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Abstract: Kaji-ichigoside F1 (KF1), a natural oleanane-type triterpenoid saponin, is the main active
constituent from Rosa roxburghii. In the southwest regions of China, particularly in Guizhou Province,
this plant was used as a Miao ethnic medicine to prevent and treat dyspepsia, dysentery, hypoimmu-
nity, and neurasthenia. In the present study, the neuroprotective effect of KF1 was evaluated against
N-methyl-D-aspartate (NMDA)-induced neurotoxicity in vivo and in vitro. An NMDA-induced PC12
cell neurotoxicity assay showed that KF1 effectively improved cellular viability, inhibited the release of
lactate dehydrogenase (LDH), and reduced cell apoptosis. Furthermore, KF1-treated NMDA-induced
excitotoxicity mice displayed a remarkable capacity for improving spatial learning memory in the
Y-maze and Morris water maze tests. In addition, KF1 increased the levels of the neurotransmitters
5-hydroxytryptamine, dopamine, and monoamine oxidase and reduced the calcium ion concentration
in the hippocampus of mice. Hematoxylin and eosin and Nissl staining indicated that KF1 effectively
reduced the impairment of neurons. Furthermore, Western blot assays showed that KF1 decreased
NMDAR1 expression. In contrast, the NMDAR2B (NR2B), glutamate receptor (AMPA), TrkB, protein
kinase B (AKT), mammalian target of rapamycin (mTOR), PSD95, and synapsin 1 were upregulated
in NMDA-induced PC12 cells and an animal model. These results suggest that KF1 has a remarkable
protective effect against NMDA-induced neurotoxicity, which is directly related to the regulation of
the NMDA receptor and the activation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
receptor (AMPAR) and BDNF/AKT/mTOR signaling pathways.

Keywords: Rosa roxburghii; kaji-ichigoside F1; NMDA-induced neurotoxicity; neuroprotection;
BDNF/AKT/mTOR

1. Introduction

Neurotoxicity is an important contributor to central nervous system dysfunction,
which is manifested as neuronal dysfunction, synaptic reduction, and cell death, and occurs
in conditions such as depression and neurodegenerative diseases [1]. Many factors can
induce neurotoxicity in serious neurodegenerative disorders, such as glutamate, metham-
phetamine, metallic ions, parasites, antipsychotic drugs, environmental pollutants, and
food additives [2,3]. Glutamate is one of the most familiar neurotoxins that induces neuro-
toxic or excitotoxic cascades in different pathophysiological events and is associated with
an influx of intracellular calcium ions (Ca2+) via N-methyl-D-aspartate receptor (NMDAR)
activation [4]. Furthermore, activation of extrasynaptic NMDAR directly results in cell
death [5]. It is noteworthy that diverse NMDAR GluN2 subunits have disparate physiolog-
ical characteristics; GluN2A-containing NMDARs located at the brain synapses mediate
in the cell survival pathway, but GluN2B-containing NMDARs located at extrasynaptic
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sites are involved in the cell death pathway [6,7]. Additionally, NMDA receptor subtype
2B (NR2B) overactivation led to an increased calcium concentration and excitotoxicity
under pathological conditions [8]. These activation processes play a key role in synaptic
transmission, learning and memory, and brain development [9]. Hence, NMDA-induced
neurotoxicity evaluations can be used to discover neuroprotective drugs.

It is well known that a decrease in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) expression leads to reduced synaptic plasticity and learning and memory
deficits and has been shown to be closely associated with depression and neuropsychi-
atric disorders [10]. Positive AMPA receptor modulators further increased brain-derived
neurotrophic factor (BDNF) protein levels in vitro and in vivo, which influenced the func-
tion of neurons, synapses, and the central nervous system [11]. BDNF protein overex-
pression can activate tyrosine kinase receptor B (TrkB) receptors and the downstream
PI3K/Akt/mTOR signaling pathway, which directly upregulates the expression of synaptic
signaling proteins [12]. The mechanism of these signal proteins in neuroprotection has
also been verified in previous reports and provides an effective method for discovering
neuroprotective drugs.

Rosa roxburghii is a well-known medicinal and edible plant in China which is widely
cultivated in Guizhou Province [13]. The earliest records of the plant come from the
Book of Qian (1690 A.D.) and Compendium of Materia Medica (1765 A.D.). Today, this
plant is used to prevent and treat dyspepsia, neurasthenia, sleep disorders, dysentery,
and aging effects [14,15]. Our previous study confirmed that the total triterpenoids from
R. roxburghii have remarkable antidepressant effects and that the concentration of KF1
surpasses 0.17 mg/g [16,17]. Therefore, this study further investigated the neuroprotective
effects of KF1 on NMDA-induced excitotoxicity in vitro and in vivo. The results showed
that KF1 has a remarkable protective effect against NMDA-induced neurotoxicity which is
directly associated with the BDNF/AKT/mTOR signaling pathways.

