

COMBINED: JOUNG 

subset a 
7654 0.765 ± 0.01 0.286 ± 0.005 

COMBINED: POR-

PHYRINS subset ab 
946 0.49 ± 0.03 0.218 ± 0.006 

PORPHYRINS 946 0.52 ± 0.02 0.209 ± 0.006 0 ± 0.004 0.52 ± 0.02 

NOVEL set 335 0.989 ± 0.002 0.042 ± 0.004   
a The results reported by Joung et al. [27]. b Statistical results were calculated for a respective sub-

set of compounds from the COMBINED set. 

As it was mentioned in the Data section, the JOUNG set contained only part of data 

published in Joung et al. [27]. To verify whether we can reproduce results of the original 

model of Joung et al. [27] with OCHEM tools, we developed QSPR models based on the 

JOUNG using the RFR method and different sets of descriptors. A 5-fold cross-validation 

was used to estimate accuracy of developed models. The initial calculations were per-

formed with and without parameterization of the solvent using procedure described else-

where [47]. The models with the best statistical parameters were chosen to create the con-

sensus models as average of these individual models. We observed the same effect as in 

the previous study [47], namely that solvent parameterization did not provide signifi-

cantly better results. For example, the mean difference between RMSE of consensus mod-

els for prediction with the parameterization of solvent and without it was 0.6 nm for the 

JOUNG set which was within the standard mean error of the model (Table S2). Since the 

difference was within the error range of the model accuracies, we decided to skip the use 

of solvent parameterization in the further analysis for absorption coefficient. The consen-

sus model calculated correlation coefficient R2 = 0.90 and RMSE = 31.5 nm, which was 

similar to that (R2 = 0.926, RMSE = 31.6 nm) obtained by the authors for the test set 
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compounds (10% of data). It should be mentioned that results of the 5-fold cross-valida-

tion protocol used in our study (20% of data were removed from the model and predicted 

based on the model training with remaining 80% of compounds; procedure was repeated 

5 times and results for 20% excluded compounds were averaged) were more strict than 

the test set protocol reported by Joung et al. (90% of compounds were used for model 

hyperparameter tuning, training and validation; the performance was reported for 10% of 

left compounds). Similar to the original model developed by the authors, the consensus 

model also showed a low accuracy (R2 = 0.12 and RMSE = 204) for the NOVEL set (see also 

Table S2 and Figure 3a). Thus, the prediction of the absorption band based on the original 

model developed by Joung et al. or data from their study had a low accuracy for porphy-

rins. 

 

Figure 3. Distribution of the experimental and predicted values of the position of the absorption 

band (a) and values of the extinction coefficient (b) using models based on the JOUNG set. The green 

and red colors correspond to the training set data and test set data of 335 compounds, respectively. 

Similar results were calculated for prediction of the extinction coefficient of chromo-

phores and the consensus model developed using the JOUNG set provided low accuracy 

(R2 = 0.62, RMSE = 0.84) for prediction of the NOVEL set compounds, which was similar 

to that obtained with their original model (See Table 2 and Figure 3b). Similarly for ab-

sorption coefficient, an includance of the parametrization of solvent did not improve mod-

els and was not used in further studies. 

The reason for the failure of models built on the JOUNG data could be due to the low 

number of porphyrins in these sets (only 30 out of 15,380), which thus did not cover the 

chemical space of porphyrins. 

To improve the prediction results, we extended the JOUNG dataset with the POR-

PHYRINS set to form the COMBINED set (Tables 1 and 2 and S3). Like in the study with 

JOUNG dataset, the models with highest accuracy for this set were used to develop the 

consensus models. Consensus models improved the accuracy of predicting the position 

of the absorption band to RMSE = 21 nm and the extinction coefficient RMSE = 0.54 for the 

NOVEL set. The extension of the JOUNG dataset to include porphyrins provided a global 

model, which was covering various classes of molecules. A combination of the JOUNG 

with PORPHYRINS increased the accuracy of the resulting consensus model for the 

JOUNG subset (we calculated statistical parameters for compounds from this subset of 

the COMBINED set). The accuracy of the model for the PORPHYRINS subset was higher 

(RMSE = 10.3 vs RMSE = 31.9) than that for the JOUNG set (Tables 1 and 2). The same 

tendency was observed for the extinction coefficient, but differences in statistical param-

eters were smaller. This result indicated that likely the quality of experimental data for 

the PORPHYRINS set was higher than that for the JOUNG set. By mixing low and highly 

accurate data, we could improve less accurate data, but at the same time, could decrease 

the quality of the model for more accurate ones. Therefore, we decided to develop local 

models using the PORPHYRINS set only. 
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The same methodology was used to develop models using only the PORPHYRINS. 

