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Abstract: High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide
attention. It has been reported that mitochondrial dysfunction is one of the most important mecha-
nisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in
impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production.
In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply
is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and
analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, ele-
vated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored
current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA
editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g.,
supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and
nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxi-
dants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies
are still a long way from achieving safe and effective clinical treatment. Although establishing
effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial
perspective holds bright prospects.

Keywords: cardiovascular disease; mitochondrial dysfunction; mitochondrial DNA mutation;
mitophagy; oxidative phosphorylation; reactive oxygen species; therapeutic strategy

1. Introduction

The cardiovascular system plays a crucial role in the normal metabolism of the human
body, also known as the circulatory system, which consists of arteries, veins, the heart, and
capillaries. Common cardiovascular diseases (CVDs) include heart related heart failure,
myocardial hypertrophy, arterial related atherosclerosis, aortic dissection, abdominal aortic
aneurysm and other diseases [1]. CVDs constitute a leading worldwide health problem and
account for a high proportion of global deaths, with a mortality rate of up to 20% [2]. Thus, it
is imperative to explore the pathogenesis of CVDs and develop effective therapeutic strategies.

In fact, mitochondrial dysfunction is considered to be one of the important mecha-
nisms affecting the pathogenesis of CVDs [3–5]. Mitochondria are key double-membrane
organelles for aerobic respiration in biological cell, and generate energy required by cells
through OXPHOS and regulate cell metabolism. The mitochondrial genome (mtDNA) and
nuclear genome (nDNA) together control mitochondrial function, and when they are mu-
tated, it may lead to mitochondrial dysfunction, such as excessive production of ROS and
reduced OXPHOS capacity. Mitochondria, as a key place for cell metabolism to generate
ATP, provide huge energy for the contraction and relaxation of human cardiac myocytes
(HCM), and the accumulation of dysfunctional mitochondria will induce CVDs [6]. For
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example, in heart failure, the heart has a high demand for energy particularly and requires
mitochondrial OXPHOS to support continuous ATP in cardiomyocytes [7].

In recent years, a growing number of studies have confirmed that mitochondrial
dysfunction is a non negligible cause of CVDs. For instance, mtDNA mutation could
disrupt mitochondrial homeostasis, produce oxidative stress, cause a rise in ROS levels,
impair OXPHOS and damage energy metabolism, all of which are risk factors for CVDs.
Thus, exploration of mtDNA mutation at the genetic level may be a highly advantageous
therapeutic approach to identify and predict CVDs [8]. Dysfunctional mitochondria are
removed by the autophagy-lysosomal system, however, hyper activation of mitophagy also
leads to pathological conditions [9]. Mitochondrial oxidative capacity has been evaluated in
relation to CVDs, and specific targeted antioxidant treatments that reduce ROS production
and enhance ROS detoxification alleviate oxidative stress caused by mitochondria [10]. In
brief, mitochondria can potentially be used as therapeutic targets for cardiovascular health
interventions [11].

In this review, we mainly discuss and analyze the relationship between mitochondrial
dysfunction (e.g., mtDNA mutations, impaired mitophagy, decreased OXPHOS and ele-
vated ROS) and CVDs, and explore potential therapeutic strategies for CVDs by eliminating
mtDNA mutations, enhancing mitophagy, improving OXPHOS capacity and reducing
ROS. From the perspective of mitochondrial dysfunction, we aim to provide references for
optimal treatment of CVDs.

2. Mitochondrial Dysfunctions and CVDs

The pathogenesis of CVDs is constantly being explored. Although the pathogenesis of
CVDs is not fully understood; a study from the perspective of mitochondrial dysfunction
and the analysis of the relationship between mitochondrial dysfunction and CVDs will help
to better understand and solve the problems related to CVDs. Here, we summarize the
relationships between primary CVDs and mitochondrial dysfunction (Table 1 and Figure 1),
and further analyzed the four important features of mitochondria in CVDs in detail.

Table 1. CVDs and corresponding mitochondrial dysfunction.

