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Abstract: Cardiovascular disease is the major cause of death worldwide. The success of medication
and other preventive measures introduced in the last century have not yet halted the epidemic of
cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart
and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has
risen to become a top cause of morbidity and mortality. Calcium has important functions in the
cardiovascular system. Calcium is involved in the mechanism of excitation–contraction coupling
that regulates numerous events, ranging from the production of action potentials to the contraction
of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of
intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream
kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase
family, which is involved in the regulation of cardiac functions. In this review, we present the current
literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim
to summarize our mechanistic understanding of this process and to open novel avenues for research.

Keywords: cardiovascular disease; calcium signalling; calmodulin; calcium calmodulin dependent
protein kinases

1. Introduction

Cardiovascular disease (CVD) is a complex disease with many factors and events
involved. The disbalanced regulation of physiology, mechanobiology, and molecular
biology results in heart and vessel disease. Indeed, different factors coexist and cooperate,
together increasing the risk of initiation and progression of CVD [1–3]. CVD is the leading
cause of death all over the world, and more people die annually from this type of disease
than from any other cause. According to the World Health Organization, every year
17 million people die of CVD globally. Additionally, in 2020, in which the death rate
increased due to COVID-19, CVD remained the principal cause of death [4]. Among
CVD, atherosclerosis is the most common cause, which is associated with the growth and
build-up of cholesterol-rich plaques within the inner wall of the vessel. Arterial occlusion
can limit or block blood flow to the heart or other organs, causing myocardial infarction,
ischaemic cardiomyopathy, stroke and peripheral arterial disease [5].

Among the different pathways involved in cardiovascular homeostasis, the regulation
of calcium signalling plays a crucial role. One of the major pathways in which calcium is
involved is excitation contraction coupling. Here, the rise of intracellular calcium (Ca2+) in
cardiomyocytes and vascular smooth muscle cells (VSMCs) is sensed by calmodulin (CaM),
a multifunctional intermediate target of the secondary messenger Ca2+. CaM ensures
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activation of downstream calcium calmodulin kinase proteins (CaMKs), including CaMKK1,
CAMKK2, CaMKI, CaMKII, and CaMKIV. CaMKs are kinases that upon phosphorylation
result in multiple cellular functions. This signalling pathway is called the Ca2+-CaM-
dependent kinase cascade [6,7] and is involved in many cellular processes, including
glucose homeostasis, apoptosis, hematopoietic stem cell maintenance, normal immune cell
function and cell proliferation [8–12].

Atherosclerosis as well as aortic aneurysm are aggravated by dysregulated calcium
metabolism, causing vascular calcification (VC). VC is a pathological condition caused by
calcium-phosphate precipitation leading to vascular stiffness. VC is an actively regulated
process with a key role for VSMCs, the major cell type in the media layer of arteries. VSMCs
are involved in regulating vascular tone and remodelling processes in the vessel wall upon
injury [13–15]. VC is driven by an imbalance in inhibitors (e.g., matrix gla protein) and
promotors (e.g., Ca2+/PO4

3−, cell death, VSMC dedifferentiation and extracellular matrix
remodelling) [16]. Calcium deposition leading to calcification takes place extracellularly.
However, its nidus may be derived from intracellular signalling leading to extracellular
vesicle release from VSMCs [17]. Similarly, calcium-phosphate deposition in aortic heart
valves causes aortic valve insufficiency and is mediated by vascular interstitial cells that
create the nidus for calcium-phosphate crystals in the extracellular space. Aortic valve
calcification narrows the opening of the valve, reducing blood flow and is linked to aortic
valve stenosis [18–20].

Current knowledge of CVD and the underlying mechanisms is insufficient to decrease
the burden of disease. The aim of our review is to summarize the state-of-the-art knowledge
on the role of calcium signalling in cardiac and vascular tissue, with a focus on calmodulin
and its downstream calcium kinases.

The Role of Calcium in the Cardiovascular System

Calcium is an abundant element in nature and the most abundant mineral in the
human body. Calcium constitutes 1.43% of the human body, whilst phosphate makes up
1.11% of the human body. All other minerals and metals accumulate to a combined 0.73%
of the human body. Some 99% of calcium in the body is found in bones and teeth, whilst
the other 1% is found in blood and soft tissues. Calcium plays a crucial role in the heart
and vessels, both in physiological and pathological conditions [7,21–24].

