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Abstract: Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive
signaling pathways for proper differentiation and transformation. Several protein phosphatases,
including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown
to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in
cellular processes via dynamic interactions with a vast number of binding partners that contribute
to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably
expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity
pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses.
Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our
findings confirm previously known physical interactions of PP1c and reveal enrichment of common
biological processes linked to cellular component assembly in both schizonts and gametocytes to
biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes.
Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and
peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets
of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of
Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved
in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for
alternative therapeutic strategies.

Keywords: protein phosphatase 1; inhibitor 2; Plasmodium; interactome; dephosphorylation; PP1 partners

1. Introduction

Malaria is a parasitic disease of major public health importance caused mainly by
Plasmodium falciparum. Its global control is still under serious threat due to the intensive
use of the available treatments, participating at least in part of the emergence of multidrug
resistance that contributes to a higher risk of transmission, morbidity, and mortality [1].
Consequently, the search for new targets and drugs is imperative.

In this context, one strategy is to decipher orthologues of proteins described to play
essential roles in other eukaryotes in order to specifically target them in the malaria parasite.
Among these proteins, due to the fact of their pleiotropic roles in the dynamic regulation
of protein function and cellular distribution, enzymes involved in dephosphorylation
processes and, in particular protein phosphatase 1 (PP1), are of interest. PP1 is among
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the most active drivers of protein dephosphorylation [2]. In humans, there are three PP1
catalytic (PP1c) isoforms expressed by three distinct genes [3]; however, Plasmodium spp.
possess only one PP1c. Initial experiments using natural phosphatase inhibitors have
shown that okadaic acid was able to drastically inhibit P. falciparum growth in vitro [4,5].
On the basis of the high IC50 and IC90 values observed with okadaic acid in these studies,
it was suggested that the significant decrease in growth could mainly be due to PP1. More
recently, compelling evidence from genetic studies clearly demonstrated the implication of
PP1c not only in the Plasmodium division but also in egress of the blood stage parasites [6].
The PP1 catalytic subunit itself could therefore be considered a promising target for the
development of innovative and effective drugs against malaria. However, this could be
difficult to achieve, as PP1c is highly conserved in eukaryotes.

At the molecular level, it is well known that PP1c forms and functions as a holoenzyme
with a vast network of binding partners. Hence, it is reasonable to expect that acting on
PP1c interactions or interactors in Plasmodium may lead to the development of selective
drugs. In yeast and mammals, PP1c has been shown to function almost exclusively in
complexes [7–10] with diverse regulators/partners to dephosphorylate a plethora of pro-
teins involved in many cellular processes including glycogen metabolism, transcription
or mitosis [2]. So far, hundreds of partners have been reported, and many of them have
been shown to be involved in the coordination of PP1c activities. These binding partners
can be PP1c substrates, recruit additional substrates, transport PP1c, and/or regulate the
phosphatase activity. A hallmark of most PP1c regulators is that they exhibit an RVxF
sequence as a primary binding motif [7]. At the cellular level, converging studies clearly
reported essential functions of some conserved regulators, such as sds22, inhibitors 2 (I2)
and 3 (I3), suggesting that the specificity of action of PP1c may originate from the partner
rather than from catalytic subunit itself [2].

In Plasmodium, we used different approaches combining the study of known conserved
regulators, the use of the yeast 2-hybrid approach in which PfPP1c was the bait as well as
immunoprecipitated (IP) complexes of blood parasites using HA-tagged PP1c followed by
mass spectrometry analyses (MS) to examine the PP1c interactome [11]. This allowed the
confirmation of the presence of the conserved sds22 (designated LRR1 in Plasmodium) and
I2 and I3 partners. Their crucial role was subsequently demonstrated as disrupting their
interaction with PfPP1c, induced the death of blood stage parasites [12,13]. In addition, we
reported a high number of specific PP1c Plasmodium partners including GEXP15, whose
deletion drastically affected the growth of blood stage parasites and completely blocked the
development of oocysts and sporozoites in the mosquito [14]. While these early approaches
started to pinpoint the Plasmodium PP1c interactome, they reported a static picture of the
interactome, since they focused on asexual schizonts. Hence, it was crucial to confirm and
to further extend the PP1c network mapping to other parasite stages. This was reinforced by
a recent study in which PP1c was shown to be highly expressed in gametocyte sexual stages
and to regulate chromosome segregation during mitotic and meiotic division of sexual
stages [15]. Based on the idea that PP1c interactive protein partners and their pathways
could co-evolve and/or need to adapt, we therefore sought to characterize the intricate PP1c
interaction networks at two parasite stages to increase understanding of how this enzyme
could execute its multiple functions. For this purpose, we used the IP/MS approach to
allow active network mapping of direct interactions and indirect associations. We first
examined Plasmodium berghei schizonts and gametocytes expressing tagged mCherry–PP1c
to identify PP1c protein complexes. Further, reciprocal experiments with a direct partner
of PP1c, I2 were performed to confirm and to uncover potential PP1c–I2 pathways, using
the same strain of P. berghei that we generated during this study to express mCherry–
PbI2. We present, here, the interactomes of PbPP1c and PbI2, showing common and
specific interactors depending on the Plasmodium parasite stage. The network analysis of
the PP1c-associated proteins revealed dynamic signaling networks responsive to parasite
stage development, ranging from cellular component assembly, translation, and protein
transport. These data support the capacity of a functional adaptation of PP1 to contribute
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to diverse and essential biological processes and provide a basis for studies targeting PP1
holoenzymes in Plasmodium.