CVDs Mitochondrial Dysfunction References

Heart failure
Impaired mitophagy
↓OXPHOS
↑ROS

[10] review, 2019
[12] experimental, 2010
[13] experimental, 2011
[14] review, 2022
[15] experimental, 2018
[16] experimental, 2020
[17] experimental, 2011
[18] experimental, 2015

Myocardial hypertrophy
mtDNA mutation
Impaired mitophagy
↑ROS

[10] review, 2019
[17] experimental, 2011
[19] experimental, 2022
[20] experimental, 2019
[21] experimental, 2021
[22] experimental, 2021
[23] experimental, 2015

Atherosclerosis

mtDNA mutation
Impaired mitophagy
↓OXPHOS
↑ROS

[24] clinical, 2019
[25] experimental, 2017
[26] experimental, 2018
[27] experimental, 2017
[28] experimental, 2019
[29] experimental, 2021
[30] experimental, 2014
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Table 1. Cont.

CVDs Mitochondrial Dysfunction References

Aortic dissection ↑ROS

[31] experimental, 2016
[32] experimental, 2020
[33] experimental, 2022
[34] experimental, 2021

Aortic aneurysm ↑ROS
↓OXPHOS

[32] experimental, 2020
[35] experimental, 2020
[36] experimental, 2018
[37] experimental, 2022
[38] experimental, 2006
[39] experimental, 2015
[40] experimental, 2013
[41] clinical, 2020
[42] clinical, 2021

“↑” indicate a rise and “↓” indicate a decrease.
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Figure 1. The relationships between mitochondrial dysfunction and CVDs. Four features (mtDNA 
mutation, mitophagy damage, decreased OXPHOS and increased ROS) associated with mitochon-
drial dysfunction are demonstrated. mtDNA mutation can cause dysfunction of mitochondrial res-
piratory chain complex or cytochrome transcription related to OXPHOS. When OXPHOS is im-
paired, ATP synthesis is reduced and excess ROS is generated. mtDNA mutation directly affects 
mitochondrial function or ROS production. In turn, high levels of ROS damage mitochondria. Car-
diomyocyte cells (CM), vascular smooth muscle cells (VSMC), and endothelial cells (EC) that are 
impaired by mitochondrial dysfunction can cause CVDs. mtDNA mutation can cause myocardial 
hypertrophy (MH) and atherosclerosis (AS), mitophagy damage can cause MH and AS, decreased 
OXPHOS can cause heart failure (HF), aortic aneurysm (AA) and AS, and increased ROS can cause 

Figure 1. The relationships between mitochondrial dysfunction and CVDs. Four features (mtDNA
mutation, mitophagy damage, decreased OXPHOS and increased ROS) associated with mitochondrial
dysfunction are demonstrated. mtDNA mutation can cause dysfunction of mitochondrial respiratory
chain complex or cytochrome transcription related to OXPHOS. When OXPHOS is impaired, ATP
synthesis is reduced and excess ROS is generated. mtDNA mutation directly affects mitochondrial
function or ROS production. In turn, high levels of ROS damage mitochondria. Cardiomyocyte
cells (CM), vascular smooth muscle cells (VSMC), and endothelial cells (EC) that are impaired by
mitochondrial dysfunction can cause CVDs. mtDNA mutation can cause myocardial hypertrophy
(MH) and atherosclerosis (AS), mitophagy damage can cause MH and AS, decreased OXPHOS can
cause heart failure (HF), aortic aneurysm (AA) and AS, and increased ROS can cause AS, aortic
dissection (AD) and AA. OMM, outer mitochondrial membrane; IMS, inter membrane space; IMM,
inner mitochondrial membrane.

