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Abstract: Increasing contamination of wastewater with antibiotics used in agriculture, animal hus-
bandry, and medicine is a serious problem for all living things. To address this important issue, we
have developed an efficient platform based on a high specific surface area hexagonal boron nitride
(BN) coating formed by numerous nanopetals and nanoneedles. The maximum sorption capacity of
1 × 1 cm2 BN coatings is 502.78 µg/g (tetracycline, TET), 315.75 µg/g (ciprofloxacin, CIP), 400.17 µg/g
(amoxicillin, AMOX), and 269.7 µg/g (amphotericin B, AMP), which exceeds the sorption capacity of
many known materials. Unlike nanoparticles, BN-coated Si wafers are easy to place in and remove
from antibiotic-contaminated aqueous solutions, and are easy to clean. When reusing the adsorbents,
100% efficiency was observed at the same time intervals as in the first cleaning cycle: 7 days (TET)
and 14 days (CIP, AMOX, AMP) at 10 µg/mL, 14 days (TET, CIP, and AMOX) and 28 days (AMP)
at 50 µg/mL, and 14 days (TET) and 28 days (CIP, AMOX and AMP) at 100 µg/mL. The results
obtained showed that TET and CIP are best adsorbed on the surface of BN, so TET was chosen as an
example for further theoretical modeling of the sorption process. It was found that adsorption is the
main mechanism, and this process is spontaneous and endothermic. This highlights the importance
of a high specific surface area for the efficient removal of antibiotics from aqueous solutions.

Keywords: BN coatings; antibiotics; wastewater treatment; sorption capacity; DFT calculations

1. Introduction

The era of antibiotics began in the early 1940s, shortly after the discovery of penicillin
by Alexander Fleming in 1928. With population growth and urbanization, the need for
antibiotics has steadily increased. Antibiotic use, according to a World Health Organiza-
tion report, increased by 91% worldwide and 165% in low-income countries from 2000 to
2015 [1], and continues to grow. The global market for antibiotics is projected to grow from
$38.08 billion in 2021 to $45.30 billion in 2028 [2]. As a result, antibiotic contamination of
wastewater is becoming a significant public health problem [3–5]. The presence of antibiotic
residues in water has detrimental effects on humans, animals, and other creatures because
it contains carcinogenic and toxic compounds. About 70% of antibiotics administered
to humans are excreted in a non-metabolized form as active compounds and end up in
wastewater [6]. In addition, extremely high concentrations of antibiotics have been reported
in wastewater from antibiotic production plants (oxytetracycline: 32.0 mg/L), livestock
farms (oxytetracycline: 2.1 mg/L), hospitals (ciprofloxacin (CIP): 0.9 mg/L), urban environ-
ments (CIP: 0.25 mg/L), and near aquaculture farms (sulfamethoxazole: 5.6 mg/L) [7–10].
Although reported levels of their presence in the environment are generally low, ranging
from ng/L to µg/L, antibiotics are “pseudo-stable” contaminants due to their constant
release and presence in the environment [11]. Studies have identified the potentially
toxic effects of hospital effluents entering the aquatic environment [12], and also found
drug-resistant bacteria in areas where hospital effluents are present [13]. In particular, resis-
tance rates to ciprofloxacin, commonly used to treat urinary tract infections, ranged from
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8.4% to 92.9% for Escherichia coli (E. coli) and from 4.1% to 79.4% for Klebsiella pneumoniae
(K. pneumoniae), respectively [14]. This leads to a decrease in the efficiency of antibiotic
administration [15,16]. All this indicates the importance of developing effective approaches
to the removal of antibiotics from the aquatic environment. Amoxicillin, ciprofloxacin, and
tetracycline are among the classes of most commonly prescribed antibiotics [17–20]. Tetra-
cycline and ciprofloxacin are major wastewater pollutants in East and Southeast Asia [21].
According to the World Health Organization report for 2015–2016, amoxicillin is one of
the most used antibiotics in the world [22] and, therefore, is often detected in wastewa-
ter [23,24]. Amphotericin B is a common anti-fungal agent that has been used for more
than half a century [25–27], traces of which are also often found in the environment [28].
Several microorganisms, such as Aspergillus terreus, were reported to develop resistance to
amphotericin B [29], which requires its removal from wastewater.

