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Abstract: Cotton bollworm (Helicoverpa armigera) is a worldwide agricultural pest in which the
transport of pheromones is indispensable and perceived by pheromone-binding proteins (PBPs).
However, three-dimensional structure, pheromone binding, and releasing mechanisms of PBPs are
not completely illustrated. Here, we solved three structures of the cotton bollworm HarmPBP1 at
different pH values and its complex with ligand, Z-9-hexadecenal. Although apo-HarmPBP1 adopts
a common PBP scaffold of six a-helices surrounding a predominantly hydrophobic central pocket,
the conformation is greatly distinct from other apo-PBPs. The Z-9-hexadecenal is bound mainly by
hydrophobic interaction. The pheromone can enter this cavity through an opening between the
helices a5 and a6, as well as the loop between a3 and a4. Structural analysis suggests that ligand
entry into the pocket is followed by a shift of Lys94 and Lys138, which may act as a lid at the opening
of the pocket. Acidic pH will cause a subtle structural change of the lid, which in turn affects its
ligand-binding ability, differently from other family proteins. Taken together, this study provides
structural bases for the interactions between pheromones and PBPs, the pH-induced conformational
switch, and the design of small inhibitors to control cotton bollworms by disrupting male—female
chemosensory communication.

Keywords: Helicoverpa armigera; pheromone-binding protein; crystal structure; ligand binding and
releasing mechanism; complex; acidic pH; (Z)-9-hexadecenal; pheromones; mechanistic insights;
fluorescence binding assays

1. Introduction

Cotton bollworm (Helicoverpa armigera), an important agricultural pest, mainly
damages crops such as cotton, corn, peanuts, and soybeans and seriously affects the
planting and production of crops. It is currently a serious problem as to how to
continuously and effectively reduce the loss caused by cotton bollworms. Controlling this
insect pest may be achieved by interfering with olfactory pathways to block detection of
female-produced sex pheromones and thus disrupt mating [1].

Insects have evolved a sensitive olfactory system to detect information-rich odor
molecules for their survival and reproduction [1]. The initial step of odorant recognition
involves binding odorant molecules to the odorant binding proteins (OBPs) and carrying
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them to odorant receptors (ORs). These OBPs may serve as molecular targets for attracting
moths or other insect species [1,2]. Lepidoptera OBPs have been divided into pheromone-
binding proteins (PBPs) and general OBPs (GOBPs) [3].

Many insect PBPs structures have been solved both in the crystal forms and in
solution since the first crystal structure of silkworm moth BmorPBP/bombykol complex
was reported [4-8]. These structures exhibit many identical characteristics, including six
or seven a-helices, three strictly conserved disulfide bridges, and a hydrophobic binding
pocket. However, growing evidence suggested that these insect PBPs have significant
differences in ligand binding and releasing mechanisms because of their different cavity
shapes and openings. The NMR structure of silkworm moth BmorPBP proved that the C
terminal dodecapeptide segment of the acidic BmorPBP structure (pH 4.5) formed an
additional a-helix in the protein core, occupying the corresponding pheromone-binding
site and extruding ligands [5,9] (Figure S1A). The study suggested that the C-terminal
region plays a key role by forming a helical structure to replace the corresponding
pheromone-binding pocket at low pH. Moreover, at neutral pH, the additional helix
withdraws from the binding pocket and favors pheromone binding [2]. pH-triggered
conformational switch involving histidine(s) protonation/deprotonation is a regulatory
mechanism [10]. The potential importance of the histidine residues for PBP function was
first suggested in B. mori on the basis of histidine positions in the crystal structure [5].
Interestingly, His69, His70, and His95 are identical in lepidopteran PBPs and GOBPs,
suggesting that pH-triggered conformational switch may be conserved for the entire
order.

The interactions between ligands and insect OBPs have also been proposed. The
structure of BmorPBP/bombykol complex revealed that Ser56 specifically interacts with
the ligand in the binding pocket [5]. Other research on A. polyphemus PBP indicates that
Trp37 may play an important role in the initial interaction with the ligand, while Asn53
plays a critical role in the specific recognition of pheromones [10,11].