2. Results and Discussion
2.1. Transgenic P. berghei Lines Expressing Tagged Baits

The aim of this study was to identify PP1c partners in order to better unravel its
biological roles and functions in Plasmodium asexual and sexual stages. To address the
analysis of its interactions and its formed complexes, we conducted an IP-MS based study
using tagged proteins in P. berghei. Our selected protein baits were PP1c and its I2 regulatory
subunit. The generation of a P. berghei line expressing mCherry-tagged PP1c has previously
been reported [14]. As for PbI2, a parasite line expressing mCherry-tagged I2 from its
endogenous locus was generated in the same strain used for PbPP1c. Genotyping analysis
showed the correct integration of the tagged PbI2 and the expression of mCherry–PbI2 was
checked by immunoblot using anti-RFP antibody (Supplementary Materials Figure S1).
It is important to point out that the P. berghei ANKA strain used throughout this study
produced gametocytes with expected ookinete conversion rates (data not shown).

For proteomic experiments, a schematic illustration of the methodology used is shown
in Figure 1. Schizonts and gametocytes were purified, and IP experiments were performed
with proteins extracted from five independent biological replicates using beads coupled to
anti-RFP antibody (see Section 3 for details). Prior to MS proteomic analysis, the presence
of tagged baits in each IP was checked by immunoblot (illustrated in Figure 1). As control
experiments, we performed IP on proteins extracted from the same parasite stages of
the parental wild-type strain. In all experiments, the eluted PbPP1c and PbI2-interacting
complexes were analyzed by LC-MS/MS.

2.2. Identification of PbPP1c-Interacting Proteins in Schizonts and Gametocytes

The digested samples were directly analyzed by LC-MS/MS using five biological repli-
cates to identify PbPP1c-associated proteins. After statistical analysis, the data revealed a
total of 489 proteins including the mCherry–PbPP1c bait protein. Among them, 157 proteins
were present in both schizont and gametocyte extracts and considered as common inter-
acting proteins (CIPs) (Supplementary Materials Table S1, sheets 2–4 in pink; Figure 2). In
addition, 68 proteins were detected as specific interacting proteins in schizonts (SIPS) (Sup-
plementary Materials Table S1, sheet 2 in green), and 263 proteins were found as specific
interacting proteins in gametocytes (SIPGs) (Supplementary Materials Table S1, sheet 3 in
blue). Among the CIP, it is important to point out that LRR1, I2, I3, GEXP15, and RCC–PIP
proteins as well as NEMF and PBANKA_0621300 proteins, which we previously reported
as direct interactors of Plasmodium PP1c, were found among the top interacting proteins
(Figure 2, annotated in panels (A) and (B) and listed in panel (C)) [11,12,14,16–18]. This
observation supports the robustness of the interactome data as well as a validation of the
IP/MS experiments. Next, we analyzed all potential PbPP1c protein complexes (using the
Protein Motif Pattern tool of PlasmoDB) for the presence of the highly conserved RVxF dock-
ing motif [19], known to be present in >80% of PP1c direct regulators [7]. Of the 488 proteins,
296 interacting proteins exhibited at least one consensus RVxF binding motif (Supplemen-
tary Materials Table S1). These motifs are enriched when compared to the overall presence
of the RVxF motif in P. berghei proteins (fold 1.17; hypergeometric p-value = 3.17 × 105,
https://systems.crump.ucla.edu/hypergeometric/index.php, accessed on 16 August 2021).
This suggests that the presence of the RVxF motif could contribute to the molecular basis
of interaction with PP1c. These motifs need to be further investigated and confirmed as
structural and functional motifs.

https://systems.crump.ucla.edu/hypergeometric/index.php
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Figure 1. Workflow and study overview. Schizont and gametocyte stages were prepared from 
PbWT GFP, PbPP1c–mCherry, and PbI2–mCherry parasites. Immunoprecipitation was performed 
with anti-RFP antibody on 5 different biological replicates of schizonts and gametocytes extracts 
prepared from each parasite strain (PbWT, PbPP1c–mCherry, and PbI2–mCherry). The presence of 
mCherry-tagged PbPP1c and PbI2 was checked in the immunoprecipitated fractions (control wild-
type vs. tagged proteins) before MS. Proteomic and statistical analyses (detailed in Section 3) al-
lowed for the identification of the interactome of PbPP1c and PbI2 in schizont and gametocyte stages 
that were further analyzed for GO enrichment, STRING networks, and comparative analyses. 
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Figure 1. Workflow and study overview. Schizont and gametocyte stages were prepared from PbWT
GFP, PbPP1c–mCherry, and PbI2–mCherry parasites. Immunoprecipitation was performed with
anti-RFP antibody on 5 different biological replicates of schizonts and gametocytes extracts prepared
from each parasite strain (PbWT, PbPP1c–mCherry, and PbI2–mCherry). The presence of mCherry-
tagged PbPP1c and PbI2 was checked in the immunoprecipitated fractions (control wild-type vs.
tagged proteins) before MS. Proteomic and statistical analyses (detailed in Section 3) allowed for the
identification of the interactome of PbPP1c and PbI2 in schizont and gametocyte stages that were
further analyzed for GO enrichment, STRING networks, and comparative analyses.
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Figure 2. PbPP1c interactome analysis. (A,B) Volcano plot representations of the outcome of the
PbPP1c interactome study carried out in schizonts (A) and in gametocytes (B). Highlighted in blue
are the common interacting proteins (CIPs) in PbPP1c interactomes in schizont and gametocyte stages.
The top PbPP1c-interacting proteins are annotated (see C). (C) List of top PbPP1c-interacting partners.
Proteins were ranked according to their Student’s t-test difference PbPP1c–PbWT in schizont and
gametocyte stages, and the top 10 proteins at each stage are listed. Protein description was updated
using PlasmoDB relapse 54 (September 2021). Confirmed interaction data from previous works are in
the two last columns [11,12,14,16–18]. Y2H and NMR stand for yeast 2-hybrid and nuclear magnetic
resonance, respectively.