The models for both absorption band and extinction coefficients calculated higher 5CV 

statistical parameters than those calculated for respective subsets when they were used as 

part of the COMBINED set (Table S4). The developed consensus models improved the 

prediction of the position of the Soret band and extinction coefficients of the NOVEL set 

as test set compounds to RMSE = 2.26 nm (Table 1) and RMSE = 0.5 (Table 2), respectively. 

Thus, the development of a local model just for porphyrins as compared to the develop-

ment of a global model for various dyes provided higher cross-validation accuracy for 

this chemical class of compounds as well as better accuracy for prediction of the NOVEL 

set. Although we observed an improvement of the model for prediction of extinction co-

efficient, the accuracy of its prediction was not satisfactory and the model with RMSE of 

0.5 could hardly have any practical value. 

The prediction error for the NOVEL set of 335 compounds RMSE = 2.26 nm was lower 

than the 5CV RMSE = 5.4 nm estimated for the PORPHYRINS set. This was a very nice 

result, but the experimental accuracy of the absorption band was estimated in our labor-

atory to be about 0.5 nm. Thus, the predicted error was about five times larger than the 

experimental one. For the prediction of extinction coefficient, which was typically meas-

ured with accuracy of 0.01, the discrepancy between prediction and experimental errors 

was about 20 times. Considering that all data for the NOVEL set were all measured in our 

laboratory, we were interested in determining whether we could get a better model for 

them. 

Therefore, we used the same methodology as in the previous studies and calculated 

excellent consensus models for both properties for the NOVEL set (n = 335) estimated us-

ing the 5CV protocol (Tables 1 and 2 and Figures 4 and 5). 

 

Figure 4. Distribution of the experimental and predicted values of the extinction coefficient calcu-

lated by consensus model developed with n = 335 compounds experimentally measured in this 

work. 
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Figure 5. Distribution of the experimental and predicted values of the absorption maximum position 

calculated by consensus model developed with n = 335 compounds experimentally measured in this 

work. 

A possible reason for such good accuracy of both these models could be the minimum 

noise in the data, since all measurements were performed within the same laboratory us-

ing the same equipment. On the other hand, the compounds were homologous series and 

just differed in functional groups in the positions of the phenyl rings, as well as in the long 

alkyl chains in the beta-positions. 

Thus, the development of models based on the homologous series of compounds 

provided the best accuracy for these data. At the same time, of course, models developed 

with such restricted chemical series can not be used to predict compounds from other 

dyes, which are structurally different. The model for absorption maximum position had a 

range of experimental values in the 408-418 nm region (see also Figures 1 and 2) and could 

not extrapolate to values outside of this region. It calculated RMSE = 101.2 ± 0.8 and 14.4 

± 0.4 for prediction of dyes from JOUNG and PORPHYRINS sets, respectively. A smaller 

RMSE for the PORPHYRINS sets reflected a higher structural similarity of NOVEL set 

compounds as well as narrower range of absorption maximum position values for POR-

PHYRINS. Similarly, the model for extinction coefficient, which was based on the data 

coming from our laboratory, failed to predict these both sets too and calculated RMSE of 

0.92 and 0.41 for JOUNG and PORPHYRINS, respectively. It should be mentioned that 

the majority of the predictions for both models were identified as out of the applicability 

domain [43], and thus the models correctly flagged such predictions as inconsistent with 

the training set data. Thus, the developed local models based on homologous series could 

be only applicable to these series. Contrary to that, the models developed using the POR-

PHYRINS sets are expected to predict a much wider class of porphyrins. 

In the last study, we investigated the influence of the size of the training set for the 

accuracy of the model for porphyrins. Subsets of compounds were randomly sampled 

from respective PORPHYRIN and NOVEL sets and were used to predict the remaining 

compounds from the same sets that were not used for model development (see Figures 6 

and 7 as well as supplementary Tables S5 and S6). With the increase of the training set 

size, the smaller numbers of compounds were left for testing which resulted in higher 

calculated errors bars. The performance of models for 100% data used as a training set 

was estimated using 5CV.  
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Figure 6. Statistical coefficients calculated for the prediction of the test set compounds that were not 

part of the respective training sets for modelling of the absorption band maximum position (see also 

Supplementary Data, Table S5 and S6). 5CV values were reported for 100% training set size. 

 

Figure 7. Statistical coefficients calculated for the prediction of the test set compounds that were not 

part of the respective training sets for modelling of the molar extinction coefficient (see also Supple-

mentary Data, Table S5 and S6). 5CV values were reported for 100% training set size. 