For the treatment of wastewater containing pharmaceutical compounds, various
physical, chemical, and biological processes, as well as their combinations, are used [30–32]
but not all of them meet modern requirements for efficiency and cost. These methods
have a number of disadvantages, such as introduction of active organisms into the aquatic
environment during water treatment, low selectivity [33–35], rapid annihilation of photo-
generated carriers, and incomplete mineralization [32]. Among the existing treatment
methods, adsorption is one of the most promising and economical methods for removing
pharmaceutical residues from wastewater [36–39]. Moreover, unlike other methods such as
decomposition or chemical oxidation, this method does not produce secondary pollutants
during purification [31,40].

Nanomaterials with a high specific surface area are a promising platform for inexpen-
sive and highly effective sorbents of various polluting molecules [41,42]. Various materials
have been studied for the adsorption of antibiotics from aqueous solutions: carbon nan-
otubes [43], graphene [44–46], graphene oxide [47], activated carbon [48], metal-organic
framework [49–51], boron nitride [36,52], and others. 2D materials have a large specific
surface area and therefore are excellent sorbents for a wide variety of pollutants.

Hexagonal boron nitride (h-BN) stands out for its unique properties (non-toxicity,
enhanced thermal stability, recyclability, superior oxidation resistance, high specific sur-
face area, and chemical inertness) which make it a good adsorbent [53–56]. In addition,
considering the possibility of large-scale synthesis of atomically thin h-BN nano-sheets
(BNNSs), this material was studied as an adsorbent in water purification [36,56,57]. Since
BN sorbents are very light and have a highly developed surface, they exhibit high gravi-
metric capacity, while their high chemical and thermal stability ensures good material
regeneration. Hexagonal BN is a good sorbent even in a 2D form [58] (the maximum
adsorption capacity of tetracycline is 346,66 mg/g), but modification of BN surface can
increase its sorption capacity up to 500 mg/g (depending on modification) [59–61]. All this
confirms that the rational modification and proper design of the h-BN material can provide
excellent sorption characteristics of h-BN-based nanomaterial. However, BN is often used
in powder form [58,60], which is not always convenient for industrial applications. The
usage of h-BN coatings deposited on a substrate could bring us closer to a more practical
material. Despite significant progress in wastewater treatment from antibiotics, the rele-
vance of developing highly effective and safe adsorbents remains high. The development of
adsorbents based on hexagonal boron nitride will make it possible to obtain an affordable
and cost-effective reusable adsorbent for more efficient water purification from antibiotics.
In addition, sorption to amphotericin B was studied for the first time.

Here, we investigated nano-structured h-BN-based coatings with a highly developed
surface as a sorbent for various most commonly used antibiotics: ciprofloxacin (CIP),
tetracycline (TET), amoxicillin (AMOX) and amphotericin B (AMP). We characterized the
surface of the obtained BN-materials by various methods and studied their sorption capac-
ity depending on the initial antibiotic concentration and solution pH both by experimental
methods and by theoretical modeling. It is shown that after coating purification their
sorption capacity decreases insignificantly, which makes it possible to reuse this material.
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2. Results and Discussion
2.1. Characterization of BN Coatings

SEM micrographs of the as-synthesized BN coatings are shown in Figure 1a. The
coating consists of spherical BN nanoparticles (NPs) formed by numerous nanosheets and
nanoneedles. The size of BNNPs (Figure 1b) ranges from 90 to 600 nm, while the majority
of NPs (>65%) are 200 to 400 nm in size. According to the EDX spectroscopy analysis,
the main coating components are B (51.3%) and N (45.4%), although traces of O and C
(3.3%) are also present. Figure 1c shows the FTIR spectrum of BN coating. The observed
two high-intensity peaks can be attributed to out-of-plane B-N-B bending (780 cm−1) and
in-plane B-N stretching (1370 cm−1) vibrations [62]. A small peak at 520 cm−1 corresponds
to B-O bonds [63]. The XRD pattern of BN coating is presented in Figure 1d. Besides the
main peaks from the (002), (100) and (101) BN crystallographic planes (ICDD card No. 00-
034-0421), there are additional maxima corresponding to BNO (ICDD card No. 00-37-1234)
and B2O3 (ICDD card No. 00-06-0297) phases.
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Figure 1. SEM micrographs at low and high (inset) magnifications (a), size distribution of BNNPs (b),
FTIR spectrum (c) and XRD pattern (d) of BN coating.