2.1. mtDNA Mutation in CVDs

Human mtDNA is a circular double stranded genome with a length of 16,569 bp
and consists of 37 genes, which support aerobic respiration and the production of cellular
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energy through OXPHOS. Unlike nuclear DNA, mtDNA is not protected by histones and
does not recombine, resulting in approximately 10–100-fold higher mutation rates [43].
mtDNA mutations include point mutations deletions, fragment deletion and large scale
mtDNA rearrangements, which can directly impair OXPHOS [44,45]. A large number
of mitochondrial diseases are rooted in mtDNA mutations [46]. Notably, many specific
disease mutations in mtDNA have been observed to cause cardiomyopathy, suggesting
that mtDNA encoded proteins play a vital role in mitochondrial function of the heart [47].
Heart failure, a complex clinical syndrome that represents the end result of CVDs with
multiple etiologies, is a bioenergetic disease with severe mtDNA mutations and mitochon-
drial dysfunction [14,48]. The MRPL44-disorder causes problems with the translation of a
partial protein participating in OXPHOS, and it is associated with the clinical manifestation
of cardiomyopathy in infancy [49]. In a mouse model of myocardial infarction (MI), the
knockdown of the mouse lncRNA-SNHG8 gene significantly suppressed cardiac tissue
injury [50]. Myocardial hypertrophy is a common inherited CVDs, and cardiomyocytes are
associated with abnormal mitochondrial structure and dysfunction of mitophagy clearance,
which makes it impossible to maintain mtDNA and functional integrity [4]. Hypertrophic
cardiomyopathy is the predominant pattern of cardiomyopathy in mtDNA diseases, ob-
served in nearly 40% of patients [51]. The studies have evaluated an association between
mtDNA mutations and maternally inherited essential hypertension (MIEH), and these
mutations may be one of the pathological mechanisms causing MIEH [45,52]. In addition,
mtDNA mutations are also associated with atherosclerosis [53]. For example, four muta-
tion genes including m.A1555 G in the MT-RNR1 gene, m.C3256 T in the MT-TL1 gene,
m.G12315A in the MT-TL2 gene and m.G15059A in the MT-CYB gene are associated with
atherosclerosis [54].

2.2. Mitophagy Damage in CVDs

Autophagy plays a positive role in maintaining cellular homeostasis in most cardiovascular-
derived cells (e.g., cardiomyocytes, VSMCs) [55], and mitophagy is a kind of selective au-
tophagy [56]. Mitophagy is one of the mitochondrial quality control pathways, and it can
control and remove damaged mitochondria in cells [57]. During mitophagy, the damaged
mitochondria are sequestered by double membrane vesicles and eventually become hy-
drolyzed by lysosomes [58]. Therefore, if mitophagy is impaired, the accumulation of
dysfunctional mitochondria increases, which may lead to abnormal cell function and CVDs.
Reducing mitochondrial dysfunction and lipid accumulation by activating mitophagy
can help prevent diabetic cardiomyopathy caused by high fat diet [59]. In contrast, in
BMAL1 deficient hESC-derived cardiomyocytes, impaired mitophagy is a key cause for
the development of dilated cardiomyopathy [60]. In Hu’s study, constructing mice with
overexpression of omentin1 demonstrated that omentin1 activated mitophagy to improve
HF [61]. In cardiac ischemia-reperfusion injury associated with disturbed mitochondrial
homeostasis, the casein kinase 2α amplifies cardiomyocyte death signals by inhibiting
mitophagy [62]. Defective mitophagy in VSMCs affects the progression of atherosclerotic
lesions and promotes an unstable phenotype [28]. In addition, mitophagy damage in
endothelial cells leads to senescence and apoptosis during atherosclerotic thrombosis [57].

2.3. Mitochondrial OXPHOS Reduction in CVDs

Defects in the genes encoding the OXPHOS complex are responsible for triggering
various diseases, especially those with high energy requirements [63]. Dysfunction of
OXPHOS is considered as one of the main causes of CVDs [64]. In chronic HF patients,
reduced succinyl-CoA levels in myocardial mitochondria cause decreased OXPHOS [65].
In a study of human thoracic aortic aneurysm tissue, when mitochondrial OXPHOS related
gene expression is inhibited, although chromatin OXPHOS related genes are increased, the
ATP production is still insufficient to maintain contractile activity in human aortic smooth
muscle cells (HAoSMCs) [41]. In an another study evaluating the effect of NOTCH1 deletion
on the contractile phenotype and mitochondrial dynamics of human HAoSMCs, NOTCH1
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deficiency can cause mitochondrial dysfunction in HAoSMCs by reducing mitochondrial
fusion, inducing loss of mitochondrial membrane potential, increasing ROS generation,
insufficient ATP production, and accompany with an impaired contractile phenotype [42].
PGC-1β deficiency in heart suppresses OXPHOS gene expression, and it can inhibit the
transition from pressure overload myocardial hypertrophy to heart failure by modulating
PGC-1β activity [13]. miR-27b-3p is thought to be related to OXPHOS. When it is inhibited,
OXPHOS is enhanced and inhibits cardiomyocyte hypertrophy [66]. It has been also
reported that decreased mitochondrial respiration and OXPHOS damage in epicardial
adipose tissue were associated with coronary atherosclerosis severity [24].