Cells in the heart and blood vessels need calcium to contract and to perform their
function. The concentration of calcium within the cytosol is some 100 nM. The calcium
concentration outside the cell is some 2 mM, thus a factor of 20,000 higher. Therefore, the
influx of calcium into the cell needs to be tightly regulated. This calcium entry is regulated
by calcium-sensing receptors (CaSR), which are essential to sense Ca2+ in the extracellular
fluid and facilitate active and orchestrated calcium uptake [25–27]. Upon calcium entry, this
activates a series of downstream pathways that directly regulate cellular functions [21,24].
The concentration of calcium inside cardiac cells has a heterogeneous distribution thanks
to the presence of different microdomains in the cytosol, the spaces between intracellular
organelles, and the delimited compartments such as the sarcoplasmic reticulum. Calcium
homeostasis and signalling within the cell are regulated by calcium channels that come
in many forms and flavours with diverse functions and structures. The main role of
calcium channels is to balance both the cellular influx and the efflux of calcium [28,29].
Calcium channels can be stimulated by numerous and diverse stimuli such as membrane
depolarization, extracellular and intracellular signalling molecules, and physical forces
such as stretching or temperature. Among the calcium channels on plasma membranes, the
voltage-gated calcium channels are one of the most important as they rapidly transport
calcium into the cytoplasm. These channels respond to a change in voltage across the cell
membrane. The plasma membrane also harbours calcium transport mechanisms involved
in removing calcium from the cell to provide a low cytosolic concentration. These calcium
transport mechanisms include, amongst others, the plasma membrane calcium ATPase
(PMCA) pump and the Na+/Ca2+ exchanger (NCX) [24,30,31].
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Calcium is an essential central player in the heart because it is involved in the core
function of excitation–contraction coupling (ECC) [23]. ECC is a number of events starting
at the production of the action potential (electrical impulse) to the contraction of the
heart muscles. Additionally, calcium is a co-factor for many enzymes, including proteins
involved in blood coagulation. Platelets and several coagulation factors are activated by
Ca2+, which is responsible for maintaining blood clot architecture and strength [32,33].
Calcium is also involved in the regulation of long-term processes, such as gene regulation,
in order to change protein expression. Moreover, calcium has a central role in adaptive
tissue regulation, such as cardiac hypertrophy [22].

In VSMC physiology, calcium fulfils a pivotal role in physiology as well as in pathol-
ogy. Here, calcium is a key element in regulating blood flow and vascular luminal diameter.
Calcium induces contraction of VSMCs by creating a complex with the ubiquitous calcium
binding protein calmodulin and increasing the activity of myosin light-chain kinase [34].
VSMCs are characterized by a high degree of plasticity, having the capability to switch
phenotype. Indeed, under physiological conditions, VSMCs are in a quiescent contrac-
tile phenotype. However, upon pathobiological or mechanical stress, VSMCs switch
towards a synthetic phenotype, characterized by a higher degree of migration and prolif-
eration [14,35,36]. In both VSMC phenotypes, intracellular calcium plays a different but
pivotal role. The influx of calcium in VSMC with contractile phenotype is regulated mainly
via voltage-dependent L-type calcium channels, responsible for excitation–contraction cou-
pling. Upon mechanical or biological stress, VSMCs switch phenotype to a reparative and
synthetic VSMC. Synthetic VSMCs shed extracellular vesicles that contain endogenous cal-
cification inhibitors to prevent mineralization of the extracellular matrix. Upon long-term
stress and mineral disbalance, the content of these extracellular vesicles changes, turning
them from anti-calcific into pro-calcific vesicles [37]. These extracellular vesicles form the
nidus for VC and their uptake by synthetic VSMCs causes a rise in intracellular calcium
and subsequently cellular stress, eventually leading to cell death. In synthetic VSMCs, cal-
cium entry is less dependent on voltage-dependent L-type calcium channels [34]. Instead,
calcium entry is in part via clathrin-mediated extracellular vesicles and may contribute to
vascular calcification [36]. Intracellular calcium levels in VSMCs are very dynamic, espe-
cially in contractile VSMC, where calcium changes both in spatial and temporal domains.
These oscillations of intracellular calcium are more pronounced in contractile VSMCs
compared to VSMCs with a synthetic phenotype. The higher oscillation frequencies in
contractile VSMC can increase kinase activity in a frequency-dependent manner through
a trapping phenomenon consisting of the acquisition of autonomous kinase activity of
certain CaM kinases [34].

Below we describe the role of calmodulin and its signalling pathways in more detail
in relation to CVD.

2. Calmodulin

Calmodulin (CaM) is involved in the regulation and transduction of calcium signalling.
CaM is an important primary sensor of intracellular calcium levels in eukaryotic cells, play-
ing a pivotal role in the transduction and deciphering of calcium signalling [38,39]. CaM is
a low-molecular-weight protein of 16 kDa, composed of 149 amino acid residues. There are
three different human genes (CaM1, CaM2, CaM3) that encode for three highly conserved
proteins (differing only at the nucleotide level) [40–43]. Each gene is characterized by
distinct promoter elements and by unique 5′- and 3′-untranslated regions that may permit
regulation of CaM expression at discrete cellular sites during differentiation [44]. CaM is
an α-helical protein composed of N- and C-terminal lobes, each containing two calcium-
binding EF-hands. Thus, a total of four Ca2+ can be bound per CaM (Figure 1) [38–40].
Calcium binding to CaM induces a conformational change, which is unequivocal for activa-
tion and modulation of second messenger downstream proteins such as adenylate cyclase,
serine/threonine kinases, nitric oxide synthase, serine threonine protein phosphatases
(i.e., calcineurin), which are all involved in the transduction of intracellular calcium sig-
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nalling (Figure 2). CaM also regulates calcium transport via plasma membrane ATPase, a
high-affinity calcium pump that contributes to the maintenance of intracellular calcium
homeostasis [45]. CaM also binds to several structural proteins such as spectrin, neu-
romodulin, and caldesmon [43,44]. These proteins have been shown to play important
roles in the maintenance of plasma membrane integrity [46] and cytoskeletal structure [47],
postsynaptic function, and in the regulation of smooth muscle cell contraction, respec-
tively [48]. As a primary sensor of intracellular calcium levels, CaM plays a key role in
a multitude of processes, such as the regulation of cell cycle, fertilization, intracellular
signalling, differentiation, cell death, and cell contraction [39,49].
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Figure 1. Schematic representation of Ca2+-CaM activation. After binding 4 ions of Ca2+, calmodulin
undergoes conformational change that leads to activation of downstream proteins.