Following the PbPP1c immunoprecipitation, it should be noted that 21% of the CIPs
(34/157) and 45% of the SIPS (31/68) were found to be ribosomal subunits or ribosome-
associated proteins (Supplementary Materials Table S1), suggesting that PbPP1c brings
down a large part of the ribosome complex. It is very unlikely that these interactions could
be considered as non-specific. In support for this, the MS of IP extracts of WT parasites and
of the mCherry–PbI2 parasites generated in the same strain in which the mCherry–PbPP1c
line was obtained did not allow for the detection of these proteins (see below).

In addition, it is important to bear in mind that previous studies support the selectivity
of PP1c binding to ribosome complexes in mammalian cells [20–22]. Further, by manual
curation, we found that 19 ribosome-associated proteins detected in the interactome ex-
hibited at least one RVxF binding motif, supporting their potential direct interactions with
PbPP1c (Supplementary Materials Table S1). Further, the detection in schizonts of Nop52,
known to contribute to ribosome production and to interact with PP1 through its RVxF
binding motif [23], among the main interactors in our IP-MS of mCherry–PbPP1c, argues
in favor of selective PP1c–ribosome complex interactions. Of note, Plasmodium Nop52
contains two potential RVxF binding motifs to PP1c. As for the presence of ribosomal
protein complexes in CIP and also in SIPS, this could be indicative of a distinct role of
PP1 at different levels during the biogenesis of ribosomes in schizonts by regulating their
phosphorylation status. Indeed, among the protein complexes in CIP, we found 5 subunits
corresponding to initiation factor 3, supportive of a potential regulation of the initiation
of translation. Along the same line, our set of data with the total proteins interacting with
PP1c showed that they are present in the cytoplasm and the nucleus. This is consistent
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with the idea that Plasmodium PP1c has the capacity to establish a high number of separate
protein complexes in both compartments. However, additional investigations are still
required to capture transient and fast exchanging PP1c interacting proteins by the use, for
instance, of cross-linking methods and to examine which partner functionally influences
the other.

2.3. Gene Ontology Enrichment Analyses of PbPP1c-Interacting Proteins

In order to gain some insight into potential pathways in which PP1c could be in-
volved and to avoid bias in their identification, GO enrichment pathways including all
detected proteins in each parasite stage were explored using PlasmoDB software (release 51,
March 2021). We analyzed enriched GO terms/pathways of computed and curated biologi-
cal processes. In the case of schizonts, 37 pathways were found to be enriched, including 5
with a strong fold enrichment (>5) involved in spliceosomal SnRNP assembly, formation
of cytoplasmic translation initiation complex, cytoplasmic translation, ribonucleoprotein
complex assembly, and subunit organization (Supplementary Materials Table S2). Closer
examination of GO-enriched terms revealed that a large list of genes had multiple annota-
tions and, in some cases, GO pathways included shared or the same set of genes, leading to
overlap and duplication. Consequently, and in the search for the most informative data,
full GO terms were reduced using the GO slimmer tool (PlasmoDB release 51) to obtain
Slim annotations that were further inspected to reassign, when appropriate, to GO parent
terms (Table 1). However, general GO terms were excluded (such as biosynthetic process
and metabolic process) while branch information was retained to ensure that the enriched
family of each function was present in the data. The results showed that, in schizont stages,
PbPP1c was predominantly associated with “cellular component assembly” (20 proteins),
encompassing “protein-containing complex assembly” (18 proteins), “ribonucleoprotein
assembly” (13 proteins), and in “translation” complex (57 proteins) (Table 1).

Table 1. Analysis of biological processes enrichment in the PbPP1c interactome in schizonts limited
to GO SLIM terms.

GO ID GO Term Number of
Genes Detected 1 Fold Enrichment p-Value Benjamini FDR Bonferroni

Adjusted p-Value

GO:0022607 Cellular component assembly 20/108 2.6 4.63 × 10−5 2.55 × 10−4 1.53 × 10−3

GO:0065003 Protein-containing complex assembly 18/80 3.16 6.93 × 10−6 4.57 × 10−5 2.29 × 10−4

GO:0022618 Ribonucleoprotein complex assembly 13/43 4.25 4.39 × 10−6 3.62 × 10−5 1.45 × 10−4

GO:0009058 Biosynthetic process 71/531 1.88 4.53 × 10−9 7.47 × 10−8 1.49 × 10−7

GO:0034641 Cellular nitrogen compound
metabolic process 87/756 1.62 7.49 × 10−8 8.24 × 10−7 2.47 × 10−6