2. Results
2.1. The Neuroprotective Mechanism of KF1 in PC12 Cells
2.1.1. KF1 Alleviated NMDA-Induced Neurotoxicity in PC12 Cells

The neurotoxicity of KF1 was evaluated using different concentrations (from 5 µM to
80 µM); the results showed that KF1 does not significantly affect cell viability (Figure 1A).
Furthermore, NMDA decreases cell viability in a concentration-dependent manner, as
shown in Figure 1B. Compared with the vehicle group, the cell survival of the NMDA-
treated group at 6 mM was about 55% after 6 h. Interestingly, when we added different
doses of KF1 to NMDA-treated cells, the cellular viability significantly increased to 79%,
82%, and 89% (Figure 1C), and the lactate dehydrogenase (LDH) release decreased to 45%,
39%, and 28% (Figure 1D), respectively.

2.1.2. Effects of KF1 on NMDA-Induced Ca2+ Overload

Next, we assessed the regulation of NMDA-induced Ca2+ in PC12 cells by KF1. As
shown in Figure 2A,D, the NMDA-induced group had significantly increased intracellular
Ca2+ levels in contrast to the vehicle group (p < 0.01), but KF1 clearly decreased the Ca2+

levels in comparison with the NMDA group (p < 0.01).

2.1.3. Effects of KF1 on NMDA-Induced Apoptosis in PC12 Cells

Hoechst 33342 staining (Solar Bio, China) and annexin V/propidium iodide (PI) flow
cytometry (Meilun Bio, China) were used to evaluate NMDA-induced apoptosis in PC12
cells. In contrast with the shrinkage of nuclei and the condensation of chromatin in the
NMDA-induced group, KF1 treatment inhibited these apoptotic characteristics (Figure 2B).
The NMDA-induced group experienced an increase in visibly necrotic cells in the Q2-2
quadrant (annexin V+/PI+) and apoptotic cells in the Q2-4 quadrant (annexin V+/PI−)
compared with the vehicle group (p < 0.01), but the KF1-treated group had a visibly reduced
percentage of apoptotic cells (p < 0.01, Figure 2C,E).
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Figure 1. KF1 inhibited NMDA-induced neurotoxicity. (A) The cytotoxicity of KF1 in 24 h. The data 
represent mean ± SEM (n = 10); **p < 0.01 versus 0 mM group. (B) The cell viability of 
NMDA-treated cells after 6 h. (C) The protection of KF1 against NMDA-induced neurotoxicity. ## p 
< 0.01 versus vehicle group;  **p < 0.01 versus NMDA group. (D) The release of lactate dehydro-
genase (LDH). The data represent mean ± SEM (n = 8). ## p < 0.01 versus vehicle group; ** p < 0.01 
versus NMDA group. 
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V+/PI−) compared with the vehicle group (p < 0.01), but the KF1-treated group had a 
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Figure 1. KF1 inhibited NMDA-induced neurotoxicity. (A) The cytotoxicity of KF1 in 24 h. The data
represent mean ± SEM (n = 10). (B) The cell viability of NMDA-treated cells after 6 h; * p < 0.05;
** p < 0.01 versus 0 mM group. (C) The protection of KF1 against NMDA-induced neurotoxicity.
## p < 0.01 versus vehicle group; ** p < 0.01 versus NMDA group. (D) The release of lactate dehydro-
genase (LDH). The data represent mean ± SEM (n = 8). ## p < 0.01 versus vehicle group; ** p < 0.01
versus NMDA group.
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Figure 2. Effects of KF1 on NMDA-induced neurotoxicity in PC12 cells. (A) Fluorescence images of 
intracellular calcium in different groups. (B) Representative fluorescence images of Hoechst 33342 
staining. (C) Effects of KF1 on NMDA-induced early and late apoptosis after AV/PI double stain-
ing. (D) Effect of KF1 on NMDA-induced Ca2+ increase in PC12 cells. (E) The quantitative analysis 
of early and late apoptotic cells. Bars: 100 μm, the data represent mean ± SEM (n = 5). ## p < 0.01 
versus vehicle group; ** p < 0.01 versus NMDA group. 
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NMDA-induced PC12 cells treated with KF1 was determined by immunofluorescence 
(Figure 3). The mean fluorescence intensities of NR2B (1:100 dilution, Abcam, Cam-
bridge, UK), AMPA (1:100 dilution, CST, USA), BDNF (1:100 dilution, Abcam, USA), 
AKT (1:100 dilution, CST, USA), mTOR (1:100 dilution, CST, USA), PSD95 (1:100 dilution, 
Abcam, USA), and Syn1 (1:100 dilution, CST, USA) in the NMDA-induced group de-
creased significantly compared with in the vehicle group (p < 0.01). The fluorescence in-
tensity of the KF1-treated groups and dizocilpine (MK-801)-treated group increased sig-
nificantly (p < 0.01) compared with the NMDA-induced group. 

 
Figure 3. The immunofluorescence of NR2B, AMPA, BDNF, AKT, mTOR, PSD95, and Syn1 in 
PC12 cells. (A) Fluorescence images. (B) The mean fluorescence intensity of NR2B, #### p < 0.01 
versus vehicle group, ** p < 0.01 versus NMDA group; AMPA, ## p < 0.01 versus vehicle group, ** p 

Figure 2. Effects of KF1 on NMDA-induced neurotoxicity in PC12 cells. (A) Fluorescence images
of intracellular calcium in different groups. (B) Representative fluorescence images of Hoechst
33342 staining. (C) Effects of KF1 on NMDA-induced early and late apoptosis after AV/PI double
staining. (D) Effect of KF1 on NMDA-induced Ca2+ increase in PC12 cells. (E) The quantitative
analysis of early and late apoptotic cells. Bars: 100 µm, the data represent mean ± SEM (n = 5).
## p < 0.01 versus vehicle group; ** p < 0.01 versus NMDA group.

