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Abstract: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer in
women. It has the poorest prognosis along with limited therapeutic options. Smart nano-based
carriers are emerging as promising approaches in treating TNBC due to their favourable characteristics
such as specifically delivering different cargos to cancer cells. However, nanoparticles’ tumour cell
uptake, and subsequent drug release, are essential factors considered during the drug development
process. Contemporary qualitative analyses based on imaging are cumbersome and prone to human
biases. Deep learning-based algorithms have been well-established in various healthcare settings
with promising scope in drug discovery and development. In this study, the performance of five
different convolutional neural network models was evaluated. In this research, we investigated
two sequential models from scratch and three pre-trained models, VGG16, ResNet50, and Inception
V3. These models were trained using confocal images of nanoparticle-treated cells loaded with a
fluorescent anticancer agent. Comparative and cross-validation analyses were further conducted
across all models to obtain more meaningful results. Our models showed high accuracy in predicting
either high or low drug uptake and release into TNBC cells, indicating great translational potential
into practice to aid in determining cellular uptake at the early stages of drug development in any
area of research.

Keywords: artificial intelligence; machine learning; image classification; nanoparticles; triple negative
breast cancer; drug cellular uptake

1. Introduction

Breast cancer is the most prevalent malignancy and the leading cause of death in
women worldwide. Among the different subtypes of breast cancers, triple negative breast
cancer (TNBC) accounts for 15–20% and constitutes 40% of deaths within the first five years
of diagnosis [1,2]. The complex nature of the subtype relates to its unique immunohisto-
chemical characteristic revealing a lack of estrogen receptors (ER), progesterone receptors
(PR), and human epidermal growth factor 2 (HER2) receptors on the tumour’s mem-
brane [2]. As a result, TNBC is not sensitive to hormone-based therapy and HER2 directed
treatment, leaving chemotherapy, radiotherapy, and surgery as the main current treatment
modalities [3]. The mainstay of pharmacotherapy in neoadjuvant, adjuvant, and metastatic
settings is non-specific chemotherapy, which is associated with substantial adverse events
due to the off-target effects [2]. This drastically impacts patients’ quality of life. Despite
TNBC being one of the greatest responders to chemotherapy initially, there is inherent and
subsequently acquired resistance to treatment [2]. All factors lead to poor patient prognosis,
high risk of metastasis, and relapse [4]. Therefore, developing other therapeutic approaches
in treating TNBC patients is critical.

Nano-based carriers are emerging drug delivery systems that are extensively being
explored in cancer treatment. The potential integration of nanotechnology in the treatment
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of TNBC is driven by their auspicious characteristics and preferential accumulation into
tumour tissues. Selectivity is achieved through both passive and active means [5]. Passive
targeting relates to the enhanced penetration and retention (EPR) effect that relies on the
leaky vasculature of tumour blood vessels [6]. Whilst engineered moieties on the surface of
the nanoparticles (NPs) contribute to active targeting [5]. Suitable surface functionalising
candidates include amino acids, vitamins, antibodies, and peptides [5]. Precision therapy
occurs through increased drug uptake in the cancer cells, in conjunction with delivering
consistent quantities of medication in a controlled manner [7]. Furthermore, the limited
biodistribution to non-cancerous tissue improves the side effect profile, further establishing
their benefit. This study used images showing the uptake of polymeric NPs loaded with a
fluorescent anticancer payload (green). These NPs were functionalised with a naturally
occurring targeting peptide moiety. The targeting moiety or the naturally expressed peptide
within the cells were detected through immunofluorescence using a fluorescently labelled
secondary antibody (Rhodamine, red) against the primary antibody binding to the peptide
(Figure 1).
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During the nanopharmaceutical development process in oncology, analysis of the drug
candidates’ cellular uptake is an integral component. Antitumour therapeutics are active
inside the cell, but occasionally the cellular membrane poses as a barrier to their entry due
to its relatively impermeable structure [8]. The major route of internal cell access for NPs is
through endocytosis [5]. Functionalisation with targeting molecules and optimum size can
facilitate a higher uptake in specific cells, e.g., tumour cells, through targeting. A common
qualitative technique employed to determine cellular uptake and localisation of the NPs
within different structures of the cell, is confocal laser scanning microscopy (CLSM) [9].
NPs and cell components are labelled with different fluorophores, each colour assigned to
a different factor to allow for visual differentiation [8]. However, as the interpretation of
images is subjective to the expertise level of the analyser, it can lead to substantial human
error and bias. An additional limitation of the method is that the evaluation of uptake
through image analysis is time-consuming. To mitigate these issues, we proposed that
automating the process through artificial intelligence (AI) will provide high accuracy results
as either high or low cellular drug uptake in a timely fashion.