The main function of CaM in the heart is modulation of the action potential, leading to
rapid contraction of a distinct group of cardiac cells through the regulation of different chan-
nels [22,38], such as the voltage-gated sodium channels [50], the voltage gated potassium
channels [51], and the voltage-gated calcium channels [52]. CaM is also involved in the
regulation of the sarcoplasmic reticulum calcium release channel (RyR2), the main source
of intracellular calcium necessary to induce contraction [53,54]. Regulation of RyRs by
CaM is isoform specific. For RyR1, CaM exhibits biphasic regulation that depends on Ca2+

concentration. It acts as a weak activator at nanomolar concentrations of Ca2+ (apo-CaM)
and as an inhibitor at micromolar concentrations of Ca2+ (Ca2+-CaM). On the other hand,
for RyR2, Ca2+-CaM only inhibits the channel, without activating effects [55]. Moreover,
CaM interacts with secondary pathway effectors of cardiomyocyte contraction, such as
the beta-adrenergic pathway [56,57] and cyclic nucleotide signalling [38]. In the context
of the modulation of cyclic nucleotide signalling by CaM, it is important to consider the
role of the phosphodiesterases (PDEs), which are functional antagonists of the adenyly
cyclases (ACs) as they degrade cyclic nucleotides and subsequently lower, for example,
the cAMP-dependent protein kinase-A (PKA) activity. Among the 21 mammalian genes
of PDE, 3 PDE1 gene products (PDE1A–C) appear particularly interesting as PDE1A–C
are all CaM regulated and found in heart tissue. The binding of Ca2+-CaM to N-terminal
sites in PDE1 stimulates their activity and thus increases cell cAMP and cGMP degrada-
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tion [58]. Degradation of cyclic nucleotides generally signals an easing of cardiomyocyte
contractility. Finally, CaM interacts with downstream calcium CaM dependent kinases,
supporting calcium recycling in cardiomyocytes necessary to maintain calcium homeostasis
in preparation for a new excitation event [38].
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During evolution, the number of functions for CaM has significantly increased with
the need for sequence conservation [59]. In fact, CaM is highly conserved, and it has been
shown that most of the human calmodulin mutations are deleterious and associated with
life-threatening conditions during early infancy. Defects in CaM function disrupt important
calcium signalling events, possibly resulting in fatal heart disease [44,45,59–61] (Table 1).
Indeed, deleterious variants in CaM genes (CaM1, CaM2, and CaM3) cause calmodulinopa-
thy, a rare life-threatening arrhythmia syndrome [59,61]. The term specifically refers to a
wide spectrum of clinical manifestations [61], such as long-QT syndrome (LQTS) [59,62–65],
catecholaminergic polymorphic ventricular tachycardia (CPVT) [66], or idiopathic ventricu-
lar fibrillation (IVF) [67]. CaM mutations were also identified in autopsy-negative sudden
unexplained deaths (SUD) in young individuals [61,68]. Three heterozygous de novo
mutations in either CaM1 or CaM2 were identified that caused an alteration of residues near
the calcium binding loops in the calmodulin carboxyl-terminal domain. These alterations
were observed in infants who exhibited life-threatening ventricular arrhythmias combined
variably with epilepsy and delayed neurodevelopment [59]. Moreover, a common mutation
in a highly conserved residue (Phe90) in CaM1 resulted in underlying IVF manifestation in
childhood and adolescence [67]. Further, a novel missense mutation in CaM1 was identified
in a Moroccan family with a history of ventricular tachycardia and sudden death. This
missense mutation was associated with exercise-induced QT prolongation, ventricular
tachycardia, and sudden cardiac death during childhood [69].
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Table 1. List of the main human CaMs gene polymorphisms. CaM polymorphisms are associated
with a spectrum of arrhythmic phenotypes. Adapted from Kotta et al. [61].

Gene Nucleotide
Change

Amino Acid
Change

Associated
Phenotype Refs.