2.4. Mitochondrial-Derived ROS Increase in CVDs

Mitochondrial ROS production is closely related to the mitochondrial ETC and NADPH
oxidase (NOX). In the process of mitochondrial electron transfer, complex I and complex III
are the main sites of ROS generation [67,68]. NADPH acts as a substrate to generate ROS
under the action of NOX. The NOX is rich in mitochondria, and under the combined action
of ETC and NOX, ROS continuously accumulates [69]. As a toxic by-product, ROS can
damage mitochondria and are involved in the pathomechanism of CVDs. In turn, damaged
mitochondria induce a large amount of ROS to be released from adjacent mitochondria,
which is known as ROS-induced ROS [70]. The increased mitochondrial ROS represents one
of the pathogenic mechanisms for vascular diseases [71]. For instance, both Nox2 and Nox4
induce oxidative stress, and the resulting ROS is closely related to ischemia-reperfusion [72].
The degree of atherosclerosis is associated with mitochondrial DNA damage, which as-
sociated with increased mitochondrial ROS [73]. It is not difficult to accept that the high
reactivity of ROS will break the antioxidant balance that results in increased oxidative modi-
fication of the arterial wall. Studies have also shown that increased mitochondrial ROS leads
to an increase in apoptotic cells and promotes age-related atherosclerosis [26]. Increased
ROS predisposes endothelial cells to mitochondrial dysfunction, vascular inflammation,
and accumulation of oxidized low-density lipoprotein, contributing to atherosclerosis and
possibly plaque rupture [74]. VSMCs, as the predominant medial effector cells in aortic
dissections and aneurysms, are a key factor in AD development. Increased ROS activates
multiple hypertrophic signaling kinases and transcription factors, leading to dissection by
inducing VSMCs apoptosis through the release of matrix metalloproteinases [31,75].

3. Strategies for Targeting Mitochondria to Treat CVDs

Exploring the mechanism of mitochondrial dysfunction in vascular diseases is a chal-
lenge for developing strategies to target mitochondria in CVDs. Here, we have summarized
the relationship between four important features of mitochondria (mtDNA mutations, im-
paired mitophagy, decreased OXPHOS, elevated ROS) and CVDs. In view of these four
features, we further sorted out the development and hotspot treatment strategies in recent
years, and analyze the advantages and limitations of different treatment strategies (Table 2),
hoping to find effective and operable solutions for all kinds of CVDs.
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Table 2. Advantages and limitations of treatment strategies for targeting mitochondria to treat CVDs.

Features Strategies Advantages Limitations Examples as
Applied References

Mutant
mtDNA

mtDNA editing High specificity;
Easy operation

High cost;
Limited availability

mito-RE, heart
related CVDs [46,76–78]

Mitochondrial
replacement

therapy

Reduce the risk of
vertical

transmission

Ethical and legal
issues [79]

Impaired
mitophagy

Enhanced
mitophagy

Play protective
roles

Unclear conditions
for mitophagy;

A potential cytotoxic

Berberine and the
Pink1/Parkin
pathway, HF;

Active Ulk1/Rab9-
dependent,

Cardiomyopathy

[16,55,80,81]

Decreased
OXPHOS

Small molecule
compounds to

improve OXPHOS

Dietary
supplements;
Wide range of

sources

Lack of clinical trials;
Being degraded in

advance

Control of the SIRT3
activity, MI [82–84]

Nanomaterials to
enhance

mitochondrial
function

Precise targeting;
Noninvasive;

High load drug

Lack of clinical trials;
Collaborative

targeting against
multiple subcellular
organelles is limited

NAD+, HF [85–87]

Increased ROS Antioxidant
Amounts of
clinical trials

(CoQ10)

Interaction with
statin (CoQ10);

Long-term exposure
maybe harmful

CoQ10, HF;
Melatonin, AA/AD [32,88–90]

HF, heart failure; MI, myocardial infarction; AA, aortic aneurysm; AD, aortic dissection; SIRT3, Sirtuin-3.