2.1.4. KF1 Effects on the Expression of NR2B, AMPA, BDNF, AKT, mTOR, PSD95, and
Synapsin 1 (Syn1) Proteins in NMDA-Induced PC12 Cells by Immunofluorescence

The expression of NR2B, AMPA, BDNF, AKT, mTOR, PSD95, and Syn1 proteins in
NMDA-induced PC12 cells treated with KF1 was determined by immunofluorescence
(Figure 3). The mean fluorescence intensities of NR2B (1:100 dilution, Abcam, Cambridge,
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UK), AMPA (1:100 dilution, CST, USA), BDNF (1:100 dilution, Abcam, USA), AKT (1:100
dilution, CST, USA), mTOR (1:100 dilution, CST, USA), PSD95 (1:100 dilution, Abcam, USA),
and Syn1 (1:100 dilution, CST, USA) in the NMDA-induced group decreased significantly
compared with in the vehicle group (p < 0.01). The fluorescence intensity of the KF1-treated
groups and dizocilpine (MK-801)-treated group increased significantly (p < 0.01) compared
with the NMDA-induced group.
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Figure 3. The immunofluorescence of NR2B, AMPA, BDNF, AKT, mTOR, PSD95, and Syn1 in PC12
cells. (A) Fluorescence images. (B) The mean fluorescence intensity of NR2B, # p < 0.01 versus vehicle
group, * p < 0.01 versus NMDA group; AMPA, ## p < 0.01 versus vehicle group, * p < 0.01 versus
NMDA group; BDNF, ## p < 0.01 versus vehicle group, * p < 0.01 versus NMDA group; AKT, # p < 0.01
versus vehicle group, * p < 0.05, ** p < 0.01 versus NMDA group; mTOR, ## p < 0.01 versus vehicle
group, ** p < 0.01 versus NMDA group; PSD95, ## p < 0.01 versus vehicle group, * p < 0.05, ** p < 0.01
versus NMDA group; and Syn1 ## p < 0.01 versus vehicle group, ** p < 0.01 versus NMDA group;.
Green fluorescence represents fluorescent staining, and blue fluorescence represents DAPI-stained
nuclei. Bars: 100 µm, the data represent mean ± SEM (n = 5).

2.2. In Vivo Analysis of the Mechanisms of Action of KF1
2.2.1. Effect of KF1 on Spatial Memory in the Y-Maze Test

The Y-maze test was performed to evaluate the spatial memory of KF1-treated mice
(Figure 4A,B). Compared with the vehicle group, the novel arm region exploration numbers,
travel distance, and total duration were inferior in the NMDA-induced group (p < 0.05),
which indicated poor spatial exploration abilities in NMDA-induced mice. After 14 days of
treatment with MK-801 or KF1, the spatial memory of KF1-treated mice was improved. The
KF1 treatment groups had increased novel arm region of exploration numbers, travel dis-
tance, and total duration (Figure 4C–E; p < 0.05) compared with the NMDA-induced group.

2.2.2. Effect of KF1 on the Morris Water Maze (MWM) Test

The spatial learning and memory of KF1-treated mice were analyzed using the MWM
test. In this study, the escape latency of the NMDA-induced group was significantly higher
than that of the vehicle group (p < 0.05), which indicated that NMDA seriously damages
the cognitive ability of the mice (Figure 5). Nevertheless, after KF1 treatment, the cognitive
impairment was improved, especially in mice receiving KF1 treatment from Day 2 to Day 4
in different doses (Figure 5C; p < 0.05). On the fifth day, the NMDA-induced group spent
less time than the vehicle mice in the target quadrant (p < 0.05). The KF1-treated group
had increased retention time in the target quadrant compared to in the other quadrants
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(Figure 5D; p < 0.05). These data support that KF1-teated mice have improved spatial
learning and memory.

Int. J. Mol. Sci. 2022, 23, 16150 5 of 17 
 

 

< 0.01 versus NMDA group; BDNF, ## p < 0.01 versus vehicle group, ** p < 0.01 versus NMDA 
group; AKT, #### p < 0.01 versus vehicle group, ** p < 0.01 versus NMDA group;  mTOR, #### p < 0.01 
versus vehicle group, ** p < 0.01 versus NMDA group;  PSD95, #### p < 0.01 versus vehicle group, ** 
p < 0.01 versus NMDA group; and Syn1 #### p < 0.01 versus vehicle group, ** p < 0.01 versus NMDA 
group;. Green fluorescence represents fluorescent staining, and blue fluorescence represents 
DAPI-stained nuclei. Bars: 100 μm, the data represent mean ± SEM (n = 5). 