For both spectral properties, an increase of the training dataset sizes steadily in-

creased the squared correlation coefficient, R2 for the test sets. The accuracy of the models 

for the prediction of more diverse PORPHYRIN sets were lower compared to those calcu-

lated for the NOVEL set using the same percentage of the training set data. The squared 
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correlation coefficients for the NOVEL set using 30–40% of data were similar to those cal-

culated using 70–100% training set data of the PORPHYRIN set. The higher values for the 

NOVEL set could be explained by smaller structural diversity of compounds and thus 

higher density of data points allowing to adequately estimate the influence of various 

substituents on the variation of this coefficient. Likely by further increasing the size of the 

PORPHYRIN set with additional data, we could reach the same values of the squared 

correlation coefficient obtained for the NOVEL set. 

However, in the case of the extinction coefficient, there was a different behaviour and 

we could observe a big gap in the performances of models developed with PORPHYRIN 

and NOVEL sets. Thus, a further increase in the amount of literature data for this coeffi-

cient is unlikely to result in the same accuracy of the model as we calculated using the 

NOVEL set. 

The reason for the low prediction accuracy of the molecular extinction coefficient 

based on the literature data could be inconsistencies and errors when collecting this pa-

rameter from various sources. These errors depend on the sensitivity of the measurement 

devices, e.g., type of the used spectrophotometer and the scales on which the compounds 

were weighed, but as well as on rounding and possibly even simple arithmetic errors 

when calculating the extinction coefficient from the experimental data. At the same time, 

if the same equipment as well as the same protocol were strictly used for its measurement 

within the same laboratory, one could expect much higher accuracy and consistency of 

data which could result in excellent models with high statistical parameters, as reported 

in this study. 

Thus, in this work, we first analyzed the prediction accuracy of published models to 

predict spectral properties of porphyrins synthesized in our laboratory (NOVEL set, n = 

335). We found a low performance of both published (http://deep4chem.korea.ac.kr, ac-

cessed date is 30.12.2021) as well as models re-developed by us using the publicly availa-

ble data deposited by the authors (JOUNG set). The RMSE for the prediction of maximum 

absorption band were in range of 200 nm while for the extinction coefficient RMSE of 0.8–

0.9 log units were observed. The low performance of these models was attributed to a 

small number of porphyrins (n = 30) in the training sets.  

An extension of published sets by including porphyrins (COMBINED set) improved 

results for both spectral properties and RMSE = 21 and 0.54 were calculated for these prop-

erties for the NOVEL set. A development of local models using only PORPHYRINS set (n 

= 2241 for absorption and n = 946 for extinction coefficient) provided significant improve-

ment of the accuracy of models (RMSE = 2.26) to predict the absorption band, but the 

accuracy of models for the extinction coefficient practically did not change (RMSE = 0.52).  

Interestingly, a development of models using the 335 compounds from the NOVEL 

set contributed highly predictive models with significantly higher accuracy (RMSE = 0.5 

for absorption and RMSE = 0.042 for extinction coefficient). Since models developed using 

NOVEL set were based on compounds with limited chemical diversity (2,8,12,18-tetrame-

thyl-3,7,13,17-tetraalkyl-5,15-diphenylporphyrins 3,7,13,17-tetrame-thyl-2,8,12,18-

tetraalkyl-5,15-diphenylporphyrins, as well as their zinc complexes), they failed to predict 

molecules from the PORPHYRINS and JOUNG set, since most of the predictions were 

outside of the applicability domain of this model. 

4. Conclusions 

In this study, we contributed QSPR models for predicting the optical properties of 

porphyrins as well as reported synthesis protocols and experimental values for n = 335 

porphyrins which are publicly available at http://ochem.eu/article/140403 (accessed date 

is 30.12.2021). We showed that a better strategy for this chemical class was to develop local 

models for porphyrins rather than to extend diverse sets of dyes with additional spectral 

properties of these compounds. While we could successfully model the Soret band, we 

could not obtain models with good accuracy to predict the extinction coefficient when 

using literature data. The failure to model the second property could be attributed to the 
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experimental inconsistency of data obtained from various sources. Indeed, we obtained 

excellent models for both studied properties when using experimental data (NOVEL set) 

measured in our laboratory. Unfortunately, because of the very limited chemical diversity, 

models based on the NOVEL set have a limited applicability domain.  

Thus, when analyzing spectral properties of chemical dyes, a possibility to develop 

local models to cover the studied class of molecules should not be overlooked. While such 

models may not cover the whole chemical space of dyes, they could be adequate to accu-

rately predict the investigated compounds in particular for properties, such as extinction 

coefficient, which strongly depend on the used experimental protocol. An attempt to com-

bine in one set inconsistent data could result in a low quality model. More is not always 

better! 

The developed QSPR models for porphyrins can be used to predict their optical prop-

erties before they are actually synthesized. This could help to identify compounds with 

desired sets of properties, significantly reduce development costs, and to accelerate the 

development of new functional optical materials for electronic and optoelectronic appli-

cations. 
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