3.1. mtDNA Mutation and Treatment in CVDs
3.1.1. mtDNA Editing Therapy

Mitochondrial heterogeneity affects mtDNA stability through copy number alterations
and point deletions [91]. Once mtDNA is cleaved and linearized, it is rapidly degraded [92].
By duplicating residual mtDNA, mtDNA can be repopulated to the original level. In
general, mitochondrial gene editing may include four potential approaches: mitochondria
targeted restriction endonuclease (RE) technology, zinc finger nuclease (ZFN) technol-
ogy, transcription activator-like effector nuclease (TALEN) technology and CRISPR/Cas9
system. In fact, mtDNA editing is a promising therapeutic modality to treat heteroplas-
mic or mutant mtDNA diseases. Specific mtDNA was effectively eliminated in heart of
mice by using a mitochondria targeted RE [78,93]. Mitochondrial-targeted ZFNs can se-
lectively cleave and degrade pathogenic mtDNA bearing large scale deletions or point
mutations [94]. An alternative TALEN has been developed to effectively reduce mutant
mtDNA and elevate OXPHOS in cells [95]. TALEN was used to provide a cure for some
mitochondrial diseases caused by mtDNA mutations by specifically cleaving and eliminat-
ing pathogenic mtDNA mutations [96]. Several studies have reported that CRISPR/Cas9
system mediated mtDNA editing [97,98], and the use of PNPase to target mitochondria and
eliminate mtDNA pathogenic mutations is quite promising [99]. Notably, recent studies
have found that Ddda-derived cytosine base editor (DdCBE) exhibits higher fidelity and
can improve the accuracy of mtDNA [100–102]. Efficient and heritable modification of the
mouse mitochondrial genome has been shown to be mediated by DdCBE, which is used
to potentially generate mtDNA mutation models in humans. This approach could theo-
retically reduce disease-causing mutational burdens below a threshold, and is a potential
strategy to target mtDNA for the treatment of CVDs due to mitochondrial dysfunction and
mtDNA mutations.
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3.1.2. Mitochondrial Replacement Therapy

mtDNA replacement therapy (MRT) is to use enucleated donor embryos as healthy
mtDNA to replace undesired defective/mutated mtDNA to prevent mitochondria from
being maternally inherited. MRT is a form of in vitro fertilization (IVF) that includes
spindle transfer (ST), prokaryotic transfer (PNT) and polar body transfer (PBT) [103]. In
fact, embryos from human nuclear transfer can contain low levels of mutated mtDNA,
which may be suitable for treating degenerative diseases caused by mtDNA mutations [104].
This opens up the possibility of MRT for CVDs, a chronic noncommunicable degenerative
disease. Hyslop et al. developed a PNT protocol that promotes efficient development at
the blastocyst stage, keeping mtDNA residues as low as possible [105]. At present, there
have been successful cases of applying MRT strategies [106,107], and offspring will not
suffer from mtDNA mutation-related diseases. Therefore, hypertrophic cardiomyopathy,
dilated cardiomyopathy, genetically related coronary heart disease and other CVDs can be
considered using MRT, as an auxiliary means of human reproduction, to solve the problem
from the embryo. However, the scientific knowledge related to MRT is still being explored,
and the risks and ethical issues of this technology remain to be resolved [108].