CALM1 c.389A>G p.D130G LQTS [59,61]
CALM1 c.426C>G p.F142L LQTS [59,61]
CALM1 c.161A>T p.N54I CPVT [61,66]
CALM1 c.293A>G p.N98S LQTS, CPVT [61,66]
CALM1 c.268T>C p.F90L IVF, SUD [67,69]
CALM1 c.395A>T p.D132V LQTS [64]
CALM2 c.293A>G p.N98S LQTS, SUD [61,62,68]
CALM2 c.287A>T p.D96V LQTS [59,61]
CALM2 c.293A>T p.N98I LQTS [61,62]
CALM2 c.400G>C p.D134H LQTS [38,39]
CALM2 c.389A>G p.D130G LQTS [61]
CALM2 c.396T>G p.D132E LQTS, CPVT [61,62]
CALM2 c.394G>C p.D132H LQTS [64]
CALM2 c.407A>C p.Q136P LQTS, CPVT [62]
CALM3 c.389A>G p.D130G LQTS [61,63]
CALM3 c.308C>T p.A103V CPVT [61]
CALM3 c.286G>C p.D96H LQTS [61,65]
CALM3 c.426T>G p.F142L LQTS [61,65]

In VSMCs, CaM is a critical calcium sensor which regulates different downstream pro-
teins. The Ca2+-CaM complex is necessary to phosphorylate and activate myosin light-chain
(MLC) actin–myosin interactions and VSMC contractions [70–72]. Specifically, CaMKII
phosphorylates and inactivates MLC kinase, a process that may be essential in the regula-
tion of VSM contraction [70]. CaM-calcium binding also controls the interaction between
alpha-smooth muscle actin (αSMA) and myosin, affecting VSMC elasticity and adhesion
processes [73]. Further, Ca2+-CaM activates the serine/threonine (Ser/Thr) phosphatase
calcineurin as well as the family of Ca2+-CaM-dependent protein kinases, all involved in the
regulation of cell cycle progression [70]. The role of CaM in VSMC-driven vascular disease
(i.e., atherosclerosis, aneurysms, calcification) has not been studied in detail thus far.

Taken together, these findings highlight the role and function of CaM in the cardiovas-
cular system.

3. Calcium Calmodulin Kinases

The transduction and amplification of intracellular calcium signals sensed by CaM
results in regulation of downstream effectors involved in phosphorylation. Specifically,
proteins involved in this pathway are of the calcium calmodulin kinase protein family
(CaMK), a category of enzymes all classified as Ser/Thr kinases (Figure 3). CaMKs catalyse
the transfer of phosphate from the gamma position of ATP to the hydroxyl group of Ser
or Thr residues in proteins [39,49,74]. CaMKs can be divided in two different groups. The
first group consists of CaMKK1, CAMKK2, CaMKI, CaMKII, and CaMKIV, which are
multifunctional proteins. The second group consists of CaMKIII, phosphorylase kinase,
and myosin light-chain kinase and are substrate-specific kinases with only one downstream
target [74]. All CaMK proteins share a common structure with a bi-lobed catalytic domain
followed by a regulatory domain containing both an autoinhibitory as well as a CaM-
binding site (Figure 3) [74,75]. In the case of basal intracellular calcium levels, CaMKs
are in an inactivated state due to the autoinhibitory domain that interacts and blocks the
CaM binding or catalytic site. When intracellular calcium levels increase, CaM binds four
Ca2+ to become saturated, creating a conformational change. This conformational change
results in interaction with the CaM binding domain in CaMKs, resulting in activation.
The activation of some CaMKs (i.e., CaMKI) requires both binding of calcium as well as
an additional modification, such as phosphorylation. Moreover, the activity of certain
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kinases (i.e., CaMKIV and CaMKII) can become independent of CaM, allowing them to
be functional beyond the duration of a transient elevation in intracellular calcium [76–78].
These differences in regulation are important for the control of the many cellular functions
of CaM.
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Ca2+-CaM protein kinases (CaMKs) are involved in several process, controlling several
different functions [75,79–93]. In the following sections we describe in more detail the role
of multifunctional CAMKs in the heart and vasculature.

3.1. CAMKII

CaMKII is the most abundant calcium calmodulin kinase in the heart [7,94,95]. There
are four different isoforms, namely CAMKII α, β, γ, and δ, encoded by four different genes.
All four CaMKII isoforms are involved in cellular functions such as calcium homeostasis,
membrane potential, the cell cycle, cytoskeletal organization, cell contraction, learning,
memory, and gene expression and secretion [74,78,95]. It is important to note that the
four isoforms of CaMKII have a different tissue distribution [96]. CaMKII γ and δ are
mainly present in cardiac tissue whereas CaMKII α and β are expressed mainly in the
neuronal system [7,57,97]. Specifically, CaMKIIδ is the predominant isoform in the heart
and plays a crucial role in the regulation of several cardiac functions. CaMKIIδ is involved
in the integration of calcium signalling through a variety of pathways to maintain cardiac
homeostasis as it is predominantly involved in the excitation contraction coupling (ECC) in
the heart [38,78,94,97,98].

The effect of CaMKII on ECC is crucial because it phosphorylates calcium handling
proteins including sarcoplasmic reticulum (SR) calcium release channels, such as ryanodine
receptors (RyR) [99], phospholamban (PLB) [94], and L-type calcium channels [100]. These
downstream proteins of CaMKII are responsible for the regulation of cellular calcium
influx, calcium release from the SR, as well as calcium uptake into the SR [7]. The phos-
phorylation of myofilament proteins (cMyBP-C: cardiac myosin binding protein-C) and
myosin regulatory light-chain 2 by CaMKII contributes to myofilament calcium sensitiza-
tion and interactions [101,102]. Tong et al. showed that the phosphorylation of cMyBP-C
due to CaMKIIδ and PKA is a principal mediator of increased contractility observed with
β-adrenergic stimulation or increased pacing. Moreover, its phosphorylation increases the
force and kinetics of twitches in living cardiac muscle [101]. CaMKII also phosphorylates
titin, which stabilizes the contractile machinery, causing a lower cardiomyocyte passive
force likely associated with improved diastolic filling [103–105]. Meanwhile, the phospho-
rylation by CaMKII of troponin I enacts the calcium desensitization; this process is required
to accelerate diastolic myofilament relaxation with increased heart rate [105,106]. Addi-
tionally, CaMKII targets and activates cardiac Na+ [107,108] and K+ channels [54,109–111],
which are involved in the regulation of calcium homeostasis, through phosphorylation.