The specific surface area of BN coating was measured by low-temperature nitrogen
adsorption on a NOVA 1200e instrument (Quantachrome, Boynton Beach, FL, USA). The
obtained results were processed using the Brunauer-Emmett-Teller (BET) equation. Prior to
adsorption measurements, the samples were degassed in a vacuum at 200 ◦C overnight.
The surface area of the nano-structured BN coating was 90.61 m2/g.

The zeta potential of BN was determined using a Zetasizer Nano-ZS ZEN3600 in-
strument (Malvern). The charge of the synthesized pure BN coating at pH 7 is −26 mV.
It was reported that a change in the acidity of the medium did not affect the BN surface
charge [64]; therefore, the BN charge was considered unchanged.
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2.2. Kinetics of Antibiotic Adsorption on BN Coatings

Kinetic curves showing the removal efficiency of four types of antibiotics at various
pH and initial antibiotic concentrations are presented in Figure 2. The purification efficiency
depends on the treatment time. At initial antibiotic concentrations of 10, 50, and 100 µg/mL
and pH 4, 100% efficacy is observed for TET on days 12, 15, and 18, for CIP on days 14, 21,
and 23, for AMOX on days 17, 28 and 26, and AMP on days 23, 28, and 28, respectively. At
the same initial concentrations and pH 7, 100% efficacy is achieved after 7, 9, and 10 days
(TET), after 8, 10, and 11 days (CIP), after 10, 11, and 12 days (AMOX), and after 11, 12, and
14 days (AMP). In an alkaline environment (pH 9), the time required for complete solution
purification from antibiotics is 11, 12, and 14 days for TET, 12, 14, and 14 days for CIP, 14,
14, and 15 days AMOX, and 18, 18, and 21 for AMP.
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samples at pH 4 (a,d,g), pH 7 (b,e,h), and pH 9 (c,f,i) and initial antibiotic concentrations of 10 (a–c),
50 (d–f) and 100 µg/mL (g–i). T = 25 ◦C.

Antibiotic purification efficiencies (R50 and R100) using BN coatings are presented
in Table 1. The purification efficiency depends on the pH of the medium and the type
of antibiotic. The R50 values increase with the increase in the initial concentration of
antibiotics. In an acidic environment (pH 4), R50 is reached after 2, 3, and 4 days (TET), 3, 4,
and 4 days (CIP), 5, 5, and 8 days (AMOX) and 5, 6, and 8 days (AMP), respectively, at initial
concentrations of 10, 50, and 100 µg/mL. In a neutral environment (pH 7), purification
is faster. At initial concentrations of 10, 50, and 100 µg/mL, the R50 values are 2, 2, and
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2 days (TET), 2, 3, and 3 days (CIP), 3, 3, and 4 days (AMOX), and 3, 4, and 5 days (AMP),
respectively. In an alkaline environment (pH 9), the time to reach R50 increases again: 2, 2,
and 3 days (TET), 3, 3, and 4 days (CIP), 4, 5, and 6 days (AMOX) and 5, 7, and 6 (AMP) days.
The hydrogen index of wastewater from medical institutions into the sewer is 6.7–7.7 [51].
Thus, the obtained results show high prospects for the use of BN sorbents for wastewater
treatment with pH~7 from antibiotics. The efficiency removal can be represented in a row:
TET > CIP > AMOX > AMP.

Table 1. Antibiotic purification efficiency using BN coatings.