3.2. Mitophagy Therapy in CVDs

Mitophagy clears dysfunctional mitochondria under normal physiological conditions,
and in response to pathological stress [15]. Currently, there are three mechanisms of
mitophagy, including mitochondrial outer membrane receptor-mediated, Pink1/Parkin
pathway, and lipid receptor-mediated mechanisms (Figure 2) [109]. Notably, the mech-
anism mediated by the Pink1/Parkin pathway is the most extensively studied. Under
normal circumstances, the content of Pink1 is extremely low. When oxidative stress occurs
and mitochondria damage is induced, Pink1 is activated and recruits Parkin to the mito-
chondrial outer membrane for phosphorylation. The phosphorylated Parkin ubiquitinates
the substrate protein on the mitochondrial membrane [110]. These ubiquitinated proteins
subsequently recruit specific autophagy-related receptors to interact with LC3-II to form
autophagosomes [111].

Mitophagy maintains cardiovascular homeostasis and performs significant functions
in mitochondrial quality control. It has been shown that phosphorylation of Ser495 in
Pink1 by AMPKα2 is necessary for effective mitotic inhibition of the progression of heart
failure [15]. Ophiopogonin D’ (OPD’) is toxic to mitochondria, and OPD’-induced mitosis
and mitochondrial damage in cardiomyocytes are partly mediated by the dysregulation of
the Pink1/Parkin pathway, preventing excessive mitochondrial autophagy [112]. In a study
on the improvement of cardiac function by berberine, it was found that the coordinated
action of berberine and the Pink1/Parkin pathway enhances mitochondrial phagocytosis
and protects patients with heart failure [16]. Ulk1/Rab9-dependent alternative mitophagy
is activated during chronic high-fat diet depletion as an important mitochondrial quality
control mechanism to protect the heart from the obesity effects of cardiomyopathy [81]. In
conclusion, the control of mitophagy has an important role in the clearance of abnormal
mitochondria and the protection of cardiomyocytes (Figure 2).

In addition, when abnormal mitochondria undergo fission, they can trigger cardio-
vascular dysfunction [113,114]. Cytoplasmic GTPase dynamics related protein 1 (Drp1)
regulates mitochondrial fission by interacting with proteins located at fission sites such
as mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), and mitochondrial
dynamics proteins of 49 and 51 kDa (MiD49 and MiD51) [115]. A study identified mito-
chondrial fission inhibitor (mdivi-1) as a cell-permeable quinazolinone derivative inhibitor
of Drp1 [116]. In cardiomyocytes treated with mdivi-1, proteolytic cleavage of the OPA1
isoform and decreased expression of Mfn2, altered complex I and complex II protein expres-
sion of OXPHOS, and increased superoxide production were observed, which resulted in
mitochondrial respiration defects and macro-autophagy inhibition [117]. Taken together, it
is speculated that targeting mitochondrial fission or Drp1 may be useful for CVDs therapy.
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Figure 2. Three mechanisms of mitophagy and the ways they intervene in treating CVDs. Three
mechanisms of mitophagy include mitochondrial outer membrane receptor-mediated (such as Bnip3,
Nix and Fundc1), Pink1/Parkin pathway, and lipid receptor-mediated mechanisms (such as MtCK,
NDPK-D). The LC3 is located in the phagophore and binds to the corresponding receptor. The
LC3 can bind to substances of different mitophagy mechanisms. To demonstrate the mitophagy
occurring in CVDs, cardiomyocytes (CM) and Pink1/Parkin pathway were used to intervene in
heart failure (HF) and myocardial hypertrophy (MH) by inhibitors. In Pink1/Parkin-dependent
mitophagy, the Pink 1 accumulated on the damaged mitochondria is activated and recruits Parkin for
phosphorylation. The phosphorylated Parkin binds to the ubiquitin attached to outer OMM, and
finally binds to LC3 for mitophagy. The Bnip3 and Nix can directly bind LC3 and promote mitophagy.
MtCK and NDPK-D as specific transporters can also directly bind LC3 for mitophagy to eliminate
damaged mitochondria. The inhibitor acts on Pink1/Parkin pathway, and then prevents excessive
mitophagy and improves mitochondrial function, thereby maintaining the healthy levels of cells
associated with CVDs. OMM, outer mitochondrial membrane; IMS, inter membrane space; IMM,
inner mitochondrial membrane.