2.2. In Vivo Analysis of the Mechanisms of Action of KF1 
2.2.1. Effect of KF1 on Spatial Memory in the Y-Maze Test 

The Y-maze test was performed to evaluate the spatial memory of KF1-treated mice 
(Figure 4A,B). Compared with the vehicle group, the novel arm region exploration 
numbers, travel distance, and total duration were inferior in the NMDA-induced group 
(p < 0.05), which indicated poor spatial exploration abilities in NMDA-induced mice. 
After 14 days of treatment with MK-801 or KF1, the spatial memory of KF1-treated mice 
was improved. The KF1 treatment groups had increased novel arm region of exploration 
numbers, travel distance, and total duration (Figure 4C–E; p < 0.05) compared with the 
NMDA-induced group. 

 
Figure 4. Effect of KF1 on spatial memory in the Y-maze test. (A) The two-trial Y-maze apparatus. 
(B) Experimental procedure. (C) The novel arm region of exploration numbers. (D) The novel arm 
region of total duration rate. (E) The novel arm region of travel distance. All data represent the 
mean ± SEM. # p < 0.05, ## p < 0.01 versus vehicle group; * p < 0.05, ** p < 0.01 versus NMDA group 
(each group, n =10-12). 

2.2.2. Effect of KF1 on the Morris Water Maze (MWM) Test 
The spatial learning and memory of KF1-treated mice were analyzed using the 

MWM test. In this study, the escape latency of the NMDA-induced group was signifi-
cantly higher than that of the vehicle group (p < 0.05), which indicated that NMDA seri-
ously damages the cognitive ability of the mice (Figure 5). Nevertheless, after KF1 
treatment, the cognitive impairment was improved, especially in mice receiving KF1 
treatment from Day 2 to Day 4 in different doses (Figure 5C; p < 0.05). On the fifth day, 
the NMDA-induced group spent less time than the vehicle mice in the target quadrant (p 
< 0.05). The KF1-treated group had increased retention time in the target quadrant com-
pared to in the other quadrants (Figure 5D; p < 0.05). These data support that KF1-teated 
mice have improved spatial learning and memory. 

Figure 4. Effect of KF1 on spatial memory in the Y-maze test. (A) The two-trial Y-maze apparatus.
(B) Experimental procedure. (C) The novel arm region of exploration numbers. (D) The novel arm
region of total duration rate. (E) The novel arm region of travel distance. All data represent the
mean ± SEM. # p < 0.05, ## p < 0.01 versus vehicle group; * p < 0.05, ** p < 0.01 versus NMDA group
(each group, n =10-12).
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Figure 5. The spatial learning and memory of KF1 -treated mice in the MWM test. (A) The MWM
schematic. (B) The MWM test design. (C) The latencies after 4 days of training trials. The data are
expressed as means ± SEM (n = 10–12); # p < 0.05, ## p < 0.01 versus vehicle group; * p < 0.05 versus
NMDA group. (D) The retention time in the target quadrant. The data are expressed as means ± SEM
(n = 10–12); # p < 0.05 versus vehicle group; * p < 0.05 versus NMDA group.

2.2.3. Effects of KF1 on Neurotransmitters and Monoamine Oxidase (MAO) Levels in
the Hippocampus

The levels of the neurotransmitters 5-hydroxytryptamine (5-HT), dopamine (DA),
and monoamine oxidase (MAO) in the hippocampus were examined by enzyme-linked
immunosorbent assay (ELISA) (Figure 6). The levels of 5-HT and DA were decreased in
the hippocampus of the NMDA-induced group compared with in the hippocampus of



Int. J. Mol. Sci. 2022, 23, 16150 6 of 16

the vehicle group. However, the KF1-treated group had increased levels of the two neuro-
transmitters (Figure 6A,B; p < 0.05). In contrast, the level of MAO increased significantly
in the hippocampus of the NMDA-induced group compared with in the hippocampus of
vehicle mice (p < 0.05). After two weeks of KF1 treatment, the level of MAO was inhibited
(p < 0.05).
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2.2.4. Effects of KF1 on Ca2+ Concentration

The hippocampus Ca2+ concentration was measured by commercial ELISA kit, and
the results are shown in Figure 6D. Compared with the vehicle group, the hippocampus
Ca2+ concentration increased in the NMDA-induced group (p < 0.05). In contrast, the
hippocampus Ca2+ concentration of the KF1-treated group decreased significantly.

2.2.5. Histopathological Changes in the Hippocampus

Hippocampus histopathological changes were observed by using hemotoxin and eosin
(HE) staining. The hippocampal neurons were structurally intact, had good arrangement,
and were round in the vehicle group (Figure 7A). In the NMDA-induced group, the
neurons appeared with pyknotic nuclei, an irregular arrangement, deepened staining,
and karyopyknosis. In contrast, the KF1-treated groups inhibited the NMDA-induced
histopathological damage and exhibited intact neurons.