Motivated by the capability of handling large data volumes, AI has been increasingly
used in data digitalisation in the pharmaceutical sciences to solve complex clinical issues.
AI encompasses various domains, such as knowledge representation, reasoning, solution
search, as well as a key paradigm called machine learning (ML) [10]. Deep learning (DL)
is a branch of machine learning that simulates the behaviours of the human brain [11]. It
imitates the natural neural network; the way human neurons and their connections retrieve
and process diverse forms of inputs to form a conclusion [12]. DL algorithms consist
of multiple layers that have interconnected nodes; each node builds on previous nodes,
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refining information to make accurate predictions [13]. The visible layers of the deep neural
network are known as input and output layers (Figure 2). Input is what the model trains
on, and the output is a prediction made by the model following training. DL algorithms
have been successfully applied in medical imaging and disease detection, identification,
and diagnosis. For example, in breast cancer, several studies have reported the utilisation,
or the potential application, of automation in improving early detection and diagnosis with
subsequent classification of cancer subtypes [14–25]. DL models have also been studied
in creating treatment plans for locally advanced breast cancers and predicting survival
rates [26,27]. However, the integration of AI in drug development is an area that is still
not well established. Our study aimed to develop a method using DL models that could
rationally allow the selection of the best drug candidate based on their cellular uptake and
via qualitative analysis, a critical step during the drug development process. Herein, we
used TNBC as the disease model and we investigated the uptake of nanoparticles with a
fluorescent (green) payload.
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2. Results

Convolutional neural networks (CNN’s) are DL algorithms that have become state-
of-the-art in image classification projects with superior results in the clinical setting [28].
In this study, five different CNN models were compared: two sequential models from
scratch and three pre-trained models, VGG16, ResNet50, and Inception V3. To evaluate
the performance of our models, various approaches were used. Model performance and
cross-validation accuracy were conducted as initial accuracy measures. A 5-fold cross
validation report was then generated for each model and for both the high and low classes.
Confusion metrics and receiver operating characteristic curve (ROC) were also produced
to observe the accuracy of the predictions made by the models. Lastly, a comparative
analysis between the best performing model and the conventional method to determine
drug cellular uptake was conducted to further validate efficacy, as extended on in the
following section.

2.1. Model Performance

The accuracy results of the CNN models are presented below (Table 1). All models
had relatively high accuracy, but the pre-trained Inception V3 model had a pronounced
performance for the binary classification, with an accuracy rate of 99.35%. The result
implies that the model accurately predicted 99.35% of the test input as being contained in
either a high or low class. Both models from scratch performed comparatively well and
had similar accuracy results. Model training and validation accuracy followed a desirable
increase trend per epochs, as shown in Supplementary Table S1.
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Table 1. Cross-validation accuracy across all models.

Model 1 Model 2 Model 3
(VGG16)

Model 4
(ResNet50)

Model 5
(Inception)

Fold 1 98.37 97.01 98.64 99.18 98.91

Fold 2 98.91 98.91 98.91 97.83 99.73

Fold 3 99.18 99.46 93.48 95.38 99.73

Fold 4 95.65 96.20 95.92 94.29 99.46

Fold 5 98.37 99.18 99.46 100 98.91

Overall
accuracy 98.076 98.152 97.282 97.336 99.348

The cross-validation classification report based on class was also determined, as
summarised in Table 2. Overall, models showed a higher precision for images with low
drug uptake, in the low classes, with Inception V3, again, generally outperforming the
other models in various measures. The model had the highest precision for the high class
of 1 and the low class of 0.986. It also had the most heightened sensitivity for the high
category of 1. However, for the low-class VGG16 had better results for both sensitivity and
specificity, 0.992 and 0.990, respectively. Lastly, the f-1 score was highest with Inception
V3 for the high class as 0.994 and the low class as 0.996. In general, except for precision,
VGG16 performed poorly on high-class images and ResNet50 on images from the low class.

Table 2. 5-fold cross-validation classification report per class.

