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Abstract: Aging is associated with an increasing burden of morbidity, especially for cardiovascular
diseases (CVDs). General cardiovascular risk factors, ischemic heart diseases, heart failure, arrhyth-
mias, and cardiomyopathies present a significant prevalence in older people, and are characterized
by peculiar clinical manifestations that have distinct features compared with the same conditions
in a younger population. Remarkably, the aging heart phenotype in both healthy individuals and
patients with CVD reflects modifications at the cellular level. An improvement in the knowledge of
the physiological and pathological molecular mechanisms underlying cardiac aging could improve
clinical management of older patients and offer new therapeutic targets.

Keywords: aging; elderly; geriatric cardiology; ischemic cardiomyopathy; heart failure; cardiomy-
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1. Introduction

Globally, cardiovascular diseases (CVDs) represent the leading cause of mortality and
disability among the growing population of older adults [1]. Problems in the field of “geri-
atric cardiology” are made more complex by the presence of many comorbidities, multiple
treatment regimens, frailty, cognitive impairments, and reduced functional capacity, as
well as changes in the social environment [2]. Although the burden of most CVDs, such
as hypertension, coronary artery disease, and arrhythmias, rises with age, earlier-onset
cardiovascular conditions, such as myocarditis and cardiomyopathies, are often investi-
gated later, resulting in more severe conditions in older patients. All those factors should
be taken into consideration when making a differential diagnosis [3] (Figure 1). In addition,
clinical guidelines often lack specific recommendations for individuals aged ≥ 75 years, as
shown in randomized clinical trials [4]. Age-associated alterations in heart structure and
function are linked to changes in signaling pathways and gene expression of the cardiac
transcriptome, both in senescence and disease [5]. A better knowledge of intracellular
modifications and molecular mechanisms could improve therapeutic strategies for cardiac
protection [6,7]. This review aims to provide insight into CVDs in the aging population
from both clinical and molecular points of view (see Figure 1).
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Figure 1. Aging heart: clinical and molecular features of cardiac conditions in older patients. Any of
these items could contribute to cardiac aging individually or in combination.

2. Definition of the Aging Heart

Biological aging is the gradual deterioration of functional characteristics in living
organisms. According to the Framingham Heart Study and the Baltimore Longitudinal
Study on Aging (BLSA), aging causes an increase in the prevalence of left ventricular (LV)
hypertrophy, a decline in diastolic function, and a decline in exercise capacity despite
relatively preserved systolic function at rest, as well as an increase in the prevalence of
atrial fibrillation in healthy individuals without concomitant cardiovascular diseases [8].
The characteristics of murine cardiac aging closely resemble those of human cardiac ag-
ing [8,9] Echocardiography on a mouse lifespan cohort revealed that the left ventricular
mass index (LVMI) and left atrial dimension grew considerably with age. In addition,
diastolic function, as evaluated by tissue Doppler, decreased with age; however, systolic
function only decreased slightly when the older mice were compared with the young adults.
The MPI also deteriorated with age, mirroring the age-related reductions in systolic and
diastolic performance [9,10]. Furthermore, the relatively short lifetime and the availability
of genetically engineered mice are the benefits of using a mouse model in the investigation
of the molecular causes of heart aging [9]. Despite possessing comparable cardiac aging
characteristics as humans, laboratory mice do not develop increased blood pressure or
unfavorable blood glucose and lipid profiles [9,11,12], allowing the intrinsic cardiac alter-
ations of aging to be explored without the extra problems of cardiovascular risk factors
such as hypertension and diabetes [9].

3. Cardiovascular Risk Factors

One of the most important risk factors for cardiovascular disease (CVD) is age. Indeed,
by 2030, almost 20% of the world population will be over the age of 65, which will result
in a major rise in CVD prevalence. This emphasizes the significance of comprehending
the processes underlying the aging process and its relationship to cardiovascular disease
phenotypes (see Figure 2).
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Figure 2. Aging heart and cardiovascular risk: from clinical to molecular viewpoint. The upper figure
shows the correlation between age and CV risk, which is explained by an increase in the number of
pathologies such as diabetes and dyslipidemia. Underneath, the same events are explained from a
molecular point of view.

• Age as an independent risk factor

Age, which is linked to an increased chance of developing a variety of new cardiac
risk factors, such as obesity and diabetes, plays a vital role in the deterioration of cardio-
vascular functionality, resulting in an increased risk of cardiovascular disease (CVD) in
older adults [13–15]. Furthermore, the prevalence of most types of CVDs is considerably
higher among older adults compared with the general population [16]. Throughout an
individual’s lifespan, there is an incremental acquisition of several CVD risk factors with
age. Nevertheless, age remains an independent risk factor when these risk variables are
included in a multivariable regression model [13].

• MicroRNAs

microRNAs (miRNAs) are involved in the aging process and help to regulate many
mechanisms underlying cardiac changes in the elderly [17]. Aging is specifically associated
with an increased expression of miR-34a, which is caused by an upregulation of p53
signaling. Indeed, the miR-34 family induces apoptosis, which emphasizes the central role
of miR-34a in the mechanisms underlying aging [18]. Moreover, in aged cells, a reduced
amount of miR-146a is found. MiR-146a reduces oxidative stress by downregulating the
expression of NOX4, which is the major catalytic subunit of NADPH oxidase [19]. Some
miRNAs, including the senescence-associated miR-17-92 cluster, have been shown to inhibit
apoptosis [20]. Finally, the expression of miR-17, which is reduced by hypoxia, causes a
downregulation of Casp9 and apoptotic protease-activating factor 1 (Apaf-1) [21].