The activation of CaMKII depends on Ca2+-CaM binding, subsequently activating all
12 subunits in separate holoenzymes (a biochemically active compound consisting of an
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enzyme with its cofactor) forming the dodecameric structure of CaMKII [112]. Additionally,
Ca2+-CaM bound to CaMKII ensures that one subunit is auto-phosphorylated at Thr286
by a neighbouring activated CaMKII subunit. This event generates autonomous activity,
increasing the affinity of CaMKII for Ca2+-CaM some 1000-fold, an event known as “CaM-
trapping” [74,77,78].

This autonomous activity of CaMKII can also be mediated by other post-translational
modifications such as oxidation, nitrosylation, and glycosylation [105] The altered hyperac-
tivate regulation of CaMKII is increased in myocardial disease, contributing to apoptosis,
arrhythmias [113], defective ECC, and ETC (excitation–transcription coupling) [53,114,115],
favouring pathological hypertrophy [96] and contractile dysfunction specifically during
heart failure (HF) [54,96,114,115]. CaMKII is a pro-arrhythmogenic protein increased dur-
ing CVD, i.e., myocardial injury [116], atrial fibrillation [117], cardiac hypertrophy, and
ischaemia/reperfusion injury [118], and inhibition of CaMKII might thus be a treatment
option for cardiac pathologies [7,119,120].

Additionally, in blood vessels CaMKII plays a crucial role. In VSMCs, CaMKII is
activated by Ca2+-CaM to regulate activation of myosin light-chain kinase (MLCK) by
phosphorylation [70]. In VSMCs, CaMKII inhibits CREB (cAMP response element-binding
protein) through different phosphorylation sites. CREB is an important transcription
factor regulating expression of contractile and proliferative and migratory genes during
VSMC phenotype switching. The rise of intracellular Ca2+ in VSMCs promotes nuclear
translocation of Ca2+-CaMKII. γCaMKII acts as a carrier of Ca2+/CaM, transporting it
into the nucleus. In the nucleus Ca2+/CaM activates CaMKK and its substrate CaMKIV,
which in turn activates CREB by phosphorylation [34,121]. Moreover, it has been shown
that Ca2+-CaMKII and Erk1/2 activation play a crucial role in the regulation of VSMC
proliferation by α-adrenergic receptor agonists [122]. Finally, it was recently shown that
CAMKIIδ and calponin 3 play critical roles in circRNA CDR1as/miR-7-5p-induced hu-
man pulmonary VSMC calcification under hypoxic conditions, which may contribute to
pulmonary hypertension [123].

3.2. Ca2+-CaM-Dependent Kinase Cascade
3.2.1. CaMKK Family

The Ca2+-CaM-dependent kinase cascade consists of Ca2+-CaM kinase-kinase family
(CaMKK1 and CaMKK2), CaMKI, and CaMKIV (Figure 4). This cascade is involved in
different processes, such as cell proliferation, apoptosis, immune cell function, stem cell
maintenance, as well as glucose homeostasis [7]. Dysregulation of kinases in the Ca2+-CaM-
dependent kinase cascade is associated with a variety of diseases such as cancer, obesity,
diabetes, neuronal defects, and CVD [12,124].

CaMKKs support transduction of calcium to other downstream kinases such as CaMKI
and CaMKIV [32,62]. They are present both in the cytoplasm as well as in the nucleus
of the cell. There are two isoforms of CaMKKs encoded by the genes CAMKK1 and
CAMKK2 [39,74,125]. Both CaMKKs share a high sequence homology and the same com-
mon domain structure typical for all kinase proteins (Figure 3) [125,126]. The main differ-
ence between both CaMKKs is that CaMKK1 is kept in an inactive state until binding of
Ca2+-CaM relieves the autoinhibitory mechanism, whilst autophosphorylation allows a
partially autonomous activity of CaMKK2 in the absence of Ca2+-CaM [74,75,126]. Both
kinases can be partially inhibited by PKA that phosphorylates CaMKKs at different Ser or
Thr residues within the CaM kinase binding domain and within the ATP binding region
in the catalytic domain. Specifically, when PKA phosphorylates CaMKK1 at Ser458, it
prevents binding to Ca2+-CaM, thereby inhibiting CaMKK1 from responding to increased
intracellular calcium levels [75,127]. Moreover, the principal site of autophosphorylation
for CaMKK2 is Thr482, which generates a partial autonomous activity independent of
Ca2+-CaM, disrupting the autoinhibitory mechanism of CaMKK2. Since CaMKK2 is not
dependent on rapid fluxes of intracellular calcium for basal activity, it can respond to
other stimuli for longer durations [7,74,75]. The temporal sequence of these two distinct
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signalling events, PKA phosphorylation on CaMKK and its ability to block Ca2+-CaM
binding, plays an important role in directing signalling through CaMKK1.
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A common characteristic of both CaMKKs is that they phosphorylate CaMKI and
CaMKIV at residues Thr177 and Thr196, respectively [39,74,75]. In addition, both CAMKKs
activate AMP-activated protein kinase (AMPK), a key regulator of cellular energy bal-
ance [128] (Figure 4). Sallé-Lefort et al. showed that the CaMKK/AMPK complex is
involved in the activation of hypoxia-inducible factor-1α (HIF-1α). HIF-1α controls
metastasis-associated lung adenocarcinoma transcript 1 (Malat1), enhancing its transcrip-
tion upon low oxygen conditions. Their findings suggest that Malat1 expression is up-
regulated under hypoxic conditions by the CaMKK/AMPK/HIF-1α axis [129]. Another
downstream substrate of CaMKKs is AKT (also known as protein kinase B or PKB), an
important oncology target. Activated AKT promotes phosphorylation of cellular sub-
strates, e.g., TSC1/2, FOXO, GSK3, and mdm2 [130], thereby controlling cell proliferation,
metabolism, cell growth, and survival [75,131] (Figure 3).