Model Class Precision Sensitivity Specificity F-1 Score

Model 1
High 0.980 0.976 0.975 0.978

Low 0.980 0.988 0.985 0.984

Model 2
High 0.978 0.982 0.982 0.980

Low 0.986 0.982 0.980 0.984

VGG16
High 0.992 0.948 0.951 0.966

Low 0.964 0.992 0.990 0.976

ResNet50
High 0.968 0.970 0.975 0.970

Low 0.976 0.978 0.976 0.976

Inception-V3
High 0.986 1.00 1.00 0.994

Low 1.00 0.99 0.990 0.996

An additional approach to evaluate accuracy was by producing a ROC for the last
fold of each models training (Figure 3). The AUC was also measured for each one. Overall,
all models performed exceedingly well, with all having an AUC of 99%. Meaning the
models can predict the output with 99% accuracy, whereas the confusion metric, as shown
in Figure 4, displays the predictions per class. Inception V3 generated an output of 163 of
the high intensity signals as high and 0 as low. Whilst for the low class, 203 images were
correctly identified as having low drug uptake, whereas two images of the low signals were
predicted as high cellular uptake.
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2.2. Comparison Using Manual Intensity Evaluation and Predictions from AI

To assess the validity of the DL models’ performance, a comparison of the predictions
was made against the conventional method of determining drug cellular uptake using
confocal imaging. A confocal image not previously seen by the algorithm was used.
The average signal intensity of manual measurement using five sample areas with the
program ImageJ was determined to be 48.5. For reference, two untargeted nanoparticle
confocal images intensity were evaluated to be 33.61 and 17.15, which indicated high and
low, respectively. Based off these values, the average intensity of the comparison image
indicates the nano-based drug carrier as having high cell uptake. Random patches from
the same image were used to predict using the Inception V3 model, the best performing
model in this study. An average of ten predictions was calculated to be 0.742, with a
threshold of 0.5. Above 0.5 means high class and below means low class. The results of our
experiment also indicate the drug delivery system in the image as having high anticancer
drug cell uptake.

3. Discussion

The substantial burden of TNBC has made the discovery of potential nanoparticles and
their integration into therapy indispensable. As such, quick determination of cellular drug
uptake needs to be conducted more efficiently. Automation has shown to be a promising
approach in successfully assisting researchers in various settings. Our study has displayed
that AI can be effectively trained to accurately determine the level of drug uptake into
cells to assist in the drug development process, particularly in a comparative way. For
instance, these models can make an accurate comparison between the uptake of targeted
vs. untargeted drugs to inform the efficiency of targeting in a particular delivery system.

This study comprehensively evaluated the effectiveness of five different CCN models,
two from scratch plus VGG16, ResNet50, and Inception V3. The pre-trained algorithms
were used to see if they would have enhanced accuracy since they have been previously
exposed to various images and could transfer those learnt features. However, in previous
studies, medical images containing multiple colour channels have been hard to differenti-
ate [29]. We observed variation in the cross-validation results between the three models
with varying depths in their layers. Our two models from scratch performed significantly
well, considering the simplicity of their layers. The pre-trained model Inception V3 did
perform the best overall, with highly accurate predictions in both high and low classes.
The overall cross validation performance of VGG16 and ResNet50 are poorer compared to
the other models, whilst VGG16 was also associated with significant computational cost.
The performance gap between these models could be due to their network architecture.
It is likely that a search for better hyperparameters for individual models would yield
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additional improvement. This study also demonstrated CNN’s ability to differentiate
multiple-coloured channels, as has been a limitation in previous studies [29].

A challenge encountered in the study was access to limited data. Several of the
original confocal images contained significant background noise, which would not allow an
accurate representation and evaluation of the uptake. To ensure the algorithm was trained
correctly and to avoid confusion, these images were excluded, and only high-resolution
images were used as the input data, which considerably limited our input sample size.
Nevertheless, as can be seen in the results, all CNN models performed substantially well
on the three channel images. An explanation for the high accuracy of the results could be
due to the training and validation data patches having originated from the same 2 original
images, despite the image patches being distinctly different from each other (Figure 4).
Increasing the variety of the original images will help to train the model more efficiently
and enhance the model’s ability to distinguish features, allowing the predictions of drug
uptake with any new/unseen confocal image in a more appropriate manner [30].

A new confocal image was patched when the model’s predictions were evaluated
and compared to the conventional methodology. Subsequently, the patches that contained
irrelevant information were removed. As a result, only images that contained the cell
nucleus were used to make the predictions.