Antibiotic
Purification
Efficiency, %

Initial Antibiotic
Concentration, µg/mL

Time, Days

pH 4 pH 7 pH 9

TET

R50

10 2 2 2
50 3 2 2
100 4 2 3

R100

10 12 7 11
50 15 9 12
100 18 10 14

CIP

R50

10 3 2 3
50 4 3 3
100 4 3 4

R100

10 14 8 12
50 21 10 14
100 23 11 14

AMOX

R50

10 5 3 4
50 5 3 5
100 8 4 6

R100

10 17 10 14
50 28 11 14
100 26 12 15

AMP

R50

10 5 3 5
50 6 4 7
100 8 5 6

R100

10 23 11 18
50 28 12 18
100 28 14 21

The pH of a solution is one of the most important parameters that determine the
effectiveness of the interaction between the adsorbate and the adsorbent. A change in
pH affects not only the surface charge of the adsorbent, but also the degree of adsorbate
ionization [51]. The acidity of the medium also significantly affects the adsorption kinetics.
The TET molecule in an aqueous solution can enter into a protonation-deprotonation
reaction with an increase in the solution pH [52]. In our case, with an increase in pH from
4 to 7, the adsorption properties increase, but in an alkaline medium, they decrease again.
This can be explained by the fact that the TET molecule gradually becomes neutral or
negatively charged because of the deprotonation reaction, which reduces its electrostatic
interaction with the negatively charged BN surface.

In the case of CIP, an increase in adsorption properties is observed with an increase in
pH from 4 to 7, which indicates a cation exchange adsorption mechanism. The subsequent
decrease in the adsorption rate with an increase in pH to 9 may be due to the presence of
the negative form of the CIP molecule, which leads to CIP repulsion from the negative
BN surface. The observed dependence is similar to the CIP adsorption on the synthesized
birnessite, where antibiotic adsorption first increased with increasing pH to 8.7, and then
decreased [53].
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AMOX adsorption efficiency increases with an increase in solution pH from 4 to
7, which may be due to an increase in the intensity of protonation of AMOX carbonyl
groups and, as a result, an increase in the electrostatic interaction with the BN surface. A
decrease in the AMOX removal rate with a further increase in pH to 9 may be because
of the electrostatic repulsion of AMOX molecules by the BN surface, since both carboxyl
and amino groups were deprotonated under alkaline conditions, which make AMOX
negatively charged. Similar results were observed when studying the effect of pH change
on the adsorption of AMOX trihydrate using activated charcoal from Maerua Decumbens:
the adsorption efficiency first increased with increasing pH from 2 to 8, and then gradually
decreased [54].

The AMP charge depends on pH and leads to different adsorption activity. In our
case, with an increase in pH from 4 to 7, the adsorption properties increase, but in an
alkaline medium they decrease again. This can be explained by the fact that the zeta
potential increases from −34.5 to −26 mV with an increase in pH from 4 to 7, this is due
to the dissociation of the carboxylate moiety of AMP [65]. A decrease in the rate of AMP
removal with a further increase in pH to 9 may be because of electrostatic repulsion from
the BN surface, since both the carboxyl and amino groups are deprotonated under alkaline
conditions, which leads to more negatively charged AMP.

2.3. Cleaning BN Coatings from Adsorbed Antibiotics

Figure 3 shows the FTIR spectra of the BN samples before and after cleaning from
antibiotics at a maximum concentration of 100 µg/mL. The observed peaks of high intensity
are related to vibrations of the BN bonds (B-N-B at 780 cm−1 and B-N at 1370 cm−1) [62].
Successful antibiotic adsorptions on the BN surface is confirmed by the presence of peaks
of the functional groups included in their composition. After the CIP adsorption, char-
acteristic peaks are observed in the FTIR spectrum at 1050–1000 cm−1 (C–F), 1270 cm−1

(C–N), 1624 cm−1 (C=C), 1725–1705 cm−1 (C=O) and 3150–2750 cm−1 (C–H ). A wide
maximum in the range of 3700–3000 cm−1 is attributed to vibrations of the N–H and O–H
bonds [66]. After the adsorption of TET, characteristic peaks are observed in the FTIR spec-
trum associated with stretching vibrations of the N–H and O–H bonds (3342–3325 cm−1),
CH (3064–3003 cm−1) and CH3 (methyl) (2955–2835 cm−1), C=C bond (1622–1569 cm−1),
bending vibrations of C–H (1454 cm−1) and CH3 (1357 cm−1), C–H bond (1247–1000 cm−1)
and stretching vibrations of C–N bond (995 cm−1) [67]. The adsorption of AMOX on the BN
surface is confirmed by the presence of –COOH and –NH2 groups (stretching vibrations
of O–H bonds at 3400 cm−1 and –NH at 3166 cm−1). There is also a peak at 1034 cm−1