Below we discuss the roles of CaMKK1, CaMKK2, CaMKI, and CaMKIV in CVD in
more detail.

CAMKK1

The main role of CaMKK1 is phosphorylation of downstream CaMKI and CaMKIV,
whereas the activation of CaMKK1 fully depends on CaM [39,74,75,126]. Recently, the
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crystal structure of CaMKK1 was revealed using two ATP-competitive inhibitors. The
structural differences between CaMKK1 and CaMKK2 therefore can result in the generation
of CaMKK-specific inhibitors [126]. Research supports the importance of CaMKKs in
cardiovascular biology [126,132] via mTOR (mechanistic target of rapamycin) [133]. The
mTOR pathway plays a key regulatory function in cardiovascular physiology and pathology
(Figure 4) [134]. More recently it was shown that overexpression of CaMKK1 regulates
the mesenchymal stem cell (MSC) secretome [135]. The overexpression of CAMKK1 in
either MSC or upon direct injection of its encoding DNA into infarcted tissue resulted in
improved cardiac function and increased vasculogenesis. In rats, injections in the heart of
conditioned media from MSCs overexpressing CaMKK1 showed improvement in cardiac
function after acute myocardial infarction, with increased vascular density and decreased
scar tissue [135]. Moreover, the direct overexpression of CaMKK1 in infarcted tissue using
a CaMKK1-encoding plasmid also significantly improved ejection fraction and decreased
infarct size after acute myocardial infarction. Although the precise mechanism by which
CAMKK1 affects regeneration is not known, these data put forward a novel role of CaMKK1
derived from the MSC secretome, indicating a potential therapeutic target for infarcted
heart tissue [135].

Recently, the genetic variant rs7214723 of CaMKK1 was shown to be associated with a
higher risk of developing CVD [136]. This genetic variant, which was shown to be associ-
ated with increased lung cancer risk [137,138], is a single-nucleotide polymorphism (SNP)
that causes an amino acid change from glutamic acid (E) to glycine (G) at position 375
inside the catalytic domain of CaMKK1. This variation creates a charge change influencing
substrate specificity, thereby inhibiting downstream CaMKI and CaMKIV [39,137,138]. This
polymorphism appears to be highly represented in the population (MAF index: C = 0.3954
(1980/5008 1000 Genome)) [139]. Results from a cross-sectional study conducted on 300 car-
diac patients showed a statistical difference between cardiopathic patients and European
reference populations between the genotype and allele frequencies for rs7214723. These
data suggest a potential role of rs7214723 that could be used as genetic biomarker in
predicting CVD susceptibility [136].

Whilst interest in the function of CaMKK1 in the heart is growing, there is still lack of
information regarding the role of CaMKK1 in vasculature and related vascular diseases.