Manually removing sections of unimportant details is time-consuming, and there is
room for potential bias. A viable approach to this issue is a multi-class classification DL
model that can identify for instance the blue signal (cell nucleus), disregard the irrelevant
areas, whilst leaving the green signal (payload) as an essential feature for detection. With
this approach, pre-processing will not be required before the model can predict unseen
images, further removing human bias and making it an efficient method to evaluate cellular
drug uptake. Furthermore, other approaches to this hypothesis is to use a model, such as
YOLO or other segmentation models (Mask-RCNN, UNet are some), that has localized
interested region, i.e., blue region. The trained models can detect the cancer cell area
automatically instead of manually determine areas of interest within the cell where the
uptake can be detected and quantified automatically.

Nevertheless, our study has established a good foundation for integrating artificial
intelligence with drug development in various areas, particularly in oncology. It can further
be built on to yield easier drug uptake detection and conduct comparative studies to
determine the lead drug candidate(s).

4. Materials and Methods

In this study, various DL models were trialled to automate determining the cellular
uptake of nanoparticles based on their fluorescent payload. The proposed methodology
entailed preparing the input data, training pre-determined neural networks, and mak-
ing predictions of high or low cell uptake. A comparison between the manual process
of determining uptake and the computational output using the best performing model
was also propositioned. Image classification using pre-trained and sequential models
from scratch (i.e., models layers and parameters that we determined) is extended in the
following sections.

4.1. Data Pre-Processing
4.1.1. Patch Generation

Confocal images were processed into trainable inputs that a DL algorithm could
be taught. The objective of patch generation was to increase the input sample and give
flexibility to eliminate areas that may be a cause of confusion or may not contain useful
information for the training process. The original size (3487 × 3487) of each visual input was
patched into pixels of 224 × 224 with three colour channels of blue, red, and green. The blue
represents the TNBC cell nucleus, the red fluorescent signal illustrates the functionalised
moiety of the nanoparticles or the naturally occurring peptide within the cells, and the
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green signifies the fluorescent payload. Hence, the concluding input size for the model was
224 × 224 × 3 (height × width × channel) (Figure 5b).
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4.1.2. Image Classification

To facilitate supervised learning, images were classified into two descriptive classes,
high and low, based on the intensity of the green fluorescent signal, which was conducted
under the supervision of a domain expert. The high intensity of the green signal illustrates
high uptake of the anticancer agent into the TNBC cell. In contrast, a low fluorescent signal
means the uptake of the drug was minimal. The exclusion criteria to ensure proper training
included images that contained no valuable input, e.g., images with no blue signal (TNBC
nucleus) indicating the image did not represent the inside of the cell. In addition, images
that were a probable source of confusion to the matrix (Figure 5d) were consequently
removed, resulting in a final input sample of 225.

4.1.3. Data Augmentation Rotation

An additive approach to satisfy the requirement of large input samples for training
neural networks is data augmentation. By making pre-determined modifications to existing
data, the model is exposed to a greater diversity of learnable features and thus can make
more generalised predictions. The augmentation type used in this study was rotation. Each
applicable patched image was rotated at 45◦, resulting in 7 new images (Figure 5e). This
technique successfully enhanced the sample data, totalling 1824 images. Train and test
sets were then generated, 80% and 20% of the augmented data, respectively. The training
accuracy, loss, and validation accuracy and loss were measured upon training completion.

4.2. Prediction Using Pretrained and Scratch Convolutional Neural Network (CNN) Algorithms

The type of CNN used in this project is known as supervised learning which involves
the provision of labels associated with specific images, e.g., high and low [31]. The features
and patterns are identified, and the algorithm then generalises the input it receives. The
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fundamental layers of CNN’s perform different computational transformations to their
inputs. CNN’s can contain complex layers but mainly consist of convolution layers, pooling
layers, and the fully connected layer [32]. Each layer’s output is the subsequent layer’s
input features (Figure 6). This feed-forward learning allows CNN applications to acumen
on image data. In this study, we trained with two models from scratch and three pre-trained
models, which have been elucidated in the following section.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 15 
 

 

4.2. Prediction Using Pretrained and Scratch Convolutional Neural Network (CNN) Algorithms 

The type of CNN used in this project is known as supervised learning which involves 

the provision of labels associated with specific images, e.g., high and low [31]. The features 

and patterns are identified, and the algorithm then generalises the input it receives. The 

fundamental layers of CNN’s perform different computational transformations to their 

inputs. CNN’s can contain complex layers but mainly consist of convolution layers, pool-

ing layers, and the fully connected layer [32]. Each layer’s output is the subsequent layer’s 

input features (Figure 6). This feed-forward learning allows CNN applications to acumen 

on image data. In this study, we trained with two models from scratch and three pre-

trained models, which have been elucidated in the following section. 