GO:0006412 Translation 57/232 3.45 4.86 × 10−19 1.60 × 10−17 1.60 × 10−17

1 Number of genes detected/total number of genes in the background with this term.

Next, the proteins involved in each main GO Slim pathways underwent the retrieval
of networks for interacting proteins using STRING software (v.11.0b) combined with
Cytoscape visualization (v.3.8.2, accessed in July 2021). In the “cellular component as-
sembly” pathway, the results presented in Figure 3 showed a protein–protein interaction
network formed of 19 nodes and 53 edges. Three KEGG pathways were significantly
enriched in this network (Figure 3). This includes proteasome and spliceosome com-
plexes, confirming the previous analysis [14] and suggesting that these proteins may at
least constitute PP1 substrates. In fact, it has been shown that PP1c was able to inhibit
human proteasome activities in vitro [24]. In the case of spliceosomes, PP1c has been
shown to be an essential player in splicing by contributing to the dephosphorylation of
some spliceosome factors [25]. Interestingly, the analysis of data from our study on the
PbPP1c interactome shows some overlap with a recent study examining global protein
complexes in schizonts from P. falciparum, P. knowlesi, and P. berghei through native-PAGE
fractionation coupled with spectrometry and machine learning [26]. This study allowed
the identification of >20,000 putative protein–protein interactions, organized in 600 clus-
ters. The reanalysis of these data revealed the presence of 92 putative PP1c interactors
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(https://plasmogem.shinyapps.io/schizont_interactions/ accessed on 15 September 2021)
and GO enrichment of cellular process (Bonferroni adjusted p-value = 0.0001), including up
to 12 proteins involved in RNA splicing (Bonferroni adjusted p-value = 0.009), supportive
of our IP-MS of P. berghei PP1c and the idea of its role in the regulation of the activity of
spliceosomal factors.
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(RNA transport), and map03040 (Spliceosome) are colored in blue, green, and orange, respectively. 
Assignation to Eukaryotic translation initiation 3 subunits was conducted manually based on the 
protein description in PlasmoDB. Black stars indicate proteins with RVxF motifs based on the 
Wakula consensus sequence [19]. Proteins in each network are listed in adjacent tables showing the 
PlasmoDB geneID, short name, and protein description. STRING analysis was performed using the 
11.0b version of the software. 
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of the “RNA transport” KEGG pathway (Figure 3). One of the major nodes of this network 
was the eIF3 subunit A (eIF3a, PBANKA_1428700) with 11 edges that could be expected 
to contribute to forming the translation initiation complex. Of note, eIF3a contains four 
potential RVxF binding motifs, suggesting a potential interaction with PP1c and a regula-
tion of the complex formation by this phosphatase. From our GO Slim analysis, it could 
also be suggested that PP1c may contribute to the control of the translation process itself 
(Table 1) in Plasmodium. Indeed, 57 proteins belonging to this GO Slim pathway were sig-
nificantly retrieved in the PbPP1c interactome. This includes the five eIF3 subunits already 
observed in the “cellular component assembly” network but also 49 ribosomal proteins. 
STRING analysis of this pathway showed a very high degree of interaction among these 
proteins (>1400 associations, not shown). Interestingly, phosphorylation is known to be a 
central mechanism for translational control in mammals, and a role of PP1c in the 

Figure 3. STRING network visualization of PbPP1c-interacting proteins belonging to “cellular
component assembly” GO Slim in schizont stages. Using the Cytoscape STRING application, a
network was retrieved for the 20 proteins from the cellular component assembly GO Slim of the
PbPP1c interactome in schizont stages. With a protein–protein interaction enrichment p-value of
4.48 × 10−10, the resulting network contained 53 functional associations among 19 proteins; one
protein (PBANKA_126600, tubulin gamma chain, putative) with no associations to other proteins in
the network was removed. Proteins from the KEGG pathways map03050 (Proteasome), map03013
(RNA transport), and map03040 (Spliceosome) are colored in blue, green, and orange, respectively.
Assignation to Eukaryotic translation initiation 3 subunits was conducted manually based on the
protein description in PlasmoDB. Black stars indicate proteins with RVxF motifs based on the Wakula
consensus sequence [19]. Proteins in each network are listed in adjacent tables showing the PlasmoDB
geneID, short name, and protein description. STRING analysis was performed using the 11.0b version
of the software.

In our study, the “cellular component assembly” functional network also included
five eukaryotic translation initiation factor 3 (eIF3) subunits, of which four are members of
the “RNA transport” KEGG pathway (Figure 3). One of the major nodes of this network
was the eIF3 subunit A (eIF3a, PBANKA_1428700) with 11 edges that could be expected to
contribute to forming the translation initiation complex. Of note, eIF3a contains four poten-
tial RVxF binding motifs, suggesting a potential interaction with PP1c and a regulation of
the complex formation by this phosphatase. From our GO Slim analysis, it could also be

https://plasmogem.shinyapps.io/schizont_interactions/
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suggested that PP1c may contribute to the control of the translation process itself (Table 1)
in Plasmodium. Indeed, 57 proteins belonging to this GO Slim pathway were significantly
retrieved in the PbPP1c interactome. This includes the five eIF3 subunits already observed
in the “cellular component assembly” network but also 49 ribosomal proteins. STRING
analysis of this pathway showed a very high degree of interaction among these proteins
(>1400 associations, not shown). Interestingly, phosphorylation is known to be a central
mechanism for translational control in mammals, and a role of PP1c in the dephosphory-
lation of eiF2α to restore translational process upon cell stress has been reported [27]. In
addition, eiF2β, which was found in the PP1c interactome in this study but at the limit of
significance and also in a recent report [15], was confirmed as a direct interactor of PP1c
both in mammals and in Plasmodium [28,29].

In gametocytes, the GO analysis of PbPP1c-interacting proteins identified 28 pathways
as significantly enriched (Supplementary Materials Table S2). Pathways with the highest
fold enrichment included spliceosomal SnRNP assembly, microtubule-based movement,
microtubule-based processes, movement of cell and DNA replication. When annotations
from the full GO terms were converted to GO Slim, PbPP1c was found to cluster with two
main pathways (Table 2), including the “cellular component assembly” pathway, which is
also observed in schizonts. STRING analysis of the 27 proteins of this pathway showed an
additional network in gametocytes, when compared with schizont stages, corresponding
to microtubule-associated proteins (Figure 4). Four proteins with no associations with
other proteins of the network were removed from the Cytoscape visualization. They
included the radial spoke head protein (PBANKA_0942300) and armadillo repeat protein
PF16 (PBANKA_0917400): two proteins that are associated with the axoneme and flagella.
Of note, the PbPP1c interactome in gametocytes also included kinesin 13 and kinesin 15,
together with 14 putative dynein chains, confirming the overall enrichment in microtubule-
based processes (Supplementary Materials Table S1). These data are supported by a recent
report showing a cyclic accumulation of PbPP1c at the kinetochore during gametogony,
suggesting a role for PP1 in regulating mitotic entry and exit [15]. Moreover, several
microtubule proteins known to be associated with the spindle or axoneme, some of which
were also found in our study, were pulled down with PP1c in gametocytes.