In H. armigera, three PBPs were identified, and their abilities to bind five pheromone
components were measured by fluorescence-binding assay [12]. It was shown that
HarmPBP1 binds the two principal pheromone components with strong affinities.
However, there was no three-dimensional structural information reported on HarmPBPs.
To better understand the pheromone-HarmPBP1 binding mechanism and to design a
stable synthetic sex pheromone useful as a mating disruptor, we determined crystal
structures of HarmPBP1 at different pH values and in complex with the main constituent
of the sex pheromone Z-9-hexadecenal (Z9-16:Ald). Structural analysis of the complex
revealed the important residues of HarmPBP1 in binding Z9-16:Ald. These key residues
were consistent with the site-directed mutagenesis experiments and fluorescence binding
assays. These results reveal a novel mechanism for ligand release at acidic pH.

2. Results
2.1. Crystal Structures of Apo-HarmPBP1 and HarmPBP1/79-16:Ald Complex

HarmPBP1 was successfully expressed in bacteria and then purified through Ni-
affinity chromatography, ion exchange chromatography, and size-exclusion
chromatography (see the Methods and Materials). The highly purified protein (Figure
S2A) produced small but regular crystals in crystallization trials. After optimizing
crystallization conditions, we succeeded in obtaining crystals. The apo-HarmPBP1
structure at pH 7.5 was determined by molecular replacement and refined to a resolution
of 1.3 A in the space group of P21, with an Ruok of 17.9% and an Ry of 19.8% (Table 1). The
cloned protein was 144 residues long and possessed six cysteine residues. The structure
was built in the electron density map, except for the C-terminal residues 159-170. The
HarmPBP1 scaffold contains three conserved disulfide bonds linking a-helices al and a3
(Cys46-Cys81), a3 and a6 (Cys77-Cysl36), and a5 and a6 (Cys124-Cys145) (Figure 1A),
encapsulating the hydrophobic pocket for pheromones binding.
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On the basis of the affinity data of HarmPBP1 to different pheromone components
[12], we chose Z9-16:Ald and Z11-16:Ald with the strongest affinity for complex
crystallization trials. Through a series of cocrystallization experiments, we eventually
obtained cocrystals of HarmPBP1 with Z9-16:Ald, probably because Z9-16:Ald bound
slightly stronger than Z11-16:Ald. HarmPBP1/Z9-16:Ald complex crystal had different
morphologies from that of the apo-HarmPBP1, indicating the formation of the complex
with ligand Z9-16:Ald. We collected a dataset at 2.09 A resolution. The binding of Z9-
16:Ald was confirmed by the differential electron density (Figure 1B), and the crystal
packing between the apo at pH 7.5 and the complex was different. The overall structure
of the complex was similar to the apo-HarmPBP1, and the root-mean-square deviation
(RMSD) between these two structures was as low as 0.4 A. Structural variation was only
observed in a few loop regions (Figure S2B), showing that they were almost identical. The
most prominent structural changes were the loop between a3 and a4 (a3a4 loop), with a
0.7 A shift and the loop between a5 and a6 (a5a6 loop) with a 1.9 A shift. Moreover, an
additional three residues were solved in the C-terminus.

Table 1. Data collection and refinement statistics of HarmPBP1 structures.