 

Figure 6. Illustration of a CNN model [33]. 

4.2.1. Convolutional Layer 

The first layer within a neural network is known as the convolutional layer. It extracts 

features of the input data and determines learnable patterns [34]. The learned elements 

are then iterated to the next layer, which is conducted through what is known as a kernel 

(Figure 7). The kernel convolves over pixels of the input data according to the filter size 

that is set [35]. The deeper the layer, the more sophisticated detail the filter can detect. The 

convolutional layer is followed by an activation layer which is involved in the decision-

making process. In our project, we used sigmoid and ReLU. 

 

Figure 7. Convolutional layer and the kernel movement pattern [34]. 

Figure 6. Illustration of a CNN model [33].

4.2.1. Convolutional Layer

The first layer within a neural network is known as the convolutional layer. It extracts
features of the input data and determines learnable patterns [34]. The learned elements
are then iterated to the next layer, which is conducted through what is known as a kernel
(Figure 7). The kernel convolves over pixels of the input data according to the filter size
that is set [35]. The deeper the layer, the more sophisticated detail the filter can detect. The
convolutional layer is followed by an activation layer which is involved in the decision-
making process. In our project, we used sigmoid and ReLU.
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4.2.2. Pooling Layer

Generally, after the convolutional layer is the pooling layer. Its functional purpose
is to reduce the dimensionality of images by reducing the number of pixels formed from
the output of the previous convolutional layer. Essentially, it receives the input data from
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the neighbouring group of neurons and summarises the units through either max pooling
or average pooling, thus reducing the computational load (Figure 8). By doing so, it
can put forward the most activated pixels, allowing the neural network to observe the
essential pixels.
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4.2.3. Fully Connected Layer

The fully connected (FC) layer, as the name suggests, connects the neurons of the
previous layer to the neurons of the following layer [36]. In summary, in a CNN, the convo-
lutional layer extracts features of the image, the pooling layer reduces pixel dimensions,
and the fully connected layer maps those features to the predicted outputs.

4.3. Training Regime with Model Specifications
4.3.1. Training Small Convnets from Scratch

Initially, simple models with minimal layers that had appropriate varying parameters
were used to see if they would yield high accuracy. The two supervised learning models
were developed using the Keras sequential models. The architecture of these models is
illustrated below. The second model is the more complex of the two, which consists of a
simple stack of three convolution layers with a ReLU activation followed by a max-pooling
layer (Figure 9). At the end of this pipeline, two fully connected layers are attached. The
model ends with a single unit and a sigmoid activation, optimal for binary classification.
The model used the binary cross-entropy loss to train the model. A drop out layer was
used to minimise the model overfitting during training. Overfitting occurs when the input
data is limited, and the model is not able to generalise the features well. So, the training
accuracy is high, but the validation accuracy remains low. Model 1 is different from model
2 by the number of convolution layers; only two convolution layers were used in this model
(Figure 10).
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4.3.2. Using Pre-Trained Models

Another approach in image classification is fine-tuning pre-trained models, also known
as transfer learning. The concept of transfer learning is that instead of starting from scratch,
models have been previously trained on various images. Those skills are then transferred
over to when the model is training and evaluating new data sets. Moreover, they have
been designed with specific architectures and pre-defined weights; weights are a value that
represents how the connection between each node in a layer facilitate transfer learning.
Models from scratch are associated with high computational cost, acting as the driving
factor to use these specific pre-trained models. They also require large amounts of data to
effectively learn features and then generalise them to make accurate predictions. However,
this is not always possible, as in many cases, the available data is limited, which is an
issue we encountered. Therefore, we used pre-trained models in this binary classification
study which were Inception-V3, ResNet-50, and VGG16 (Figure 11). These models were
previously trained on large sets of data and were later fine-tuned on the confocal images.
The same optimization configuration (optimizer = Adam and lr = 0.001) was used for all
models. This configuration was tuned for best performance with Inception V3 because of
its less computational power and we did not attempt to tune optimization hyperparameters
for individual models separately.
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4.4. Model 5-Fold Cross-Validation

The CNN models were evaluated using a test set containing images of both high
and low anticancer drug uptake, which had not been observed during the training stage.
Each model was previously trained for ten epochs, and a batch size of sixty-four was
decided empirically. The training was conducted using Adam as the optimiser as it
worked effectively on our three-channel confocal images. Each model’s performance cross-
validation was evaluated based on different metrics such as precision, sensitivity specificity,
F-1 scores, and confusion metrics (Table 3). ROC curve and area under the curve (AUC)
were presented from the last fold of each cross-validation (Figure 3). The parameters of the
confusion metrics were used to determine each metric- True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) [38].