2.2.6. Effects of KF1 on Hippocampal Neurons of NMDA-Induced Mice

Nissl staining was used to evaluate pyramidal cell neuronal injury in the hippocampus
CA1 region. The pyramidal cells exhibited normal morphology, without nuclear pyknosis,
and were arranged neatly in the vehicle group (Figure 7B,C). However, Nissl bodies
were overtly reduced, and the neurons appeared abnormal with nuclear atrophy in the
hippocampus CA1 region of the NMDA-induced group. The KF1-treated groups had an
increased number of Nissl bodies compared with the NMDA-induced group (p < 0.01).
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2.2.7. Immunohistochemical Expression of NMDAR1 in the Hippocampus and Cortex

The immunocytochemical data demonstrated that NMDAR1 was expressed in the CA1,
CA3, and cortex regions (Figure 7D–I), and the mean optical density value of NMDAR1
was increased markedly in the hippocampus and cortex of the NDMA-induced group
compared with in those of the vehicle group (p < 0.01). In the KF1-treated groups, the mean
optical density of NMDAR1 decreased noticeably in the CA1, CA3, and cortex regions
(p < 0.01).
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pocampal CA1; (D) NMDAR1 expression level in the hippocampus CA1; (E) NMDAR1 expression
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chemistry mean optical density (MOD) was used to calculate NMDAR1 expression levels in each
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** p < 0.01 versus NMDA group.

2.2.8. Western Blot Assay to Verify the Expression of NMDAR1, AMPA, BDNF, TrkB, AKT,
mTOR, PSD95, and Syn1 In Vivo and In Vitro

The neuroprotective mechanism of KF1 was also confirmed by using Western blot
assays to verify the expression of interacting proteins and signaling pathways in vivo and
in vitro. Compared with the vehicle group, the expression of AMPA, BDNF, AKT, mTOR,
PSD95, and Syn1 (p < 0.05) was inhibited in NMDA-induced PC12 cells (Figure 8). Interest-
ingly, the expression of NR2B, AMPA, BDNF, TrkB, AKT, mTOR, PSD95, and Syn1 (p < 0.05)
was also inhibited in the hippocampus of NMDA-induced mice (Figure 9). Furthermore,
NMDA caused overexpression of NMDAR1 in PC12 cells and the hippocampus (p < 0.05).
However, the increased protein expression in the NMDA group was reversed in the KF1-
and MK-801-treated groups (p < 0.05). Hence, these interacting proteins and signaling
pathways play a key role in the KF1-mediated neuroprotective mechanism.
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3. Discussion

It is well known that the hippocampus is the most important tissue organ regulat-
ing cognition, emotion, and learning memory. The regulation of proteins, receptors, and
neurotransmitters associated with the hippocampus is a key mechanism for neuropro-
tective effects in vitro and in vivo. This study demonstrated the neuroprotective effect
of KF1 against NMDA-induced neurotoxicity in vivo and in vitro. First, KF1 attenuated
NMDA-induced dose-dependent neurotoxicity by increasing cell viability and reducing
intracellular Ca2+ concentrations, apoptosis, and LDH release in PC12 cells. Second, the
MWM navigation task, which has been widely used to study spatial learning and memory
in behavioral neuroscience for animals, and the Y-maze behavioral tools were used to con-
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duct cognitive assessments on rodents. Both tests are specialized for cognitive evaluation in
behavioral neuroscience in rodents and are extensively applied [18,19]. The MWM results
of the present study showed that learning and memory were impaired in the NMDA-
induced group, while KF1 treatment improved the learning and memory abilities of mice.
In the Y-maze test, the NMDA-induced group had a decreased ability to explore the novel
environment; in contrast, KF1 treatment reversed these results, showing an increase in the
number of novel arm entries, the duration in the novel arm, and the distance traveled in the
novel components. Previous studies have shown that NMDA-induced neurotoxicity can
be assessed by the MWM and Y-maze behavioral testing. The MWM and Y-maze assays
showed that KF1 improved spatial learning and memory in mice, and these behavioral
results are consistent with the literature [20,21]. MAO is one of the main metabolic enzymes
of DA metabolism and catalyzes 5-HT and 5-HT receptors to regulate glutamate-induced
neurotoxicity through multiple synaptic circuits related to the glutamate system [22]. In this
study, the neuroprotective effect of KF1 against NMDA-induced neurotoxicity was further
supported by an increase in 5-HT and DA and a decrease in MAO, whereas KF1 treatment
reversed this trend. Previous studies were consistent with our experimental results [23,24].
Third, the hippocampus is the central target of the limbic system in the brain, which is asso-
ciated with various forms of cognition, emotion, and learning memory [25]. HE and Nissl
staining are crucial methods used to observe hippocampus morphological changes, and
impaired neuronal cores in the CA1 region exhibited irregular deformation, atrophy, and
uneven or deepened cytoplasmic staining [25,26]. Fortunately, KF1 significantly reduced
the percentage of impaired neuronal cores and cell loss in the CA1 region. In excitatory
synapses in the CNS, the increase of Ca2+ by NMDAR activation is a crucial factor resulting
in NMDA-induced neurotoxicity, but an AMPA-induced increase of Ca2+ did not show
neurotoxicity [27,28]. Interestingly, in the present study, our data showed that Ca2+ was
significantly increased in the NMDA group compared with the vehicle group, and the
KF1-treated groups repressed the NMDA-induced Ca2+ increase in vivo and in vitro; these
results were confirmed in previous studies [29]. As a result, KF1 was found to inhibit
NMDA-induced Ca2+ in vivo and in vitro.