from in-plane deformation vibrations of C–H and N–H bonds. The peak at 1680 cm−1

can be attributed to vibrations of the C–O bond [68]. After adsorption of AMP, stretching
vibrations of the C–O bond, bending vibrations of the C=O bond, and stretching vibrations
of the C–H bond at 1020 cm−1, 1700 cm−1 and 2900 cm−1, respectively are observed [69].

Only after surface cleaning from adsorbed AMOX, low-intensity peaks are observed
corresponding to C–O and O–H vibrations at 1680 and 3300 cm−1, respectively. In the IR
spectra of samples after the removal of CIP, TET and AMP, only peaks corresponding to
h-BN are seen. This indicates successful cleaning of the coating surface from antibiotics
before reuse.

The efficiency of antibiotic removal during coating reuse can be judged from the kinetic
curves shown in Figure 4. The removal efficiency also increases with increasing contact
time; however, the removal rate is lower than in the first cycle. Data on the efficiency of the
primary and reuse of samples coated with BN at pH 7 are presented in Table 2. It can be
seen that, except for AMP, at a concentration of 50 µg/mL, R100 is achieved over the same
period. If we compare the R100 and R50 values on the 7th day of purification in more detail,
then the repeated use of coatings reduces the efficiency by 0.0–10.9% (TET), 1.5–13.9% (CIP),
5.1–19.4% (AMOX), and 9.7–25.7% (AMP). It should be noted that there is no pronounced
dependence of R on the initial concentration of the antibiotic when samples are reused.
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Table 2. Sorption efficiency during first (I) and second (II) cleaning cycle at pH 7.

Time, Days
TET CIP AMOX AMP

I-R,% II-R,% I-R,% II-R,% I-R,% II-R,% I-R,% II-R,%

Initial concentration of antibiotic 10 µg/mL

1 26.5 25.0 24.7 23.1 17.9 14.3 13.3 10.9
7 100 100 98.7 97.2 86.0 80.9 83.9 74.2

14 100 100 100 100 100 100 100 100
28 100 100 100 100 100 100 100 100

Initial concentration of antibiotic 50 µg/mL

1 23.9 21.0 19.2 16.1 15.5 12.0 12.7 10.1
7 94.7 90.5 90.7 84.1 82.1 69.9 80.1 72.5

14 100 100 100 100 100 100 100 96.3
28 100 100 100 100 100 100 100 100

Initial concentration of antibiotic 100 µg/mL

1 20.4 19.3 17.9 20.9 14.1 12.4 13.9 10.3
7 89.5 78.6 83.4 69.5 73.8 54.4 77.6 51.9

14 100 100 100 97.6 100 93.5 100 85.6
28 100 100 100 100 100 100 100 100

TET and CIP adsorb on the surface of BN best of all and approximately equally.
Therefore, TET was chosen as an example for further theoretical modeling of the sorption
process. We considered TET in three states corresponding to three pH solutions: neutral
(TET0), negatively (TET−1), and positively (TET+1) charged (Figure 5). It should be noted
that, during optimization, the neutrally charged form rearranges into a zwitterion, in which
a proton from the OH group is in a superposition between oxygen and two nitrogen atoms
of amide and dimethylamine groups. The formation of charged forms occurs by removing
or adding a proton to these groups. The interaction of all forms of TET on an ideal BN
surface is considered.

To assess which sorption process occurs, adsorption or absorption, a model of multi-
layer BN was built, on which an antibiotic molecule was placed (Figure 5b). The adsorption
process was modeled by placing a TET molecule in the most energetically favorable config-
uration on the BN surface (Figure 5b, right). When simulating the absorption process, an
antibiotic molecule was placed between the BN layers (Figure 5b, left).