Table 3. Metric equations.

Metrics Equation

Precision TP/FP + TP

Sensitivity TP/FN + TP

Specificity TN/FP + TN

Accuracy TP + TN/ TN + TP + FN + FP

F-1 score (Precision × recall/ precision + recall) × 2

5. Conclusions

In this study, we proposed integrating DL-based automation in determining drug
uptake for cancer research. As nanoparticles have great potential in TNBC, the efficient
uptake of these carriers is an essential measure that determines the drug delivery system’s
effectiveness. Hence, the need for computer-aided identification of the manual qualitative
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analyses for drug uptake has driven this research. Several CNN models have been shown to
perform substantially well in appropriately predicting nanoparticle uptake and subsequent
drug release into the TNBC cell. Of the pre-trained models, Inception V3 produced a
better outcome with an overall cross-validation accuracy of 99.34%, and hence regarded
as a potential model that can be used in future studies in assessing elements of the drug
discovery process. This will allow quicker evaluation of cellular drug uptake and improves
the accuracy of this stage in the drug discovery pipeline, whilst also reducing the manual
workload associated with this qualitative methodology. The DL algorithms need to be built
on to address multi-class categorisation for practical translation to occur. Nevertheless,
this research has paved the way for future studies incorporating DL-based automation in
drug development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232416070/s1, Table S1. Accuracy and loss plots of the last
fold of each model.

Author Contributions: Conducting the experimental analysis, writing—original draft preparation,
R.A.; Design and assisting with the DL-based experimental analysis, supervision of R.A., critical
review and editing the manuscript, M.B.; nanoparticle fabrication and characterisation, obtaining
the original confocal images for cell uptake, assisting with the design and conducting DL-based
experimental analysis, critical review and editing of the manuscript, supervision of R.A. and leading
the project, P.V. All authors have read and agreed to the published version of the manuscript.

Funding: We would like to acknowledge the National Breast Cancer Foundation Research fellowship
and grant to Pegah Varamini (PF-16-007) and The University of Sydney Faculty of Medicine and
Health EMCR Boost Scheme for funding the Article Processing Fees.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Sydney Microscopy and Microanalysis and the
Faculty of Medicine and Health Core Facility for their assistance to obtain confocal images.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer

Res. 2020, 22, 61. [CrossRef] [PubMed]
2. Shokooh, M.K.; Emami, F.; Jeong, J.H.; Yook, S. Bio-inspired and smart nanoparticles for triple negative breast cancer microenvi-

ronment. Pharmaceutics 2021, 13, 287. [CrossRef] [PubMed]
3. Niu, M.; Valdes, S.; Naguib, Y.W.; Hursting, S.D.; Cui, Z. Tumor-Associated Macrophage-Mediated Targeted Therapy of

Triple-Negative Breast Cancer. Mol. Pharm. 2016, 13, 1833–1842. [CrossRef] [PubMed]
4. Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 2015, 12,

106–116. [CrossRef] [PubMed]
5. Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in

Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [CrossRef]
6. Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv. 2017,

14, 123–136. [CrossRef]
7. Truffi, M.; Mazzucchelli, S.; Bonizzi, A.; Sorrentino, L.; Allevi, R.; Vanna, R.; Morasso, C.; Corsi, F. Nano-strategies to target breast

cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy. Int. J. Mol. Sci. 2019, 20,
1263. [CrossRef]

8. FitzGerald, L.I.; Johnston, A.P.R. It’s what’s on the inside that counts: Techniques for investigating the uptake and recycling of
nanoparticles and proteins in cells. J. Colloid. Interface Sci. 2021, 587, 64–78. [CrossRef]

9. Lammertink, B.H.A.; Deckers, R.; Derieppe, M.; De Cock, I.; Lentacker, I.; Storm, G.; Moonen, C.T.W.; Bos, C. Dynamic
Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles. Mol. Imaging
Biol. 2017, 19, 683–693. [CrossRef]