CAMKK2

More research has been published on CAMKK2 compared to CAMKK1. Specifi-
cally, the interaction between CaMKK2 and AMP-activated protein kinase (AMPK) is
well studied as it regulates many physiological processes such as hypothalamic con-
trol of feeding behaviour, hepatic gluconeogenesis, adipocyte differentiation and macro-
autophagy [128,131,140]. AMPK is involved in a variety of cellular processes, including
sensing intracellular ATP levels, regulation of autophagy and mitochondrial fission [141].
Since AMPK activity depends on CaMKK2, CaMKK2 has a possible role in cardiac energy
production to protect the heart against calcium overload induced by sustained pressure
loads [38]. Moreover, AMPK signalling is repressed during cardiac hypertrophy, and
cardiac-specific knockout of AMPK promotes stress-induced cardiac hypertrophy [38,142].
Thus, the inactivation of CaMKK2 might indirectly result in the development of metabolic
dysfunction and cardiac hypertrophy (Figure 4). Histone demethylase JMJD1C, an im-
portant epigenetic factor, represses the activation of AMPK during cardiac hypertrophy
through the reduction of CaMKK2 expression. This confirms that AMPK signalling is in-
volved in JMJD1C-mediated cardiac hypertrophy [143]. Absence of functional CaMKK2 in
mice resulted in increased left ventricular dilatation and dysfunction and subsequent mor-
tality [144]. This demonstrates that CaMKK2 can exert beneficial effects against pressure-
overload-induced heart failure, thereby providing a therapeutic target for treatment of
heart failure [144]. Additionally, CaMKK2 plays an important role in GLUT4 translocation
through AMPK activation in cardiomyocytes. GLUT4, after metabolic stress, translocates
from intracellular vesicles to the plasma membrane protecting cardiac myocytes from
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oxidative stress and ischaemic injury. During ischaemia, GLUT4 translocation represents a
peculiar mechanism by which the heart increases glucose uptake increasing cell energy sta-
tus. The pan-CaMKK inhibitor STO-609 as well as overexpression of a dominant-negative
form of CaMKK2 in cardiomyocytes inhibited hydrogen-peroxide-mediated translocation of
GLUT4 [143–145] (Figure 4). Further, CaMKK2 is involved in CaMKK2-AMPK-VASP/MLC
signalling for migration of cells and for assembly of contractile actin stress fibres [146].
Additionally, it was shown that the regulation of mechanosensing is promoted by myosin-
18 [135]. Exerted cellular forces are transduced via the cytoskeleton and are therefore of
key importance in mechanosensing. Stress fibres are composed of actin (microfilaments)
and non-muscle myosin II. Myosin-18B co-localizes with myosin II motor domains in these
stress fibres. Moreover, myosin-18B knockout cells displayed the ability to exert forces to the
environment, hence their involvement and importance in mechanotransduction [147,148].

Diabetes is an important risk factor for the development of CVD. In type 2 diabetic
mice, endocrine hormone fibroblast growth factor 21 (FGF21) activates CaMKK2/AMPKα,
thereby suppressing oxidative stress and enhancing endothelial nitric oxide synthase
(eNOS) signalling, improving vessel relaxation [149]. This suggests the possible use of
FGF21 to activate CaMKK2/AMPKα for therapeutic use of endothelial dysfunction in
diabetes. Additionally, store-operated calcium entry (SOCE) is a central mechanism in
cellular calcium signalling and in maintaining cellular calcium balance. Intracellular
Ca2+ flux, driven by release of Ca2+ from intracellular stores can activate CaMKK2 via
Ca2+/CaM [150]. This signalling pathway of SOCE-Ca2+/CaM-CAMKK2 is important for
the regulation of autophagy and in maintaining proliferation and promoting the survival
capability of endothelial progenitor cells (EPCs) [151]. This pathway is active at basal levels
in cells of cardiovascular origin as an important homeostatic mechanism [152]. CaMKK2
activation and mTOR deactivation is associated with autophagy modulation (Figure 4).
Here, a novel signalling pathway of SOCE-CAMKK2 in the regulation of autophagy was
identified, revealing new insights in maintaining proliferation and survival capability of
endothelial progenitor cells (EPCs). This offers ways to improve EPCs transplantation effi-
cacy to enhance vascular re-endothelialization in patients with hypercholesterolaemia [151].
Moreover, tetrahydrobiopterin (BH4), a multifunctional cofactor implicated in regulation
of nervous, immune, and cardiovascular systems, is a new potential endogenous activator
of CaMKK2. BH4 targets CaMKK2 and promotes recovery of mitochondria in diabetic
cardiomyopathy [153].

AMPK, among others downstream to CaMKK2, is a master sensor of cellular energy
status involved in the progression of vascular calcification [154]. It is known that AMPK
activators are associated with reduced calcification deposits [154], indicating a potential
therapeutic role of AMPK in vascular calcification [155]. Vascular calcification is in part
driven by the trans-differentiation of VSMC into cells with osteoblast characteristics, such
as increased alkaline phosphatase activity and collagen II deposition, governed by the
upregulation of Runt-related transcription factor 2 [156]. A recent study in mice showed
that exogenous omentin-1 attenuates osteogenic differentiation of VSMCs through the
activation of AMPK/Akt signalling [157]. On the contrary, the inhibition of AMPK and
Akt signalling reverses the anti-calcific effect induced by omentin-1 both in vitro and
in vivo [157]. Moreover, Lai and colleagues demonstrated that during calcification KMUP-3
(the xanthine derivative 7-[2-[4-(4-nitrobenzene)-piperazinyl]ethyl]−1,3-dimethylxanthine)
inhibits both mTOR, downstream to CaMKK2, and β-catenin upregulation, essential for
VSMC osteogenic phenotypic switching as well as enhancing AMPK activation inhibiting
VSMC osteogenic differentiation [158].