Table 2. Analysis of biological processes enrichment in the PbPP1c interactome in gametocytes
limited to GO SLIM terms.

GO ID GO Term Number of
Genes Detected 1 Fold Enrichment p-Value Benjamini FDR Bonferroni Adjusted

p-Value

GO:0022607 Cellular component assembly 27/108 2.18 4.48 × 10−5 1.04 × 10−3 1.88 × 10−3

GO:0065003 Protein-containing complex assembly 22/80 2.4 4.97 × 10−5 1.04 × 10−3 2.09 × 10−3

GO:0022618 Ribonucleoprotein complex assembly 14/43 2.84 1.75 × 10−4 2.45 × 10−3 7.35 × 10−3

GO:0015031 Protein transport 24/109 1.92 9.32 × 10−4 9.79 × 10−3 3.91 × 10−2

1 Number of genes detected/total number of genes in the background with this term.

The other GO Slim pathway specifically enriched in the PbPP1c interactome in ga-
metocytes was related to protein transport and encompassed 24 proteins (Table 2). The
constructed functional protein association network showed 20 nodes and 69 edges, which
is a strong enrichment in terms of functional associations when compared to a random
network (Figure 5). Few of these proteins belong to significantly enriched KEGG path-
ways. However, manual inspection based both on PlasmoDB protein description and the
literature allowed the identification of three highly interconnected sub-complexes: Clathrin-
associated adaptor protein complex (AP-1 complex), coat protein complexes (COPI or
coatomer, and COPII), and Sec machinery (or translocase). AP-1 plays a role in protein
sorting in the late-Golgi/trans-Golgi network and/or endosomes. It mediates both the
recruitment of clathrin to membranes and the recognition of sorting signals within the
cytosolic tails of transmembrane cargo molecules. In Plasmodium, it has been suggested that
AP-1, and especially its µ1 subunit, was involved in rhoptry protein trafficking [30]. Coat
protein complexes are non clathrin-based complexes involved in the transport of proteins
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and lipids destined for the plasma membrane, lysosomes or other post-Golgi compartments
(COPII) or in retrograde transport from the Golgi to the endoplasmic reticulum (COPI). In
Plasmodium, PfSarp1 and PfSec31 (COPII proteins) have been shown to be exported to the
erythrocyte cytosol where they appear to play a role in the trafficking of proteins across the
erythrocyte cytoplasm [31,32], while PfCOPδ (COPI subunit) was located entirely within
the parasite associated with the endoplasmic reticulum [33]. Interestingly, the phosphoryla-
tion of COPI β and δ subunits have been shown to be involved in coatomer assembly and
function [34,35]. In the gametocyte PbPP1c interactome, five COPs were detected of which
four contain at least one potential RVxF binding motif to PP1c. These data, along with
the information from PlasmoDB about the phosphorylation status of their counterparts in
P. falciparum, strongly suggest the contribution of PP1 to the regulation of the function of
the COP complex in gametocytes via dephosphorylation.
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Figure 4. STRING network visualization of PbPP1c-interacting proteins belonging to “cellular compo-
nent assembly” GO Slim in gametocyte stages. Using the Cytoscape STRING application, a network
was retrieved for the 27 proteins from the cellular component assembly GO Slim of the PbPP1c inter-
actome in gametocyte stages. With a protein–protein interaction enrichment p-value of 9.99 × 10−16,
the resulting network contained 70 functional associations among 23 proteins; four proteins (i.e.,
PBANKA_0211300, cysteine desulfurase IscS; PBANKA_0607800, cytosolic iron–sulfur protein assem-
bly protein 1; PBANKA_0942300, radial spoke head protein; PBANKA_0917400, armadillo repeat
protein PF16) with no associations to other proteins in the network were removed. Proteins from
KEGG pathways map03050 (proteasome), map03013 (RNA transport), and map03040 (spliceosome)
are colored in blue, green, and orange, respectively. Assignation to Eukaryotic translation initia-
tion 3 subunits and to microtubule-associated proteins was conducted manually, based on protein
description in PlasmoDB and literature. Black stars indicate proteins with RVxF motifs based on
the Wakula consensus sequence [19]. Proteins of each network are listed in adjacent tables showing
PlasmoDB geneID, short name, and protein description. STRING analysis was performed using the
11.0b version of the software.
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Figure 5. STRING network visualization of PbPP1c-interacting proteins belonging to “protein trans-
port” GO Slim in gametocyte stages. Using the Cytoscape STRING application, a network was
retrieved for the 24 proteins from the protein transport GO Slim of the PbPP1c interactome in gameto-
cyte stages. With a protein–protein interaction enrichment p-value < 1 × 10−16, the resulting network
contained 69 functional associations among 20 proteins; four proteins (i.e., PBANKA_0912200, signal
recognition particle subunit SRP72; PBANKA_0931200, heat shock protein 101; PBANKA_1217800,
signal peptidase complex subunit 2; PBANKA_1359100, nuclear import protein MOG1) with no asso-
ciations to other proteins in the network were removed. Proteins from KEGG pathways map03060
(protein export) and map04141 (protein processing in endoplasmic reticulum) are colored in blue and
red, respectively. Proteins from both of these KEGG pathways are colored in purple. Assignation
to coat protein complexes, clathrin-associated adaptor protein complex 1 and to Sec machinery was
conducted manually based on protein description in the PlasmoDB and literature. Black stars indicate
proteins with RVxF motifs based on the Wakula consensus sequence [19]. Proteins of each network
are listed in adjacent tables showing PlasmoDB geneID, short name, and protein description. STRING
analysis was performed using the 11.0b version of the database.