3.3. Mitochondrial OXPHOS Reduction and Treatment in CVDs
3.3.1. Small Molecule Compounds Enhance Mitochondrial Function

SIRT3 is a mitochondrial protein deacetylase that regulates mitochondrial function and
is considered as an emerging drug target for CVDs [118]. SIRT3 can make mitochondrial
metabolic pathways and ROS detoxification activate, and increase ATP production [119].
Resveratrol improves mitochondrial OXPHOS in diabetic hearts and prevents the decline
of SIRT3 activity in the heart by increasing ETC activity and mitochondrial function [120].
The polyphenolic compound polydatin can initiate SIRT3-regulated mitophagy to prevent
MI [84]. Notably, proteolytic targeting chimera technology, as a new strategy of targeted
inhibitors, makes it possible to potently target small molecule compounds to enhance
mitochondrial function, which may be more beneficial to the treatment of CVDs caused by
mitochondrial dysfunction.

When mtDNA is damaged at high levels, increased Poly(ADP-ribose) polymerase
(PARP) activity leads to a decrease in NAD+ levels, resulting in impaired NAD+-dependent
SIRT3 activation and ultimately cardiac mitochondrial dysfunction [121]. Therefore, tar-
geted improvement of mitochondrial function through nutritional supplementation NAD+
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or ketoesters may be useful in patients with heart failure [87]. NAD+ supplementation with
nicotinamide riboside (NR) promotes mitophagy in a Pink1-dependent manner [122]. NR
can reduce ROS production and maintain normal mitochondrial function in the presence
of inflammatory triggers [123]. The effect of nicotinamide mononucleotide (NMN) on the
generation of ROS was investigated and it was finally found that NMN can reduce mito-
chondrial oxidative stress in brain microvascular endothelial cells and improve primary
cerebro-microvascular endothelial cell membrane potential and mitochondrial respiration
in a sirtuin-dependent manner [124]. Similarly, NMN improves the aorta by reducing
oxidative stress [125]. Taken together, it can be seen that NR, NAD+, and NMN have cer-
tain therapeutic potential in the treatment of CVDs caused by mitochondrial dysfunction.
Among them, NR and NMN still require further preclinical and clinical studies to ensure
the safety of the drug [83].

3.3.2. Nanomaterials Targeted Mitochondria to Improve Mitochondrial Function

Many drugs cannot precisely bind to damaged mitochondria, and they are even toxic
to other tissues in the body. To solve these problems, precise targeted therapy has at-
tracted much attention. Modification of nanoparticles with different components facilitates
mitochondrial directed drug penetration [126]. A team has constructed a non invasive
aerosol inhalation delivery system based on antioxidant nano drugs, which can target
damaged mitochondria, clear ROS, and improve the targeting ability of nano-drugs to my-
ocardium [85]. Artificial hybrid nanozymes created by protein reconstruction technology
and nanotechnology can target mitochondria and scavenge ROS, thereby reducing mito-
chondrial oxidative damage [127]. Improved formulation of negatively charged peptide
nanoparticles enables efficient localization of the drug to mitochondria [128]. Therefore,
the novel nano drug delivery system in the human body to effectively treat human CVDs
by targeting mitochondria will bring another bright future.

3.4. Reduction or Elimination of Mitochondrial-Derived ROS in CVDs

ROS acts as highly active molecules in vivo, and antioxidants can effectively reduce
or eliminate ROS. The in vitro hypoxia/reoxygenation model of H9c2 cells could simulate
myocardial ischemia-reperfusion injury, and it found that the experimental group sup-
plemented with vitamin D could inhibit the production of ROS in cardiomyocytes [129].
Melatonin is an indole heterocyclic compound produced by pineal cells in the pineal gland.
It can effectively lower ROS production, thereby reducing oxidative stress and VSMC loss,
preventing the deterioration of thoracic aortic aneurysm and dissection [32]. Fullerenol
nanoparticles are introduced into an alginate hydrogel to form a fullerenol/alginate hy-
drogel with antioxidant activity. This injectable cell delivery vector can treat myocardial
infarction by effectively reducing ROS levels [130]. Cardioprotection of tetrahedral DNA
nanostructures can significantly decrease oxidative stress and play a positive role in pro-
tecting against myocardial ischemia-reperfusion injury [131]. However, the clinical effects
of ROS scavengers in CVDs are not always significant, probably because antioxidants
can indiscriminately remove some physiological ROS. Therefore, finding drugs to target
damaged mitochondria will improve the clearance of pathological ROS.