First, in order to assess which sorption process occurs, adsorption or absorption, a
model of multilayer boron nitride was built on which the antibiotic molecule was placed
(Figure 5b). The adsorption process was modeled by placing tetracycline in the most
energetically favorable configuration on the surface of the boron nitride layers (Figure 5b,
right). The absorption process represented the arrangement of the antibiotic between the
layers (Figure 5b, left).

It can be seen that the most stable vertical stacking of the TET molecule leads to a
change in the geometry of the BN layers with the formation of a concavity on its surface,
increasing the interaction area. Such a curvature disrupts the BN electronic structure and
leads to a redistribution of the electron density between the antibiotic and h-BN. In the
region of the oxygen-containing groups of the antibiotic, there is a rather strong transfer
of electron density to boron atoms. This redistribution of electron density leads to the
binding of the antibiotic and h-BN. However, the absorption of sufficiently large antibiotic
molecules between the h-BN layers leads to the destruction of the van der Waals interaction
between them, which significantly increases the substrate energy (by 2.5 eV). As a result,
the adsorbed location of the antibiotic on the BN surface (Figure 5b, right) is 1.55 eV more
favorable than that absorbed one between the layers (Figure 5b, left).
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Figure 5. Schematics of tetracycline structure with different charges (a) and absorption and adsorption
models of TET–BN systems (b). TET is considered in three states corresponding to three pH solutions:
neutral (TET0), negatively (TET−1), and positively (TET+1) charged.

Figure 6 shows the dependence of the binding energy of TET to the BN surface as
a function of the distance between them and the electron density redistribution for the
three charged structures. Figure 6a shows that the antibiotic adsorption process on the BN
surface is barrier-less with a binding energy of approximately 1.4–1.6 eV. The negatively
charged form of TET, characteristic of pH > 7, exhibits a lower binding energy and a
higher desorption barrier than the positively charged form, in good agreement with the
experiment. As follows from Figure 6a, the dependence on the molecule charge is quite
small and the sorption process is equally effective regardless of the medium pH with a
slight predominance of neutral and negatively charged forms, which are characteristics of
neutral and alkaline media.

It follows from the observed charge redistribution (Figure 6b–d) that for neutral and
negatively charged structures, electron density transfer occurs on the OH groups of the
peripheral region, which handle the interaction of TET with BN. In the case of the negatively
charged form (TET−1, Figure 6c), there is a region of strong redistribution on the amide
group, which pulls the electron density from the BN to itself. In the case of a neutrally
charged molecule (Figure 6b), it is difficult to identify the dominant interaction region; there
is a uniform redistribution of electron density over the entire molecule. Such a uniform
electron transfer ensures good antibiotic binding during its adsorption on the BN surface.
In the case of TET+1 (Figure 6d), which corresponds to an acidic medium, the electron
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density redistribution is concentrated mainly on the antibiotic molecule and almost does
not affect BN, which explains the weaker binding compared to TET−1.
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Figure 6. (a) The changes in binding energy as a function of the distance between tetracycline and the
boron nitride surface for uncharged (solid line), negatively (dashed line) and positively (dotted line)
charged forms of TET. The electron density redistribution at the BN/TET interface for (b) uncharged,
(c) negatively and (d) positively charged forms of TET. The loss and gain of charge are denoted by
yellowish and bluish colors, respectively. The boron, nitrogen, carbon, oxygen, and hydrogen atoms
are marked by green, blue, yellow, red, and cyan colors, respectively. The isosurface constant value is
0.01 eV/Å.

Table 3 shows the maximum adsorption capacity of BN-coated samples tested in this
study compared to other materials for three types of antibiotics (TET, CIP, and AMOX). It
can be seen that BN coatings with a developed surface demonstrate a significantly higher
efficiency of removing antibiotic molecules during adsorption treatment compared to
other adsorbents. We did not find literature data on the adsorption of amphotericin B
from aqueous solutions. In our case, the maximum sorption capacity is 269.7 mg/g. It is
also worth noting that the adsorption capacity of the BN coating/substrate platform far
exceeds that of spherical BN nanoparticles with smooth surface [36]: 502.78 mg/g versus
297.3 mg/g for TET and 315.75 mg/g versus 238.2 mg/g for CIP. This difference can be
mainly explained by the larger specific surface area, which makes a decisive contribution
in the case of an adsorption process.
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Table 3. Adsorption capacity of various materials in the purification of aqueous solutions
from antibiotics.