Apo-HarmPBP1 at pH 7.5 Apo-HarmPBP1 at pH 5.. HarmPBP1/Z9-16:Ald Complex at

(PDB ID:7VWS8) (PDB ID:7VW9) pH 8.5 (PDB ID: 7VWA)
Wavelength, A 0.9792 0.9792 1.0000
Space group P2 P2: P2
Cell dimensions
ab,c A 32.03, 32.60, 54.79 32.43, 33.38, 55.38 32.91, 33.36, 56.04
a By’ 90, 97.88, 90 90, 99.66, 90 90, 98.79, 90
Resolution. A 50-1.30 50-2.05 50-2.09
! (1.32-1.30)= (2.09-2.05) = (2.13-2.09) 2
Rmerge, % 6.6 (59.9) 5.0 (21.4) 5.7 (30.2)
I/ol 17.7 (1.8) 412 (7.6) 31.1 (3.0)
Completeness, % 93.1 (97.5) 95.6 (93.5) 98.2 (81.0)
Redundancy 4.3 (3.9) 35(@3.1) 49 (3.7)
Refinement
Resolution. A 50-1.3 50-2.05 50-2.10
’ (1.33-1.30) (2.10-2.05) (2.15-2.10)
No. of unique reflections 21224 (736) 6834 (465) 6682 (432)
o 22.2/26.5 19.9/23.6
Ruwork/Riree, % 17.9/19.8 (22.3/24.9) (2541367 2421371
No. of atoms 1048/0/62 1015/0/56 1059/17/40
(protein/ligand/water)
Average B factor (A7) 21.44/0/30.79 43.69/0/47.31 31.07/37.11/36.18
(protein/ligand/water)
rms deviations
Bond lengths, A 0.008 0.007 0.009
Bond angles, ° 1.378 0.994 1.515
Ramachandran Plot, %P 95.9/4.1/0/0 91.1/8.9/0/0 92.9/7.1/0/0

a Statistics for highest resolution shell. ® Percent of residues in most favored, additional allowed,
generously allowed, and disallowed regions of the Ramachandran plot.
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Figure 1. Crystal structures of apo and Z9-16:Ald-bound HarmPBP1. (A) Ribbon representation of
apo-HarmPBP1 with rainbow coloring mode. (B) The Z9-16:Ald-bound HarmPBP1 structure. The
chemical structure of Z9-16:Ald (green) is shown in the bottom left. The differential electron density
for the Z9-16:Ald in a Fo-Fc map is contoured at 2.5 o (light blue). Disulfide bridges, yellow; a3a4
loop, cyan; Nt: N-terminus, Ct: C-terminus.

2.2. Structural Comparison Revealed a Specific Conformation of Apo-HarmPBP1

A Dali server search of the apo-HarmPBP1 structure identified BmorPBP-bombykol
(PDB 1DQE, Z =23.5, RMSD = 1.0 A) and AtraPBP1-Z11Z13-16:Ald (PDB 4INW, Z =22.4,
RMSD = 1.2 A) [5,13] as the closest structural homologs (Figure 2). Surprisingly, the
structural similarity between apo-HarmPBP1 and all other apo-GOBPs or apo-PBPs was
lower as the RMSD was larger than 1.5 A, revealing a distinct conformation of apo-
HarmPBP1 compared with other apo-PBPs.

(B) AtraPBP-Z11Z13-16:Ald (C) Apo-BmorPBP at pH 7.5 (D) Apo-ApolPBP1 pH 4.5

e

Figure 2. Superimposition of apo-HarmPBP1 (cyan) on selected OBPs. (A) BmorPBP-bombykol
(PDB: 1DQE, orange). (B) AtraPBP-Z211213-16:Ald (PDB: 4INW, green). (C) apo-BmorPBP at pH 7.5
(PDB: 2FJY, red). (D) Apo-ApolPBP1 at pH 4.5 (PDB: 2JPO, magenta). Conserved disulfide bonds
(yellow) are shown in ball-stick modes. Ligands, gray.

The secondary structures of HarmPBP1 are quite similar to those of BmorPBP in
Bombyx mori [5,9,14], ApolPBP1 in Antheraea polyphemus [10], and AtraPBP1 in Amyelois
transitella [13] (Figure S3). The most significant structural differences between apo-
HarmPBP1 and other known insect PBPs were observed at the C terminus. The last 12
residues were missed in the structure of apo-HarmPBP1, which might have been a result
of crystal packing. Both BmorPBP-bombykol (PDB ID:1DQE) and AtraPBP1-Z11713-
16:Ald (PDB ID: 4INW) had a C-terminal loop [5,13], while a C-terminal helix was found