10. Ramesh, A.; Kambhampati, C.; Monson, J.R.; Drew, P. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334.
[CrossRef]

https://www.mdpi.com/article/10.3390/ijms232416070/s1
https://www.mdpi.com/article/10.3390/ijms232416070/s1
http://doi.org/10.1186/s13058-020-01296-5
http://www.ncbi.nlm.nih.gov/pubmed/32517735
http://doi.org/10.3390/pharmaceutics13020287
http://www.ncbi.nlm.nih.gov/pubmed/33671698
http://doi.org/10.1021/acs.molpharmaceut.5b00987
http://www.ncbi.nlm.nih.gov/pubmed/27074028
http://doi.org/10.7497/j.issn.2095-3941.2015.0030
http://www.ncbi.nlm.nih.gov/pubmed/26175926
http://doi.org/10.3389/fmolb.2020.00193
http://doi.org/10.1080/17425247.2016.1208650
http://doi.org/10.3390/ijms20061263
http://doi.org/10.1016/j.jcis.2020.11.076
http://doi.org/10.1007/s11307-016-1042-x
http://doi.org/10.1308/147870804290


Int. J. Mol. Sci. 2022, 23, 16070 14 of 15

11. Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development.
Drug Discov. Today 2021, 26, 80–93. [CrossRef]

12. Ma, M.; Gan, L.; Jiang, Y.; Qin, N.; Li, C.; Zhang, Y.; Wang, X. Radiomics Analysis Based on Automatic Image Segmentation of
DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Comput. Math. Methods Med. 2021, 2021, 2140465.
[CrossRef]

13. Education, I.C. Deep Learning. Available online: https://www.ibm.com/cloud/learn/deep-learning (accessed on 13 September
2021).

14. Yousif, M.; van Diest, P.J.; Laurinavicius, A.; Rimm, D.; van der Laak, J.; Madabhushi, A.; Schnitt, S.; Pantanowitz, L. Artificial
intelligence applied to breast pathology. Virchows Arch. 2021, 480, 191–209. [CrossRef]

15. Ma, H.; Tian, R.; Li, H.; Sun, H.; Lu, G.; Liu, R.; Wang, Z. Fus2Net: A novel Convolutional Neural Network for classification of
benign and malignant breast tumor in ultrasound images. BioMed. Eng. Online 2021, 20, 112. [CrossRef]

16. Adnan, N.; Zand, M.; Huang, T.; Ruan, J. Construction and evaluation of robust interpretation models for breast cancer metastasis
prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 1344–1353. [CrossRef]

17. Ackerman, L.V.; Mucciardi, A.N.; Gose, E.E.; Alcorn, F.S. Classification of benign and malignant breast tumors on the basis of 36
radiographic properties. Cancer 1973, 31, 342–352. [CrossRef]

18. Zhang, Z.; Lin, X.; Dong, L.; Zhang, S.; Zhang, X.; Sun, D.; Yuan, K. Ultrasonic Diagnosis of Breast Nodules Using Modified Faster
R-CNN. Ultrason. Imaging 2019, 41, 353–367. [CrossRef]

19. Shimokawa, D.; Takahashi, K.; Kurosawa, D.; Takaya, E.; Oba, K.; Yagishita, K.; Fukuda, T.; Tsunoda, H.; Ueda, T. Deep learning
model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images.
Radiol. Phys. Technol. 2022. [CrossRef]

20. Negrete, N.T.; Takhtawala, R.; Shaver, M.; Kart, T.; Zhang, Y.; Kim, M.J.; Park, V.Y.; Su, M.Y.; Chow, D.S.; Chang, P. Automated
breast cancer lesion detection on breast MRI using artificial intelligence. J. Clin. Oncol. Conf. 2019, 37, e14612. [CrossRef]

21. Mahmood, T.; Arsalan, M.; Owais, M.; Lee, M.B.; Park, K.R. Artificial intelligence-based mitosis detection in breast cancer
histopathology images using faster R-CNN and deep CNNs. J. Clin. Med. 2020, 9, 749. [CrossRef]

22. Liu, J.; Lei, J.; Ou, Y.; Zhao, Y.; Tuo, X.; Zhang, B.; Shen, M. Mammography diagnosis of breast cancer screening through machine
learning: A systematic review and meta-analysis. Clin. Exp. Med. 2022. [CrossRef] [PubMed]

23. Liu, H.; Cui, G.; Luo, Y.; Guo, Y.; Zhao, L.; Wang, Y.; Subasi, A.; Dogan, S.; Tuncer, T. Artificial Intelligence-Based Breast Cancer
Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator. Int. J. Gen. Med. 2022, 15, 2271–2282. [CrossRef]
[PubMed]