NMDAR and AMPAR are considered as important types of ionic glutamate receptors,
and their expression is activated by glutamate from the prefrontal cortex, hippocampus,
and other brain regions [30]. In immunohistochemistry and Western blot assays, the NM-
DAR1 expression of the NMDA-induced group was increased in vivo and in vitro, but the
expression of AMPA and NR2B was reduced. Conversely, the KF1-treated groups displayed
an increase in NMDAR1 expression and a decrease in AMPA and NR2B expression. These
results are similar to previous findings and further confirm that NMDAR and AMPAR are
relevant to NMDA-induced neurotoxicity [28].

BDNF is widely present in different circuits in the brain and plays a critical role in
neuronal survival, synaptic plasticity, and memory [31]. TrkB is an endogenous receptor
with a high affinity for BDNF and can activate the downstream signaling of the BDNF/TrkB
axis through NMDAR, such as Akt/mTOR. BDNF binding to TrkB reduces symptoms in
many pathological diseases, and overexpressed TrkB can improve spatial learning and
memory in mice [32]. In the present study, we showed that expressions of BDNF and
TrkB were decreased after NMDA-induced neurotoxicity in vivo and in vitro, whereas
treatment with KF1 upregulated BDNF and TrkB expression compared with the NMDA
group. Previous literature was consistent with our data [33]. Moreover, BDNF/TrkB-
mediated signaling pathways activated mTORC1, which regulates synaptic plasticity to
establish the basis of hippocampal-dependent learning and memory, and synthesis of
synaptic proteins, such as PSD95 and synapsin 1, which are the foundation of modulating
cell proliferation and survival [34,35]. In this study, the overexpression of BDNF and TrkB
was observed in vivo and in vitro, and KF1 upregulated mTOR, PSD95, and synapsin 1
protein expression, which further supports that the BDNF/TrkB signaling pathways play a
critical role in NMDA-induced excitotoxicity.
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In addition, the AKT/mTOR signaling pathway is considered as the target of in-
hibitory neurotoxicity, and decreased Akt and mTOR protein expression causes neuronal
apoptosis. Rui Li et al. revealed the neuroprotective effect of the Akt/mTOR signaling
pathway activated after NMDA-induced injury [36,37]. In the synaptic region of neurons,
mTOR is closely associated with neuronal survival and plasticity and controlled protein
translation via the Akt pathway. This ultimately influences cell growth, proliferation, sur-
vival, and protein synthesis, which is further maintained by intracellular homeostasis [38].
In this experiment, KF1 inhibited NMDA-induced neurotoxicity by decreasing the protein
levels of AKT and mTOR in PC12 cells and the hippocampus. The results showed that
the AKT/mTOR pathway may be used to study neuroprotective effects against NMDA-
induced neurotoxicity.

Natural products have always been an important source of drug discovery. As with a
high number of natural products derived from medicinal and edible plants, KF1 is non-
toxic, safe, and has other advantages for the development of neuroprotective drugs. Of
course, a highly effective and safe drug still needs to be verified by several cell or animal
models. In this research, we revealed the neuroprotection of KF1 against NMDA-induced
neurotoxicity in vivo and in vitro. KF1 not only plays a neuroprotective role through its
effects on the AKT/mTOR signaling pathway, but also targets NMDAR and AMPAR
receptors. This new information provides a basis for further research on the application
of KF1.

4. Materials and Methods
4.1. In Vitro Analysis of the Mechanisms of Action of KF1
4.1.1. Cell Management and Viability

PC12 cells were obtained from the Institute of Biochemistry Cell Biology (Shanghai,
China). Cells were cultured in a Dulbecco’s modified Eagle medium (DMEM) containing
10% fatal bovine serum (FBS), 100 U/mL streptomycin, and 100 U/mL of penicillin and
placed in a 5% CO2 incubator at 37 ◦C. To study the neuroprotective effect of KF1, the
experiment was divided into deferent groups: vehicle, in which cells were incubated in
DMEM for 24 h; NMDA (Med Chem Express, USA), in which cells were cultured for 24 h
in DMEM before adding 10 µM NMDA; and the NMDA plus MK-801 or KF1 treatment
groups, in which PC12 cells were incubated in DMEM for 24 h and then treated with
different concentrations of KF1 (5 µM, 10 µM, or 20 µM) or MK-801 (Med Chem Express,
USA; 10 µM) for 24 h. NMDA (6 mM) was added 6 h before treatment with KF1 or MK-801
to assess the protective effect against NMDA-induced neurotoxicity [39]. Cell viability was
evaluated using the MTT assay as previously described [40]. Cell viability was expressed
by the percentage of absorbance of each group to the control group.

4.1.2. LDH Release Assay

The LDH assay was performed as previously described [41]. The LDH (Beyotime,
China) assay was used to determine the effects of KF1 on NMDA-induced cytotoxicity.
Following treatment, supernatant from PC12 cells was analyzed by detecting LDH con-
centrations according to the kit instructions. LDH activity was measured at 450 nm by a
microplate reader (Victor Nivo, PerkinElmer, USA).