Int. ]. Mol. Sci. 2022, 23, 1190

5 of 12

in the apo-BmorPBP at pH 7.5 (PDB ID: 2FJY) and ApolPBP1 at pH 4.5 (PDB ID: 2JPO)
[9,10] (Figure 2). Then, we compared HarmPBP1 with these two types of PBPs mentioned
above. The high structural similarity between HarmPBP1/Z9-16:Ald complex and
BmorPBP-bombykol or AtraPBP1-Z11Z13-16:Ald complex (Figure 2) suggests that they
may share a similar ligand-binding mode. However, the conformations of both termini as
well as some loops differed significantly between apo-HarmPBP1 and the apo-
BmorPBP/apo-ApolPBP1 (Figure 2C/2D). The first helix of HarmPBP1 occupied the C-
terminal helix position of the above two structures. Moreover, the seventh helix of the
latter was located in the protein core. Finally, for BmorPBP and AtraPBP1, the structural
changes between the apo and its corresponding complex were evident (comparing Figure
2A with Figure 2C), but it was subtle for HarmPBP1 (Figure S2B).

2.3. The Binding of Ligand in the HarmPBP1 Binding Cavity

The structure of HarmPBP1 was found to contain a hydrophobic cavity formed by
the five helices al, a3, a4, a5, and a6. The cavity volume of the HarmPBP1 complex was
206 A3. The cavity had a “C”-shape (Figure 3A), and the ligand Z9-16:Ald fitted perfectly
inside the cavity (Figure 3B). The HarmPBP1/Z9-16:Ald complex contained a single
molecule of Z9-16:Ald that was stabilized primarily by an array of hydrophobic
interactions, which were mediated by the side-chains of Phe63, Ile79, Leu93, Leu95, Ile121,
and Phe146 (Figure 3C). In addition, a stacked arrangement of phenylalanines at positions
39 and 146 interacted with the ligand near the desaturated carbons (Figure 3B—C). The five
aromatic residues Phe39, Phe63, Trp64, Phel03, and Phel46 were strictly conserved in all
known lepidopteran PBPs (Figure S3). These residues and the shape of the cavity were
therefore likely responsible for the specific binding of the unsaturated aliphatic odorant
molecules. Moreover, Ser36 and Thr139 also interacted with Z9-16:Ald through van der
Waals contacts.

Except for the main hydrophobic interaction, hydrogen bonds were also observed in
the HarmPBP1/Z9-16:Ald complex. The oxygen atom of the ligand aldehyde group
formed a hydrogen bond with the main chain of Leu95. The aldehyde group also bound
Leu95 and His97 through weak water-mediated hydrogen bonds (Figures 3C and 4A).
Moreover, Leu95 and His97 were conserved in other homologous pheromone-binding
proteins (Figure S3), and these conservations may play a key role in pheromone binding
(Figure 4).

®)

Figure 3. The binding pocket and its binding site details. (A) HarmPBP1 has a “C” shaped ligand-
binding cavity. (B) The binding of Z9-16:Ald (green) in the HarmPBP1 binding pocket. (C) Detailed
interaction of Z9-16:Ald. Hydrogen bonds, dashed lines. a3a4 loop, cyan.

In the apo-HarmPBP1, there was a channel through the ligand binding pocket (Figure
S4A). However, one opening was covered in the HarmPBP1/79-16:Ald complex (Figures
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1B and S4B), because three C-terminal additional residues were solved and Leul61
occupied the opening. These three residues adopted a loop conformation that was greatly
different from those in the complex of BmorPBP-bombykol and AtraPBP-Z11713-16:Ald
[5,13]. Although the C-terminal residue Leul61 was somewhat away (5.6 A) from the
ligand, it had hydrophobic interactions with side-chains of Phe63, Phe60, and Ser36 and
thus stabilized the hydrophobic binding pocket. The only one opening in the
HarmPBP1/Z9-16:Ald complex was surrounded by helices a5, a6, and the a3a4 loop
(Figure S4B). The Z9-16:Ald was in an elongated conformation, with one end entering the
cavity through the opening formed by His122, Ala125 in a5, Lys138 in a6, and Lys94 and
Leu95 in a3a4 loop (Figure 4B). In the apo-HarmPBP1 structure, part of the Lys138 side
chain was flexible (Figure S4A). The binding of Z9-16:Ald induced conformational
changes of Lys94 and Lys138 side chains and significantly hindered the access of the
ligand to the solvent (Figure 54B). Thus, we hypothesize that the entry of ligand into the
pocket is followed by a shift of Lys94 and Lys138, which act as a lid. The conformational
rearrangements might trigger the lid to cover the opening of the pocket.