24. Choudhury, A.; Perumalla, S. Detecting breast cancer using artificial intelligence: Convolutional neural network. Technol. Health
Care 2021, 29, 33–43. [CrossRef] [PubMed]

25. Aldhyani, T.H.H.; Nair, R.; Alzain, E.; Alkahtani, H.; Koundal, D. Deep Learning Model for the Detection of Real Time Breast
Cancer Images Using Improved Dilation-Based Method. Diagnostics 2022, 12, 2505. [CrossRef] [PubMed]

26. van de Sande, D.; Sharabiani, M.; Bluemink, H.; Kneepkens, E.; Bakx, N.; Hagelaar, E.; van der Sangen, M.; Theuws, J.; Hurkmans,
C. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys. Imaging Radiat. Oncol.
2021, 20, 111–116. [CrossRef]

27. Ji, J.M.; Shen, W.H. A Novel Machine Learning Systematic Framework and Web Tool for Breast Cancer Survival Rate Assessment.
medRxiv 2022, 17. [CrossRef]

28. Kim, M.; Yun, J.; Cho, Y.; Shin, K.; Jang, R.; Bae, H.-J.; Kim, N. Deep Learning in Medical Imaging. Neurospine 2019, 16, 657–668.
[CrossRef]

29. Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; et al. Analysis
of the Human Protein Atlas Image Classification competition. Nat. Methods 2019, 16, 1254–1261. [CrossRef]

30. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
31. Ker, J.; Wang, L.; Rao, J.; Lim, T. Deep Learning Applications in Medical Image Analysis. IEEE Access 2018, 6, 9375–9389.

[CrossRef]
32. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
33. Balodi, T. Convolutional Neural Network (CNN): Graphical Visualization with Python Code Explanation. Available online:

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation (accessed
on 9 November 2021).

34. Saha, S. A Comprehensive Guide to Convolutional Neural Networks—The ELI5 Way. Available online: https://
towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed on 5
November 2021).

35. Deeplizard. Convolutional Neural Networks (CNNs) Explained. Available online: https://deeplizard.com/learn/video/
YRhxdVk_sIs (accessed on 19 October 2021).

36. Amidi, A.; Amidi, S. Convolutional Neural Networks Cheatsheet. Available online: https://stanford.edu/~{}shervine/teaching/
cs-230/cheatsheet-convolutional-neural-networks (accessed on 23 October 2022).

http://doi.org/10.1016/j.drudis.2020.10.010
http://doi.org/10.1155/2021/2140465
https://www.ibm.com/cloud/learn/deep-learning
http://doi.org/10.1007/s00428-021-03213-3
http://doi.org/10.1186/s12938-021-00950-z
http://doi.org/10.1109/TCBB.2021.3120673
http://doi.org/10.1002/1097-0142(197302)31:2&lt;342::AID-CNCR2820310212&gt;3.0.CO;2-I
http://doi.org/10.1177/0161734619882683
http://doi.org/10.1007/s12194-022-00686-y
http://doi.org/10.1200/JCO.2019.37.15_suppl.e14612
http://doi.org/10.3390/jcm9030749
http://doi.org/10.1007/s10238-022-00895-0
http://www.ncbi.nlm.nih.gov/pubmed/36242643
http://doi.org/10.2147/IJGM.S347491
http://www.ncbi.nlm.nih.gov/pubmed/35256855
http://doi.org/10.3233/THC-202226
http://www.ncbi.nlm.nih.gov/pubmed/32444590
http://doi.org/10.3390/diagnostics12102505
http://www.ncbi.nlm.nih.gov/pubmed/36292194
http://doi.org/10.1016/j.phro.2021.11.007
http://doi.org/10.1101/2022.09.16.22280052
http://doi.org/10.14245/ns.1938396.198
http://doi.org/10.1038/s41592-019-0658-6
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1109/ACCESS.2017.2788044
http://doi.org/10.1145/3065386
https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://deeplizard.com/learn/video/YRhxdVk_sIs
https://deeplizard.com/learn/video/YRhxdVk_sIs
https://stanford.edu/~{}shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~{}shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks


Int. J. Mol. Sci. 2022, 23, 16070 15 of 15

37. Nayak, S.R.; Nayak, D.R.; Sinha, U.; Arora, V.; Pachori, R.B. Application of deep learning techniques for detection of COVID-19
cases using chest X-ray images: A comprehensive study. Biomed. Signal Process. Control 2021, 64, 102365. [CrossRef]
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