2.4. Proteomic Identification of PbI2 Interactions in Schizonts and Gametocytes

Next, the interactions of the well-known Plasmodium Inhibitor-2 of PP1c [12] were
investigated, as it appears as one of the proteins with the most significant interaction in
schizonts and gametocytes presented in the above data. To this end, the P. berghei strain
expressing mCherry-I2, described above, was used for IP experiments with anti-RFP an-
tibody. Five biological replicates from the mCherry–PbI2 strain and parental WT were
included (Figure 1). Using LC-MS/MS analysis and applying statistical filters, 49 and
35 proteins in schizonts and gametocytes were identified, respectively (Supplementary
Materials Table S1, sheets 5 and 6) among which eight proteins were detected in both stages.
Of these eight proteins, the bait protein mCherry–PbI2 as well as PbPP1c were found to
be highly enriched, confirming the data obtained with the bait mCherry–PbPP1c. The
combined PbI2-interacting proteins were first analyzed for GO enrichment annotations.
This analysis did not show significant enrichment of any specific pathway in terms of
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biological processes and molecular processes (data not shown). However, the analysis
revealed significant enrichment of cellular components in schizonts (GO term “cytoplasmic
microtubule”) and gametocytes (GO term “cytosol”), including two and six proteins respec-
tively (data not shown). Next, in order to set-up possible functional associations, all PbI2-
interacting proteins detected in each parasite stage were further searched using the STRING
database for interaction mapping. These analyses did not lead to any protein–protein in-
teraction enrichment (p-value = 0.237 for schizonts and 0.604 for gametocytes). However,
significant functional enrichment in axonemal dynein light chains kinesin motor, tubulin,
and actin clusters were observed in the PbI2 interactome in schizonts (data not shown).
These clusters involved five proteins: PBANKA_0202700 (kinesin 8B), PBANKA_0925400
(dynein heavy-chain, putative), PBANKA_1018300 (dynein intermediate-chain, putative),
PBANKA_0708100 (dynein light-chain 1), and PBANKA_0417700 (alpha tubulin 1). From
these data, it appears that PbI2’s functions diverge from those deduced from the human I2
interactome that exhibits a main enriched pathway for the regulation of glycogen biosyn-
thesis (http://thebiogrid.org/ID5504, accessed on 15 September 2021).

2.5. Identification of Shared Proteins and Interactions of PP1c and I2 in Schizonts and Gametocytes

The assembly of PP1c with a given regulator is expected to select appropriate substrates
to target and/or to regulate the dephosphorylation process by controlling access to the
catalytic site. It has been shown that Plasmodium PP1c interacts not only with I2 in vitro
but also in the parasite by IP of PP1c and reciprocal IP of I2 (this study) [12]. We therefore
searched for possible common proteins among the two interactomes. This allowed the
identification of 14 and 18 common proteins in schizonts and gametocytes, respectively
(I2 and PP1c included) (Figure 6). GO enrichment and STRING analyses of these sets of
common proteins did not reveal significant scores which could be due to the low number
of shared proteins. Further analysis of shared proteins allowed us to identify five common
proteins regardless of the parasite stage examined (Figure 6). This included PP1, I2, nuclear
export mediator factor (NEMF), peptidyl-prolyl cis-trans isomerase, and PBANKA_0621300
with unknown function, designating these proteins as potential substrates for the regulation
of their phosphorylation status by the PP1–I2 holoenzyme. The detection of these common
proteins in PP1c and I2 interactomes is likely specific and independent of the mCherry tag,
as these proteins were not detected in the interactome of mCherry–PbGEXP15 in schizonts
and gametocytes that we recently reported as a partner of PP1c [14]. When the common
partners were examined according to the parasite stage (schizonts versus gametocytes),
our findings are supportive of the capacity of the I2/PP1c complex to form distinct co-
complexes. Moreover, they suggest that the proteins of these co-complexes could not only
be potential substrates but also play the role of transporters and/or adaptors of the I2/PP1c
complex. Of note, among the common proteins of both interactomes in gametocytes, a
direct and specific partner of PP1c that we previously reported and designated RCC–PIP
was detected [18]. This partner that binds PP1c via its RVxF binding motif has also been
shown to interact with CDPK7 kinase through its RCC domain, suggesting a subtle control
of phosphorylation levels of partners to accurately coordinate the binding of the PP1c.

http://thebiogrid.org/ID5504
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Figure 6. Distribution analysis of the PbPP1c and PbI2 potential partners identified in IP/MS in
P. berghei schizonts and gametocytes. The Venn diagram shows the number of PbPP1c and PbI2 partners
identified in schizonts (S_PP1 and S_I2, respectively) and gametocytes (G_PP1 and G_I2, respectively).
Common proteins in the PbPP1c and PbI2 interactomes in schizonts or in gametocytes are boxed in green
and blue squares, respectively, and listed in adjacent tables showing the PlasmoDB geneID, short name,
and protein description with the same color code. Common proteins in PbPP1c and PbI2 interactomes
in schizonts and gametocytes are circled and listed in orange. This diagram was created using the Venn
online tool https://bioinformatics.psb.ugent.be/webtools/Venn/ accessed on 4 May 2021.