(A) Trpﬁtkg _%}Eerﬁ% (B) -
; .._‘:a‘ [

Phe6§£ & 79-16:Ald

4 %)71#\3121

I1e79

Phe3oC |
Leun?%\g

ThrlSﬁ%
3.00
AlalZ’;;% ' Y/ Leu95

3.67 ; :
;);lg% &/’302 // a3au4 loop
Water~'3.35._ His97 . 4

Figure 4. Structure of the Z9-16:Ald bound state of HarmPBP1. (A) LIGPLOT diagram [15] of Z9-
16:Ald. Hydrogen bonds are represented by dashed lines and hydrophobic contacts by arcs with
radiating spokes. Atoms involved in hydrophobic contacts are represented by black circles. (B)
Ribbon diagram of HarmPBP1. A single Z9-16:Ald molecule (green) binds in the central cavity and
enters through an opening formed by a5, a6, and the a3a4 loop.

Lys

2.4. A New Releasing Mechanism at Low pH Conditions

Various studies [5,10,13] suggested significant pH-dependent conformational
changes in lepidopteran PBPs. The C-terminus would form an additional helix a7 under
low pH conditions, occupying the corresponding pheromone binding pocket. To know
whether HarmPBP1 has a similar mechanism, we solved the structure of the apo-
HarmPBP1 at acid conditions (Table 1). Surprisingly, the conformations of the apo-
HarmPBP1 at pH 5.5 were very similar to those at pH 7.5 with an overall RMSD of 0.5 A.
Therefore, the above-mentioned significant structural changes influenced by pH may not
exist in HarmPBP1. Moreover, no C-terminal additional a-helix was observed, and no
residues were found in the cavity at pH 5.5. The cavity volume of the HarmPBP1
decreased from 266 A3 to 211 A3when the pH changed from 7.5 to 5.5. The smaller cavity
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in HarmPBP1 would be not enough to accommodate an additional helix a7, which is
found in other PBPs under low pH conditions [5,10,13].

Nevertheless, our structures uncovered a new releasing mechanism at low pH
conditions. There were three residues (His96, His97, His122) that were strictly conserved
across all known lepidopteran PBPs, suggesting that their role in the PBP function may be
similar (Figure S3). A decrease of pH from 7.5 to 5.5 would result in the protonation of the
imidazole rings of His96, His97, and His122 (Figure 5), which were in close contact, and
therefore mutual repulsion probably would occur. Moreover, protonation changed the
position of His96, which in turn increased its interaction with Asp90 located at the a3a4
loop and simultaneously increased its repulsive ability with Lys99. These changes
triggered the movement of the a3a4 loop about 1.0 A, enabling a larger opening of the
pocket at pH 5.5 (Figure 5). In addition, the a5a6 loop around the opening also moved
out about 1.5 A. These movements might increase the interacting distance between the
protein and the ligand. Therefore, the binding ability of HarmPBP1 to its ligand was
weaker at low pH, and the fluorescence-binding experiment also proved this. The affinity
of HarmPBP1 to Z9-16:Ald and Z11-16:Ald was measured under neutral (pH7.5) and
acidic (pH5.5) conditions, respectively. HarmPBP1 showed a higher binding affinity to a
nonspecific ligand 1-NPN at pH 7.5 (1.79 + 0.14 uM) than at pH 5.5 (4.49 + 0.41 uM) (Figure
S5A). Further competitive binding assays showed that HarmPBP1 exhibited reduced
binding activity for two principal pheromones Z11-16:Ald and Z9-16:Ald at low pH (Table
2, Figure S5). In summary, it is believed that the a3a4 loop, providing an entrance for the
ligand, becomes destabilized upon protonation of one or all of three histidine residues at
low pH.