Material
Adsorption

Capacity (qe),
mg/g

Material
Adsorption

Capacity (qe),
mg/g

Material
Adsorption

Capacity (qe),
mg/g

Tetracycline Ciprofloxacin Amoxicillin

Graphene
oxide/calcium alginate

composite fibers [70]
131.6

Powdered activated
carbon magnetized by
iron(III) oxide NPs [71]

109.6
Zinc oxide coated
carbon nanofiber

composite [72]
156.0

Graphene oxide [47] 313
Activated carbon

magnetized with iron
(III) oxide NPs [48]

178.7 Mn-impregnated
activated carbons [73] 122.0–132.0

Fe-doped zeolite [74] 200.0 Chalcogenide based
magnetic adsorbent [75] 181.3 Magnetic multi-walled

carbon nanotubes [76] 50.0

Shrimp shell waste [77] 230.0 Hydrogel derived from
agrowaste [78] 106.9 Quaternized cellulose

from flax noil [79] 183.1

Iron(III)-loaded cellulose
nanofibers [80] 294.1

Amine-functionalized
MCM-41 mesoporous

silica NPs [81]
164.3 Magnetic adsorbent [82] 238.1

BN coatings * 502.8 BN coatings * 315.4 BN coatings * 400.2

* this study.

3. Materials and Methods
3.1. Preparation of BN Coatings

Nano-structured BN coatings were obtained on a 1 × 1 cm2 silicon substrate in a hori-
zontal tubular chemical vapor deposition reactor by a chemical interaction of amorphous
boron particles with ammonia as described elsewhere [83].

3.2. Structural Characterization of BN Coatings

The coating morphology was analyzed using scanning electron microscopy (SEM) on
a JSM-7600F (JEOL, Tokyo, Japan) instrument equipped with an energy dispersive X-ray
(EDX) detector (Oxford Instruments, High Wycombe, UK). Chemical bonds after antibiotic
absorption by BN coating were determined by Fourier-transformed infrared (FTIR) (Bruker
Vertex 70V, Billerica, Massachusetts, USA) spectroscopy in the total reflection mode in the
range of 400–4000 cm−1 with a resolution of 4 cm−1. X-ray diffraction (XRD) pattern of the
coating was recorded on a D2 Phaser diffractometer (Bruker, Billerica, Massachusetts, USA)
equipped with a position-sensitive detector (Elion) using the Bragg-Brentano geometry.
The survey was carried out in the step-by-step scan mode in the 2θ range of 10◦–80◦ at a
scan step of 0.1◦ and an exposure time of 4 s.

3.3. Adsorption Studies

Adsorption studies were performed using four types of antibiotics: tetracycline
(Belmedpreparaty, Minsk, Belarus), ciprofloxacin (Dr. Reddy’s, Hyderabad, India), amoxi-
cillin (Hemofarm A.D., Vrsac, Serbia) and amphotericin B (AMP) (OAO Sintez, Kurgan,
Russia). Antibiotics were dry suspensions or coated tablets containing no impurities. The
concentration was calculated, considering the amount of pure substance. Each type of
antibiotics was completely dissolved in deionized water to prepare a stock solution, which
was then diluted in pH 4, pH 7, and pH 9 buffer solutions to obtain working solutions with
antibiotic concentrations of 10, 50, and 100 µg/mL. Then, one BN coating was added to
10 mL of each antibiotic solution. Adsorption tests were carried out at room temperature.
Blank experiments were also carried out with an antibiotic, but without an adsorbent, and
with an adsorbent, but without an antibiotic.

Kinetic curves were plotted to evaluate the antibiotic removal efficiency. To do this,
at certain time intervals (6 h, 1, 3, 5, 7, 11, 14, 21, and 28 days), 2 mL of the supernatant
was taken and the residual concentrations of antibiotic solutions were determined by
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measuring absorbance values using a UV-visible spectrophotometer. For each type of
antibiotic, calibration curves were preliminarily plotted based on measurements of the
absorption intensity of antibiotic solutions in the concentration range of 0.5–4000 µg/mL.
The antibiotic concentration in the solution at each measurement time point was determined
from the calibration curve. All experiments were carried out in triplicate.