4.1.3. Measurement of Intracellular Ca2+ Concentration

The intracellular Ca2+ concentration was measured as previously described [42].
Briefly, PC12 cells were seeded on 6-well plates at a density of 1 × 105 cells/well. At
the end of the treatment, cells were incubated with 10 µM fluo-3/AM (Solarbio, China) for
40 min at 37 ◦C in the dark. Subsequently, the cells were resuspended with HEPES-buffered
saline, and intracellular Ca2+ concentrations were determined by excitation and emission
wavelengths at 506 nm and 526 nm, respectively. Furthermore, the fluorescence intensity of
Ca2+ in PC12 cells was measured by laser scanning fluorescence microscopy.
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4.1.4. Hoechst 33342 Staining

To distinguish apoptotic from normal cells, Hoechst 33342 staining (Solarbio, China)
was used for the qualitative analyses of PC12 cells [43]. Briefly, after treatment, cells
are incubated with Hoechst 33342 for 15 min at room temperature, rinsed three times
with phosphate-buffered saline (PBS), and then captured under an inverted fluorescence
microscopy (Leica Microsystems, Wetzlar, Germany).

4.1.5. Annexin V-FITC/PI Flow Cytometry Assay

This assay was performed as previously described [44]. Briefly, PC12 cells were cul-
tured in 6-well plates, and, after drug treatment, the cells were resuspended and incubated
for 15 min in the dark at room temperature. Apoptosis rates were analyzed by a Novocyte
Flow Cytometer (NovoCyte D2040R, ACEA Biosciences, San Diego, CA, USA).

4.1.6. Fluorescence Staining

To evaluate the protective effects of KF1 in NMDA-induced PC12 cells, cells were
fixed with 4% paraformaldehyde for 20 min at room temperature and then rinsed with
PBS three times (5 min each time), permeabilized with 0.3% Triton X-100 for 10 min, and
blocked with normal goat serum for 1 h. Cell were incubated at 4 °C overnight with primary
antibodies. Cells were then stained with secondary antibodies for 2 h at 37 ◦C, washed with
PBS, and then dyed with 4′,6-diamidino2-phenylindole (DAPI). Photos were taken using a
fluorescence microscope (Leica DMi8, Germany), and the mean intensity was determined
by using ImageJ software [45].

4.2. In Vivo Analysis of the Mechanisms of Action of KF1
4.2.1. Animals

Male Kunming mice (20 ± 22 g) were used for these studies and were purchased from
Chongqing Tengxin Biotechnology Co., Ltd. (Chongqing, China, certificate no. SCXK (Liao)
2015-0001). All experiments were conducted according to the requirements of the Animal
Care and Use Committee of Guizhou Medical University. The mice were housed under
environmental conditions (12 h light–dark cycle, 55% humidity, 25 ± 2 ◦C) with ad libitum
access to water and food.

4.2.2. Experimental Designs

All mice were adaptively fed for 1 week. Seventy-two mice were randomly divided
into six parallel groups (n = 12), including the vehicle group, NMDA group, NMDA + MK-
801 (2.0 mg/kg) group, and NMDA + KF1 (1.0, 2.0, or 4.0 mg/kg) groups. NMDA-induced
neurotoxicity methods were carried out as Boeck described with minor modifications [46].
Briefly, neurotoxicity was induced by NMDA (75 mg/kg; 10 mL/kg; i.p) in all mice except
those in the vehicle (saline 0.9%; 10 mL/kg) group for 7 days. After 7 days, the vehicle group
was not subjected to treatment and received the same volume of 0.5% (w/v) carboxymethyl
cellulose sodium (CMC-Na) as the KF1 and MK-801 group, which was administered with
treatment drugs once daily for two consecutive weeks. After 2 weeks, all mice underwent
Y-maze and MWM analyses to evaluate the impact of KF1 on spatial learning and memory
abilities. All mice were anesthetized by inhalation of diethyl ether. Three mouse brains
were fixed for histology, and the remaining brains were flash frozen for Western blot and
biological analyses.

4.2.3. Y-Maze Test

The Y-maze test was performed as previously described [47]. Working memory and
spontaneous spatial recognition were measured using a Y-maze apparatus which consisted
of three arms (start, novel, and another arm) at 120-degree angles to each other. Mice were
subjected to two-trial Y-maze tests. In the first trial of the test, the novel arm was blocked
with a door, and mice were allowed to move freely between the other two compartments
for 15 min. The second stage test was conducted after a 6 h intertrial interval, and animals
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were allowed free access to all three compartments for 5 min. Data were collected by an
EthoVision automated tracking system to analyze the time spent exploring the familiar and
novel arms and the total distance traveled during the 5 min period of the second trial.