Apo-HarmPBP1 pH 5.5

Figure 5. Superimposition of apo-HarmPBP1 at pH 5.5 (limon) on apo-HarmPBP1 at pH 7.5 (cyan).
The side chain of His96 in the a3a4 loop changed greatly due to the protonation. The a3a4 loop and
the a5a6 loop of the HarmPBP1 at pH 5.5 moved outward so that the pocket formed a larger
opening. Z9-16:Ald (green) was docked from the HarmPBP1/Z9-16:Ald complex after
superimposition.

Table 2. Binding affinities (uM) of two major sex pheromones to HarmPBP1 at pH 7.5 and pH 5.5.

Ligand pH?7.5 pH5.5
(Z)-11-Hexadecenal 0.67 +0.05 13.09+1.78
(Z)-9-Hexadecenal 0.56 +0.05 13.61+1.33

Data represent the mean values + S.E.M of three independent replicates.
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3. Discussion

In this work, we solved three crystal structures of HarmPBP1 at two pH values and
its complex with ligand Z-9-hexadecenal. Minor conformational changes occurred when
the ligand bound to the pocket, during which C-terminal additional residues and the lid
(Lys94 and Lys138), respectively, covered the two openings of the channel in the apo-
HarmPBP1. Moreover, the two residues of the lid were not conserved among lepidopteran
PBPs (Figure S3), revealing a unique mechanism. In addition, a new releasing mechanism
at low pH conditions was found for HarmPBP1.

Our crystal structure of HarmPBP1 could further explain the results of former
mutation experiments [16]. In that study, it was proven that four residues —Phe39, Phe63,
Trp64, and Phel46 —were the key residues involved in ligand recognition and interaction.
Fluorescence assays revealed that all four mutants showed lower affinities to Z11-16:Ald
[17] and Z9-16:Ald compared with the wild type. Mutants F39A and F146A exhibited
strong reductions in affinities to both pheromone components Z9-16:Ald and Z11-16:Ald.
Our complex structure revealed that the conjugated double bond of Z9-16:Ald was stuck
in the middle of the aromatic rings of these two residues, further confirming their
importance for substrate binding. The reduced affinities reported for the mutants might
be explained by the disruption of the hydrophobic interactions between the protein and
the ligand. Moreover, a HarmPBP1M mutant without the C-terminal nine residues had
strong binding affinities to both ligands compared with the wild type at acidic condition,
but not at neutral condition (Figure S6). The results indicate that the C-terminal nine
residues of HarmPBP1 protein play an important role in the process of releasing ligands.
Interestingly, a groove that formed between alb and a2 only at pH 5.5 (Figure S4C-E)
might have provided a nonspecific binding site for the C-terminal nine residues and thus
would promote the release of ligands. Except for the strong hydrophobic interactions, a
few hydrophilic interactions were also observed in the HarmPBP1/29-16:Ald complex
structure. The aldehyde group of the ligand formed a strong hydrogen bond with the
main chain of Leu95 and a weak water-mediated hydrogen bond with the side chain of
His97 (Figures 3C and 4A). Due to the weak selectivity of these hydrogen bonds, these
results revealed that the binding specificity of the protein might not be very high.
Consistently, Z11-16:Ald had a slightly weaker binding affinity to HarmPBP1 compared
with Z9-16:Ald.