The antibiotic removal efficiency (R, %) was calculated using Equation (1), where
C0 and Ct are the initial and antibiotic concentrations at time t, respectively (mg/L). The
adsorption capacity (qe, mg/g) of BN coatings was studied after exposure for 48 days in an
1 mg/mL antibiotic solution and calculated using Equation (2) [15], where C0 and Ce are
the initial and equilibrium antibiotic concentrations, respectively (mg/L), V is the volume
of the antibiotic solution (L), and W is the amount of adsorbent (g).

R(%) =
(C0 − Ct)× 100

C0
, (1)

qe =
(C0 − Ce)× V

W
. (2)

3.4. BN Coating Purification from Adsorbed Antibiotics

Coatings were cleaned from antibiotics in acetonitrile solution, acetate buffer solu-
tion at pH 4.4 and ethanol as described elsewhere [36]. Studies were carried out for
28 days, after which desorption curves were plotted. The coating surface was analyzed by
FTIR spectroscopy.

3.5. DFT Calculations

Theoretical modeling of the antibiotic sorption onto the BN surface was performed
using density functional theory (DFT) [84,85] in the framework of the generalized gradi-
ent approximation (GGA) using normalized Trulier-Martins pseudopotentials [86] in the
SIESTA software package [87]. The systems were modeled as a 7 × 4 BN unit cell. In order
to smooth the intermolecular interactions in the non periodic direction, a sufficiently large
vacuum gap was set in the z direction, so that the distance between the periodic structures
was at least 15 Å. The plane wave energy cutoff was set at 200 Ry. To calculate the equilib-
rium atomic structures, the Brillouin zone was chosen according to the Monkhorst-Pack
scheme [88] and was 4 × 4 × 1. Although the DFT method is widely used to calculate
the electronic structure, it poorly describes the power of dispersion and van der Waals
interactions, which can regulate the physical absorption process. Therefore, the Grimm
correction method (DFT-D method) was used to model antibiotic-BN systems [89].

4. Conclusions

Here we show that nano-structured coatings of hexagonal boron nitride are promising
sorbents for reusable wastewater treatment from various types of antibiotics. The maximum
sorption capacity of tetracycline, ciprofloxacin amoxicillin, and amphotericin B was 502.78,
315.75, 400.17 and 269.7 µg/g, respectively. BN coatings show a significantly higher CIP,
TET, and AMOX adsorption capacity compared to other adsorbents. As far as we are aware,
the possibility of effective purification of water from amphotericin B has been showed for
the first time.

The rate of removal of antibiotics on the first day was high in all cases of the experiment,
then there is a gradual decrease in the rate of effective removal of antibiotics. Antibiotic
removal efficiency can be represented as follows: TET > CIP > AMOX > AMP.

It is shown that the acidity of the medium significantly affects the kinetics of adsorp-
tion: with an increase in the medium’s acidity from pH 4, the efficiency increased; after
pH 7 there was a gradual decrease in efficiency; however, it was higher in an alkaline
environment than in an acidic one.
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The possibility of repeated use of nano-structured hexagonal BN coatings is shown,
which will positively affect its economic and environmental efficiency. Losing efficiency dur-
ing repeated coating is no more than 5–15%, which confirms the prospects for reusable use.

Based on theoretical modeling data, it can be concluded that adsorption is the main
process of water purification from antibiotics. The interaction of the antibiotics with the
BN surface occurs through the OH group. In an acidic medium, the electron density
redistribution is concentrated mainly on the antibiotic molecule and almost does not affect
BN, which explains the weaker binding compared to an alkaline or neutral medium.

The obtained results clearly show the high potential of BN coatings as an affordable,
economical and reusable adsorbent for effective water purification from antibiotics. An
important result is the established dependence of sorption and desorption on the solution
pH, which makes it possible to control the purification processes of solutions and adsorbents
from antibiotics. In the future, it is important to study the selectivity of sorbents in the
presence of various pollutants.
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