4.2.4. Morris Water Maze Test

The MWM was performed as previously described [48]. Briefly, this experiment aimed
to assess the role of KF1 in the spatial learning and memory ability of mice. The MWM
consisted of a circular (1.4 m diameter, 0.5 m high) pool filled with white water (22 ◦C). The
circular surface was divided into four quadrants, with a hidden 12 cm diameter escape
platform located 1 cm below the surface of the water in the center of the target quadrant.
The day before training commenced, mice were allowed to explore freely for 120 s to
acclimate to the MWM environment. In this task, animals received eight training sessions
(two sessions/day, 90 s cutoff at every turn) for four consecutive days, and the probe trial
was performed on the fifth day. The evaluation began when the mice were placed into
the water facing the wall at one of the three starting positions. The animals were then
permitted to swim from the start location to reach the escape platform (escape latency), and
the information was recorded. On the fifth day, the escape platform was removed, and a
spatial probe test was carried out. The data of each trial were recorded by a computer-based
video tracking system (Taming Co., Chengdu, China).

4.2.5. Quantification of 5-HT, DA, MAO, and Ca2+ Concentration in the Hippocampus
by ELISA

Blood samples were collected by aorta ventralis puncture after the behavioral tests, the
brains were rapidly removed, and the cortex and hippocampus were isolated. The samples
were stored at −80 ◦C before assaying the expression levels of 5-HT, DA, MAO, and Ca2+

in the hippocampus and were measured by ELISA kits (Cusabio Technology Co., Ltd.,
Wuhan, China) according to the manufacturer’s instructions [49].

4.2.6. HE Staining of the Hippocampus

Animals were sacrificed after the behavior tests, and brains were removed from three
mice from each group and fixed in 4% paraformaldehyde. Next, the tissue was embedded
in paraffin, and hippocampal tissue was stained with HE for assessing the damage to
hippocampal neurons [49].

4.2.7. Nissl Staining of the Hippocampus

For the experiment with Nissl staining, animals randomly selected from each group
were sacrificed, and the left hippocampal tissues was fixed in 4% paraformaldehyde,
embedded in paraffin, and sliced into 5 µm thick coronal sections according to a previously
described method [48]. Xylene was used to deparaffinize the tissue slices, and an alcohol
gradient was used for dehydrating the slices. Then, the tissue slices were incubated
with Nissl staining solution (Solarbio, Beijing, China) for 5 min and finally sealed with a
neutral fixative.

4.2.8. Immunohistochemistry Assay for NMDAR1 in the Hippocampus and Cortex

Immunohistochemical staining was conducted as previously reported [50]. In brief,
the whole mouse brains were fixed in 4% paraformaldehyde and embedded in paraffin,
sliced into 5 µm thick slices and deparaffinized in xylene, and dehydrated in an ethanol
gradient. Tissue was microwave treated for 3 min, blocked with 3% H2O2, and incubated in
5% normal goat serum. The tissue slices were incubated overnight with a primary antibody
against NMDAR1 at 4 ◦C, then incubated with a biotinylated secondary antibody and
avidin–biotin horseradish peroxidase complex for 30 min at room temperature. Immedi-
ately, serial tissue sections of each sample were stained with a DAB solution and sealed
with a neutral gum. The immunostained tissues were evaluated under a microscope (KS300,
Zeiss-Kontron, Munich, Germany).



Int. J. Mol. Sci. 2022, 23, 16150 13 of 16

4.2.9. Western Blot

Western blot assays were conducted as previously reported [51]. Briefly, the hippocam-
pus of mice was sheared into small pieces, and the total protein of the hippocampus and
PC12 cells was incubated with RIPA lysis buffer on ice. The supernatant was collected, and
the protein concentration was measured by a BCA protein assay kit (Solarbio, China). The
protein was separated by SDS-PAGE gel electrophoresis according to relative molecular
weight and then proteins were transferred onto polyvinylidene fluoride (PVDF) membranes
(Millipore Trading Co., Ltd., Shanghai, China). The membranes were blocked with 5%
nonfat milk for 2 h at room temperature and then incubated in the corresponding primary
antibodies overnight at 4 ◦C. After 16–18 h, the PVDF membranes were incubated with
horseradish peroxidase conjugated secondary antibodies at 37 ◦C for 2 h. After being
washed, the protein bands were detected using an enhanced chemiluminescence (ECL)
select kit (CodeNo. 16929851), visualized using gel imaging (Bio-Rad, USA), and quantified
using ImageJ software.

4.3. Statistical Analysis

All experiments were repeated at least three times, and values were expressed as
mean ± SEM. All results were analyzed by GraphPad Prism 5.0 (GraphPad Software, La
Jolla, CA, USA). Statistical comparisons between experimental groups and the vehicle
group were performed by using one-way analysis of variance (ANOVA) followed by
Tukey’s post hoc test for comparisons between multiple groups. p < 0.05 was considered
statistically significant.

5. Conclusions

In conclusion, the neuroprotective effect of KF1 against NMDA-induced neurotoxicity
was verified in vivo and in vitro. On the basis of dose-dependent NMDA-induced intra-
cellular Ca2+ overload in vivo and in vitro, we found that KF1 increased cell viability and
decreased apoptosis, improved learning and memory functions, and increased neuronal
survival. In terms of the mechanisms, KF1 significantly improved NMDA-induced neuro-
toxicity by regulation of NMDAR and activation of AMPAR and the BDNF/AKT/mTOR
signaling pathways. In brief, KF1 is an excellent natural inhibitor against NMDA-induced
neurotoxicity, with potential as a neuroprotective drug.
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