2.6. Conclusions

In this study, PP1c and I2 interactomes showed a plethora of interactions uncovering
important structural and regulatory networks that seem to be dynamic with respect to
the stage of Plasmodium. Our study of the PP1c interactome confirmed the presence of
seven direct partners in the complex that we have previously shown using recombinant
proteins. Six partners out of seven exhibited an RVxF motif that has been shown as the main
contributor to the binding to PP1c. We report the presence of an additional 296 proteins with
at least one consensus RVxF-binding motif, suggesting their capacity to bind PP1c. Further,
the potential role of PP1c in common pathways present in schizonts and gametocytes and
its interactome in the latter revealed, for the first time, the enrichment of a specific pathway
involved in protein transport. These diverse pathways can constitute platforms for better
understanding the role of partners on PP1c functions and vice versa to gain new insights
on the plasticity and functional repurposing of this phosphatase. Overall, Plasmodium PP1c
holoenzymes justify further investigations for drug targeting by including not only specific
essential partners and related pathways but also those with human orthologs which may
have specific features that allow for the selective inhibition of the conserved holoenzymes.

3. Materials and Methods
3.1. Ethics Statement

All animal experiments were carried out in accordance with the French National
Guidelines. Protocols and procedures on mice were supervised and approved by the
CEEA-75 Comité d’Ethique en Expérimentation Animale, Nord-Pas de Calais, France:
APAFIS#18905-2019020111166978v2. Date of approval 29 July 2019.
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Mice used were male CD1 (22–24 g) from Charles River Laboratories maintained in
filtered cages in an Animal Biosafety Level 2 facility at the Institut Pasteur de Lille.

3.2. Materials

The Plasmodium berghei strain used in this study was a PbGFP ANKA line kindly
provided by O. Silvie (Université Pierre et Marie Curie, Paris, France). Plasmid pL1886 was
given by B. Franke-Fayard (Leiden University Medical Center, Leiden, The Netherlands).
The primers used are described in Supplementary Materials Table S3.

3.3. Generation of P. berghei Transgenic Parasites

The PbPP1c–mCherry line was obtained by single homologous recombination as
previously described [14]. Similarly, a C-terminal mCherry-tagged PbI2 was generated
by single homologous recombination of a 1436 pb region of PbI2 without the stop codon
(Pr3–Pr2, Supplementary Materials Table S3 and Figure S1A) inserted into the pL1886
vector and NdeI-linearized before transfection into the PbGFP ANKA strain.

Genotyping was performed on total DNA from parental and transfected parasites
extracted from schizont pellets using the KAPA Express Extract Kit (KAPA BioSystem Inc,
Wilmington, MA, USA). Transfected parasites were genotyped by diagnostic PCR using
primers indicated in the Supplementary Materials Figure S1A and Table S3: Pr1–Pr2 for
wild locus detection and Pr1–Pr4 for 3’ integration.

3.4. Isolation of P. berghei Schizonts and Gametocytes

Parasite stages were isolated as previously described [14]. Briefly, to obtain schizonts,
blood from infected mice (parasitemia around 5%) was collected by intracardiac puncture
and incubated 20 h at 37 ◦C, 54 rpm in schizont media (RPMI 1640 medium containing
25 mM HEPES, 0.4% Albumax, 0.2 mM hypoxanthine, and 20 µg/mL gentamycin). Then,
schizonts were purified on a 60% nycodenz gradient (27.6% w/v Nycodenz in 5 mM Tris-
HCl, 3 mM KCl, 0.3 mM EDTA, and pH 7.2) for 20 min at 450 g.

To purify gametocytes, mice were treated with phenylhydrazine (200 µL, 6 mg/mL,
Sigma–Aldrich, St. Louis, MO, USA, by intraperitoneal route) 3 days before the infection.
At day 3 post-infection (p.i.), mice were treated with sulfadiazine for 2 days (20 mg/L
in drinking water, Sigma–Aldrich, St. Louis, MO, USA). Two days later, blood was col-
lected by cardiac puncture and gametocytes were purified on a 48% nycodenz gradient in
coelenterazine loading buffer (CLB: PBS, 20 mM HEPES, 20 mM glucose, 4 mM sodium
bicarbonate, 1 mM EDTA, 0.1% w/v bovine serum albumin, and pH 7.25) for 10 min at
1082 g.

3.5. Immunoblot Assays

Immunoblot of PbI2–mCherry was carried out on schizont stages obtained as described
above. Parental parasites were used as a control. Pellets of schizonts were directly resuspended
in Laemmli buffer. The presence of PbI2–mCherry protein was observed by Western blot
with anti-RFP (red fluorescent protein) pAb (1:2000, MBL, Woburn, MA, USA, Cat#PM005)
followed by goat anti-rabbit IgG-HRP (1:20,000, Sigma–Aldrich, St. Louis, MO, USA).

3.6. Sample Preparation and Immunoprecipitation

P. berghei schizonts or gametocytes of PbPP1c–mCherry, PbI2–mCherry, or parental
wild-type strain (control) were purified as described above.

Immunoprecipitation experiments were performed using 5 biological replicates of each
strain. Each biological replicate contained 6 isolated rings of schizonts or gametocytes, each
purified from one infected mouse. Soluble proteins extractions and immunoprecipitation
assays were performed as previously described [14]. Briefly, purified schizonts or gameto-
cytes were suspended in lysis buffer containing 50 mM Tris, 0.5% Triton X100, and protease
inhibitor cocktail (Roche, Basel, Switzerland) at pH 8. After 10 freeze–thaw cycles and soni-
cation, soluble fractions were obtained after repeated centrifugations (5 h, 13,000 rpm, 4 ◦C).
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These soluble fractions were incubated with RFP-Trap1_A beads (Chromotek, Planegg,
Germany) overnight at 4 ◦C on a rotating wheel in dilution buffer containing 20 mM Tris,
150 mM NaCl, 0.5% Triton X-100, and protease inhibitor cocktail (Roche, Basel, Switzerland)
at pH 7.5. After centrifugation (2500× g for 2 min), the beads were washed 10 times with
dilution buffer and elution was performed in Laemmli buffer.