Previous research has indicated that the affinity of Lepidoptera PBPs is affected by
pH change, facilitating the release of pheromones. Currently, two mechanisms have been
reported. One mechanism is the internalization of the C terminus in form of a helix a7
into the binding cavity at acidic pH [5,9] (Figure S1A). Another mechanism is uncovering
the ligand-binding cavity with the reorientation of helices al, a3, and a4 but without
forming the C-terminal helix a7 [8] (Figure S1B). In both mechanisms, the N-terminal
helices (ala for BmorPBP, ala and alb for ApolPBP) unfold and the overall conformation
of the protein changes significantly. Here, we showed the third mechanism of pH-induced
release of pheromones. The overall structure of HarmPBP1 at pH 5.5 was very similar to
that at pH 7.5, with an RMSD of 0.5 A. Moreover, the arrangements of both proteins in the
crystal packing were different, revealing that the little structural difference was not caused
by experimental errors. Subtle structural changes in the lid and the opening were
observed. Acidic pH caused protonation of His96, His97, and His122 at the surface and
provided the driving force to enlarge the opening of the ligand-binding cavity. The
mechanism may be the most efficient and the best energy-saving method. Therefore,
pheromone-binding and -releasing mechanisms were found to be different in the PBPs,
consistent with the different physiological functions and structures of the ligands.

Insect PBPs have evolved significant structural differences that make them display
different cavities and different mechanisms to bind and release diverse ligands. In this
work, we found that HarmPBP1 adopts a new mechanism. Both apo-HarmPBP1 at
different pH values and HarmPBP1/79-16:Ald were found to have similar conformation,
suggesting that minor conformational rearrangements may also regulate ligand binding
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and releasing. We also demonstrated that the specific conformation of apo-HarmPBP1
was greatly different from other PBPs. Taken together, this study provides a structural
basis for designing small inhibitors to control cotton bollworms, one of the agricultural
pests that occur worldwide.

4. Materials and Methods
4.1. Expression and Purification of Recombinant HarmPBP1

The cDNA encoding residues 27-170 of HarmPBP1 (UniProtKB: F5ANH9) were
cloned into the Nco I and Xho I restriction sites of the pET-32b modified vector, in which
the thrombin site was replaced by a tobacco etch virus (TEV) protease cleavage site [18].
The cloned sequence was verified by sequencing and the correct plasmid was transformed
into E. coli BL21 (DE3) cells. Cells were grown at 37°C until ODew reached 0.6-0.8, and
protein expression was induced with 0.2 mM isopropyl 3-D-thiogalactopyranoside (IPTG)
at 18°C for 12h. Cells were harvested by centrifuging at 4000 x g for 10 min and then
resuspended in the lysis buffer containing 20 mM Tris-HCI (pH 8.0), 500 mM NaCl, 10
mM imidazole, 0.1% Triton X-100, and 1 mM PMSF (phenylmethanesulfonyl fluoride).
After sonication, the cell lysates were centrifuged at 18,300 x g for 30 min, and then the
supernatant was filtered with 0.4 um filter before being loaded onto a profinity™ IMAC
Ni-charged resin (Biorad, Cat. #156-0137) column equilibrated with lysis buffer and eluted
with a 20400 mM imidazole gradient. The N-terminal His-tag was removed by digestion
with TEV protease containing a His-tag. After TEV protease digestion, the sample was
passed over a second Ni-charged resin (Biorad) to remove the cleaved His-tag and TEV
protease. Then, the proteins were loaded onto the Q sepharose™ high-performance (GE
Healthcare, Cat. #17-1014-03) column. Fractions containing the target protein were judged
by SDS-PAGE analysis. The eluted protein was further purified by size-exclusion
chromatography (Superdex™ 200 10/300 GL, GE Healthcare, Cat. #17-5175-01) with buffer
containing 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 5 mM (-Me (3-Mercaptoethanol).
Fractions containing the target protein were pooled and concentrated to 10 mg/mL for
crystallization experiments.

4.2. Protein Crystallization and Data Collection

Initial crystallization trials were performed at 16°C using the sitting-drop vapor-
diffusion method. After two weeks, crystals could be observed in several conditions. After
optimizations of crystallization conditions, large crystals were obtained in the buffer
comprising 1.3 M Na-citrate, 0.1 M Tris-HCI (pH 7.5~8.5). The crystal structure of apo-
HarmPBP1 at acid condition was obtained by soaking for 1 h under pH 5.5 conditions,
similar to the references [19,20].