3.2.2. CaMKI and CaMKIV

Ca2+-CaM dependent kinase I and IV (CaMKI and CaMKIV) share the same common
kinase structure (Figure 3), and their activation requires both binding of Ca2+-CaM and
subsequent phosphorylation by Ca2+-CaM kinase proteins (CaMKKs) at Thr 177 and Thr
196, respectively [7,74,75]. The difference in activation between CaMKI and CaMKIV
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is that CaMKI remains entirely Ca2+-CaM-dependent, whereas CaMKIV can undergo
an intra-subunit autophosphorylation of the Ser/Thr-rich N-terminus, generating Ca2+-
CaM independent activity. This allows CaMKIV to maintain its functionality beyond
increased intracellular calcium [39,74]. CaMKI is a monomeric kinase that is expressed
by three different genes encoding α, β, and γ isoforms [159,160]. CaMKI is a cytosolic
protein, which serves several functions including transcription activator activity, cell cycle
control, hormone production, cell differentiation, actin filament organization, and neurite
outgrowth (Figure 4). However, the precise role of CaMKI in CVD is not completely
understood [39].

CaMKIV is a monomeric kinase and can be expressed as two isoforms (α and β),
encoded by a single gene [161]. CaMKIV is considered important in the nervous sys-
tem [162,163], but recently it received attention for its role in cardiovascular pathophys-
iology [164]. Several studies showed an association of the genetic variant rs10491334
in CaMKIV with elevated diastolic blood pressure [162–164] (Figure 4). Furthermore,
rs10491334 was also associated with a reduction in the expression level of CaMKIV in
hypertensive patients [164]. Moreover, CaMKK/CaMKIV has been shown to be a key
endogenous protective pathway in ischaemia and an important regulator of blood–brain
barrier integrity [165]. The deletion of CaMKK or CaMKIV in mice exacerbates stroke
outcome, such as infarct volume, oedema formation and behavioural deficits. Liu et al.
described furthermore that the CaMKK pathway is involved in the immune response to
brain injury, increased blood brain barrier impairment, transcriptional inactivation of cAMP,
and inflammatory responses in females after stroke. The CaMKK signalling pathway might
therefore be a potential target for stroke treatment [166].

In the vasculature, it has been shown that the interaction between CaMKKs and
CaMKIV is important in the regulation of CREB during phenotype switching of VSMCs [34]
(Figure 4). Indeed, nuclear CaMKIV plays a crucial role in the activation of CREB, whereas
CaMKII inhibits CREB by phosphorylating it [167,168]. Previous studies demonstrated
that both CaMKII and CaMKIV can phosphorylate Ser133 of CREB. However, CaMKII also
phosphorylates Ser142 in the transcriptional activation domain of CREB. This event has
been reported to inhibit CREB activity by interfering with CREB dimerization and protein
interactions to form an active promoter complex [169,170]. It has been shown that VSMC
phenotype depends on the activity and form of different calcium-dependent transcription
factors, such as CREB [34,167]. Part of the VSMC phenotype regulation is therefore under
the control of the Ca2+-CaM kinase pathway, thus making this an interesting therapeutic
option to regulate VSMC phenotype switching.

4. Conclusions

In this review, we have summarized the current state of the literature on Ca2+-CaM
-dependent kinase cascade functions, with a focus on the heart and vessels (Table 2). Our re-
view clearly points towards an important role for calmodulin and calcium kinase proteins in
CVD. CaMKKs are involved in regulating calcium signalling in cardiovascular metabolism
resulting in calcium-induced autophagy, an important homeostatic mechanism active at
basal levels in cells of cardiovascular origin [151,152]. Moreover, the CaMKK/CaMKIV
phosphorylation cascade has been shown to be a key endogenous protective mechanism in
ischemia and an important regulator of blood–brain barrier integrity [165]. In addition, ge-
netic variants in Ca2+-CaM dependent kinases were associated with CVD [39,136,162,164].
Further, it is important to underline the role of Ca2+-CaM-dependent kinases in VSMC
integrity. Whilst it is known that the interaction CaMKK2/CaMKIV is involved in phe-
notype switching of VSMCs [34], data are lacking as to the role of CaM and CAMKK1
in vessel wall homeostasis. As the Ca2+-CaM-dependent kinase cascade regulates many
cellular processes in both cardiac and vascular tissue, further investigation of this signalling
pathway is necessary to understand this process and to open up novel avenues for the
treatment of CVD.
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Table 2. Summary of the involvement of the CaM cascade in cardiovascular disease.

Kinase In Heart Pathology In Vasculature Pathology

CaM Polymorphisms linked to calmodulinopathy,
arrhythmia [44,45,59–69]. Unknown

CaMKII

Implicated in myocardial injury [116], atrial
fibrillation [117], cardiac hypertrophy,

ischaemia/reperfusion injury [118], heart failures,
contributing to apoptosis, arrhythmias [113],

defective ECC and ETC [53,114,115], pathological
hypertrophy [96] and contractile dysfunction

during heart failure [54,96,114,115].

Regulation of VSMCs phenotype switching
through the inhibition of CREB [34].

CaMKK1 Polymorphism linked to the higher risk to develop
CVD [136].

Regulation of VSMCs phenotype switching
(CaMKK-CaMKIV-CREB) [34].

CaMKK2
Inactivation of CaMKK2 indirectly results in the

development of metabolic dysfunction and cardiac
hypertrophy [143].

Regulation of VSMCs phenotype switching
(CaMKK-CaMKIV-CREB) [34].

CAMKI Unknown Unknown

CAMKIV Polymorphisms linked to elevated diastolic blood
pressure [162–164].

Regulation of VSMCs phenotype switching
(CaMKK-CaMKIV-CREB) [34].
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