3.7. Sample Preparation for Interactome Analysis

Immunoprecipitation eluates were supplemented with SDS to a final concentration
of 5% for protein digestion. S-TrapTM micro spin column (Protifi, Farmingdale, NY, USA)
digestion was performed on immunoprecipitation eluates according to manufacturer’s
protocol but using two extra washing steps for thorough SDS elimination. Samples were
digested with 2 µg of trypsin (Promega, Madison, WI, USA) at 47 ◦C for 2 h. After elution,
peptides were vacuum dried.

3.8. NanoLC-MS/MS Protein Identification and Quantification

Samples were resuspended in 35 µL of 10% ACN and 0.1% TFA in HPLC-grade water.
For immunoprecipitation experiments, single-shot MS analysis was performed. For each
run, 2 µL was injected in a nanoRSLC-Q Exactive PLUS (RSLC Ultimate 3000) (Thermo
Scientific, Waltham MA, USA). Peptides were loaded onto a µ-precolumn (Acclaim PepMap
100 C18, cartridge, 300 µm i.d. × 5 mm, 5 µm) (Thermo Scientific, Waltham MA, USA), and
were separated on a 50 cm reversed-phase liquid chromatographic column (0.075 mm ID,
Acclaim PepMap 100, C18, 2 µm) (Thermo Scientific, Waltham MA, USA). Chromatography
solvents were (A) 0.1% formic acid in water and (B) 80% acetonitrile and 0.08% formic
acid. Peptides were eluted from the column with the following gradient 5–40% B (120 min)
and 40–80% (1 min). At 121 min, the gradient stayed at 80% for 5 min, and at 126 min, it
returned to 5% to re-equilibrate the column for 20 min before the next injection. One blank
was run between each replicate to prevent sample carryover. Peptides eluting from the
column were analyzed by data dependent MS/MS, using the top-10 acquisition method
and fragmented using higher-energy collisional dissociation (HCD). Briefly, the instrument
settings were as follows: the resolution was set to 70,000 for MS scans and 17,500 for the
data dependent MS/MS scans in order to increase speed. The MS AGC target was set to
3 × 106 counts with a maximum injection time set to 60 ms, while the MS/MS AGC target
was set to 1 × 105 with maximum injection time set to 120 ms. The MS scan range was from
400 to 2000 m/z. Dynamic exclusion was set to a 30 s duration.

The MS files were searched with the MaxQuant software version 1.6.6.0 and searched
with the Andromeda search engine against the database of Mus musculus from Swiss-Prot
07/2020 and Plasmodium berghei ANKA from PlasmoDB (v.37). To search parent mass
and fragment ions, we set a mass deviation of 3 and 20 ppm, respectively. The minimum
peptide length was set to 7 amino acids and strict specificity for trypsin cleavage was
required, allowing up to two missed cleavage sites. Carbamidomethylation (Cys) was set
as fixed modification, whereas oxidation (Met) and N-term acetylation were set as variable
modifications. The false discovery rates (FDRs) at the protein and peptide levels were
set to 1%. Scores were calculated in MaxQuant as described previously [36]. The reverse
and common contaminants hits were removed from MaxQuant output. Proteins were
quantified according to the MaxQuant label-free algorithm using LFQ intensities; protein
quantification was obtained using at least 2 peptides per protein. Matches between runs
were allowed.

Statistical and bioinformatic analyses, were performed with Perseus software (version
1.6.12.0) freely available at www.perseus-framework.org [37]. For statistical comparison,
we set six groups: PbWT schizonts and gametocytes as the negative control (S_WT, G_WT),
immunoprecipitates from schizonts and gametocytes expressing PbPP1c–mCherry (i.e.,
S_PP1 and G-PP1), and immunoprecipitates from schizonts and gametocytes expressing
PbI2–mCherry (i.e., S_I2 and G_I2). Each group contained five biological replicates. We
then filtered the data to keep only proteins with at least 5 valid values in at least one group.

www.perseus-framework.org
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Next, the data were imputed to fill missing data points by creating a Gaussian distribution
of random numbers with a standard deviation of 33% relative to the standard deviation
of the measured values and 1.8 standard deviation downshift of the mean to simulate the
distribution of low signal values. We performed a t-test represented on a volcano plot,
FDR < 0.05, S0 = 1.

3.9. Proteome Analysis

The RVxF binding motifs (consensus sequence (R/K)-X0-1(V/I)-{P}-(F/W), where X
can be any amino acid and {P} any residue except proline [19]) were identified using the
tool “Protein Motif Pattern” available on the PlasmoDB website.

The raw spectral data from tagged baits and wild-type experiments were used to
interrogate the Plasmodium proteome.

The GO (gene ontology) or GO slim enrichment analyses were conducted on the
PlasmoDB website with the following parameters: ontology = biological process; evi-
dence: computed and curated; limit to GO slim terms: no for global and yes for GO
slim; p-value cutoff = 0.05. For statistical relevance we kept the GO enrichment showing a
Bonferroni adjusted p-value ≤ 0.05.

The different protein subnetworks were based on the results from STRING database
(Search Tool for the Retrieval of Interacting Genes/Proteins v.11.0b; https://string-db.org/; [38])
and visualized on Cytoscape (https://cytoscape.org/, v.3.8.2, accessed on 1 July 2021).

The Venn diagram was established with the Venn online tool (https://bioinformatics.
psb.ugent.be/webtools/Venn/ accessed on 4 May 2021).

The mass spectrometry proteomics data were deposited with the ProteomeXchange
Consortium via the PRIDE [39] partner repository with the data set identifier: PXD029283.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031069/s1.
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