The HarmPBP1/ligand complex was prepared by adding ligands to the protein
solution in a molar ratio of 10:1. After incubating overnight, the complex was concentrated
to 25 mg/mL for crystallization trials. Crystallization trials were performed using the
hanging-drop method by mixing 1 pL of the protein solution with 1 uL of well solution.
It took several weeks to grow small crystals in the buffer comprising containing 1.5 M Na-
citrate and 0.1 M Tris-HCl (pH 8.5) at 16 °C. After a series of optimizations of
crystallization conditions including protein concentration, precipitants, pH, and salts,
larger crystals with better diffraction were obtained in the buffer comprising 1.3 M Na-
citrate and 0.1 M Tris-HCI (pH 8.5).

Crystals were frozen for data collection in the above crystallization buffer containing
25% glycerol. Data were collected on beamline BL17U1 at the Shanghai Synchrotron
Radiation Facility. Data were indexed, integrated, and scaled using HKL2000 [21]. Data
collection and processing statistics are shown in Table 1.
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4.3. Structure Determination and Refinement

Apo-HarmPBP1 structure (pH 7.5) was solved by the molecular replacement
program BALBES [22] using the BmorPBP structure (pdb: 2FJY) [9] as a model. We
removed unstructured loops and deleted disordered side chains in the density map, and
the initial model was refined by the program REFMACS5 [23]. The additional residues
were rebuilt manually by COOT [24], and the model was further refined by using
REFMACS. After 30 more cycles of manual rebuilding by COOT and refinement with
REFMACS [21] by calculating hydrogens and anisotropic refinement, the structure was
refined to 1.3 A with an Ruo of 17.9% and an Ry of 19.8% (Table 1). Structures of apo-
HarmPBP1 at pH 5.5 and HarmPBP1/Z9-16:Ald complex were solved by molecular
replacement program BALBES [22] using the apo-HarmPBP1 (pH 7.5) as a model.
Structure of apo-HarmPBP1 at pH 7.5 (PDB ID: 7VWS8), structure of apo-HarmPBP1 at pH
5.5 (PDB ID: 7VW9), and structure of HarmPBP1/Z9-16:Ald complex (PDB ID: 7VWA)
have been deposited in the RCSB Protein Data Bank (http://www.rcsb.org/pdb (accessed
on 2 Feb 2022)). The cavity volume mentioned above was calculated by the program
VOIDOO [25].

4.4. Fluorescence Binding Assays

Fluorescence binding assays were conducted on an F-380 fluorescence
spectrophotometer (Tianjin Gangdong Sci. & Tech.) to further investigate the binding
characteristics of HarmPBP1. N-phenyl-1-naph-thylamine (1-NPN), Z11-16:Ald, and Z9-
16:Ald (>98%) were purchased from Sigma. The principal pheromone components of H.
armigera, Z11-16:Ald, and Z9-16:Ald were used as the competitors, and 1-NPN was used
as the fluorescent ligand in a 1 cm light path quartz cuvette. Both the emission and
excitation slit widths were 10 nm. Fluorescence of 1-NPN was excited at 337 nm, and the
emission spectra were recorded between 390 and 490 nm. Fluorescence measurements
were performed according to the reference [16]. Solutions of 2 uM proteins in the
corresponding buffer and 2 uM 1-NPN were titrated with 1 mM solutions of each ligand
in methanol to a final concentration of 4 uM (pH 7.5) and 10 uM (pH 5.5). Dissociation
constants of the competitors were calculated from the corresponding ICso values
(concentrations of ligands halving the initial fluorescence value of 1-NPN) using the
equation: Ki= [ICso]/(1 + [1-NPN]/Kuinen); [I-NPN] was the concentration of free 1-NPN,
and Kinen was the dissociation constant of the complex protein/1-NPN, which was
calculated from the binding curve using Prism 5.0 (GraphPad Software Inc.). Note that the
titration may be terminated when the fluorescence intensity is less than ICso because only
the ICso value is needed in the calculation.

Supplementary Materials: The following are available online at
https://www.mdpi.com/article/10.3390/ijms23031190/s1.
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