Fortunately, the antioxidant CoQ10 has been used in the clinical treatment of CVDs and
has good curative effect. Ubiquinone, the oxidized form of CoQ10, transports electrons in
the mitochondrial ETC and plays a crucial role in mitochondrial energy production. CoQ10
can transport H+ to thermally dissipate chemosmotic gradients via uncoupling proteins
(UCP-1, 2 and 3). After uncoupling, the reduction level of electron carriers is reduced,
thereby reducing the production of ROS [132]. Moreover, the reduced form of CoQ10 is also
an active agent involved in antioxidant function, which can scavenge ROS production due
to mitochondrial dysfunction [133]. Meanwhile, CoQ10 helps recycle other antioxidants
such as radical forms of vitamin C and vitamin E [134]. CoQ10 has been shown to increase
ATP production in cardiomyocytes, enhance oxidative effects, and improve endothelial
function and lipid profile [135]. Comparing CoQ10 with placebo, the therapeutic effect
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of CoQ10 was more significant in the long term [136]. In addition, substantial clinical
evidence suggests that CoQ10 supplementation (≥200 mg/day) contributes to cardiac
health in patients affected by coronary heart disease and heart failure [90]. The safety
profile of CoQ10 can be used as adjunctive therapy in congestive heart failure and may be
helpful in patients who cannot tolerate mainstream drugs [137]. CoQ10 supplementation
is safe and well tolerated with few drug interactions and side effects [138]. Similarly, the
MitoQ was clinically demonstrated for its antioxidant effects on mitochondrial-derived
ROS. The MitoQ can increase the resistance of aging mice to mitochondrial-derived ROS
and protect against the imbalance of mitochondrial homeostasis due to aging. It is a novel
strategy to treat and prevent age-related CVDs [139]. Of course, the task of applying more
safe and effective new antioxidants to the clinical treatment of CVDs is a long way to go
and needs to be continuously explored.

4. Conclusions and Perspective

As an important component of the cell, mitochondria contain genetic material, produce
energy, and participate in a wide variety of metabolic activities in the cell. It can be seen
that if the mitochondrial dysfunction occurs, the normal replication of mtDNA, energy pro-
duction, and other functions will be affected, which may cause diseases. Here, we mainly
analyzed the relationship between the heart and arterial-related CVDs, and mitochondrial
dysfunction. Mitochondrial dysfunction in cardiomyocytes, vascular smooth muscle cells,
and endothelial cells causes a wide variety of CVDs; and has attracted more and more
scientists. With the deepening of CVDs pathogenesis related studies, we summarized the
mitochondrial dysfunction causing CVDs into four important characteristics, including
mtDNA mutations, impaired mitophagy, decreased OXPHOS, and mitochondrial-derived
ROS increase. In multiple animal and human models, many relevant intervention experi-
ments have been designed according to mitochondrial dysfunction, constantly exploring
more effective CVDs related therapeutic strategies. According to the four important char-
acteristics of mitochondrial dysfunction, the related treatment strategies of CVDs were
sorted out. Exploring the significance, advantages, and current limitations of different
mitochondrial targeted therapy strategies can provide more ideas and options for the treat-
ment of different CVDs. Although each of these strategies for ameliorating mitochondrial
dysfunction has its own characteristics, combination therapy may be more effective. It is
well known that CVDs are quite complex, and their pathological mechanisms are even more
complex and diverse. On the basis of continuously deepening the pathological mechanisms,
mitochondrial targets can be found more accurately. In the case of harmless to human
body, mitochondrial targeted therapy for CVDs may improve the efficiency and safety of
treatment, and contribute to the development of human health.
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