• P66shc

It is well known that aging can affect several molecular mechanisms, leading to hy-
pertension and dyslipidemia. Moreover, metabolic disorders, including obesity, diabetes,
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and insulin resistance, are linked with premature features of vascular and cardiac senes-
cence, pointing out the strong association between aging, metabolism, and cardiovascular
disease [22]. This connection might be explained by several factors, such as p66Shc. This
enzyme leads to the production of reactive oxygen species (ROS) through the oxidation of
cytochrome C and, consequently, to the activation of apoptotic mechanisms [23].

• mTOR pathway: AMPK

Growing evidence supports the notion that AMPK plays a crucial role in the regulation
of effectors involved in metabolic mechanisms, longevity, and cardiovascular homeosta-
sis [22]. AMPK controls the mTOR pathway through the phosphorylation of the TSC1/2
complex and modulates IGF-1 signaling via the extracellular signal-regulated kinase (Erk)
cascade [24]. The fact that the pharmacological triggering of AMPK causes the senescence
of vascular smooth muscle cells [25] and the improvement of ROS-driven endothelial
dysfunction [26] is particularly important. Moreover, metformin, which is used in diabetes
treatment, has been shown to prevent ischemia-reperfusion injury and adverse remod-
eling of the left ventricle [27]. Considering all the above, AMPK might be considered a
therapeutic target to prevent the aging process.

• NAD-dependent proteins: SIRT1

Another factor that should be considered is the SIRT1 gene, which is an NAD-
dependent protein that protects the heart from senescence, ischemia-reperfusion injury,
hypertrophy, and cardiomyocyte apoptosis [28]. In addition, pharmacological activation
of SIRT1 by resveratrol causes many benefits, including a decrease in fibrotic collagen
deposition, which in turn leads to an improvement of the ejection fraction and fractional
shortening [29]. A study showed that SIRT1 improves endothelial function and prevents
macrophage foam cell formation and calcification of vascular smooth muscle [30]. SIRT1
can also deacetylate LKB1 and, consequently, activate AMPK, thereby ensuring endothe-
lial integrity thanks to eNOS activity and autophagy [31]. Therefore, impairment of the
SIRT1-LKB1-AMPK pathway causes an energy imbalance, cellular stress, and activation of
apoptosis mechanisms, which can subsequently lead to vascular aging [32].

• NF-κB

NF-κB represents a crucial intermediary between age-induced myocardial inflamma-
tion and fibrosis, and its suppression decreases remodeling and cardiac hypertrophy [33].
Activator protein-1 (AP-1) transcription factor JunD is deeply implicated in age-related
disease due to its ability to regulate oxidative stress levels; its importance in the vascular
context is supported by the observation that its overexpression can rescue endothelial
dysfunction in aged mice [34]. Likewise, JunD expression is reduced in peripheral blood
monocytes isolated from aged individuals [22]. It is well known that mTOR takes part
in the connection between aging and cardiovascular diseases through the stimulation of
oxidative stress and inflammatory responses [35]. Aging is associated with an increase of
inflammatory adhesion molecules, including ICA-1 and VCAM-1, which contributes to the
initiation and progression of atherosclerosis through enhanced monocyte-endothelial cell
interactions [36]. Immunosenescence affects the health and survival of elderly individuals.
In particular, senescent T cells can produce a large number of proinflammatory cytokines
and cytotoxic mediators, which suggests that they may play a role in cardiovascular disease,
including hypertension, atherosclerosis, and myocardial infarction.

4. Ischemic Cardiomyopathy

The molecular mechanisms underlying vascular aging are still partially unknown,
but the importance of endothelial dysfunction in the context of atherosclerosis and CVD
development is clear (see Table 1 and Figure 3).



Int. J. Mol. Sci. 2022, 23, 16033 5 of 23
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 23 
 

 

 

Figure 3. Aging heart and ischemic heart disease: from clinical to molecular viewpoint. An increase 

in O2 demand in the context of a diminished O2 supply leads to myocardial ischemia. The patho-

physiological factors that cause these alterations are listed in the upper figure. In the lower figure, 

the molecular modifications secondary to the increased cellular stress are listed. 

5. Heart Failure  

Heart failure (HF) is a clinical syndrome with a prevalence that increases considera-

bly with age. This disease might be considered the result of the interaction between car-

diovascular aging and specific risk factors, comorbidities, and disease modifiers [56] (see 

Table 2 and Figure 4). The aging process relates to various alterations in the vascular sys-

tem [57] and myocardium, such as elastin fiber degradation and an increase in collagen 

quantity, that may predispose an individual to HF. Smooth muscle cells also tend to grow 

and accumulate. These tissue and cellular changes could result in vascular stiffening and 

an increased afterload for the left ventricle. The aging process also affects the vascular 

endothelial cells and their capacity to produce NO and other vital peptides. All these al-

terations contribute to myocardial interstitial fibrosis, calcium deposition, and amyloid 

accumulations [8]. Similarly, cardiac valves also suffer through the aging process, thereby 

exacerbating cardiac stress and HF vulnerability [58]. In this context, the role of activin 

type II receptor (ActRII) ligands, including FSTL3, which is an endogenous inhibitor of 

ActRII ligands that increases with aging and HF severity in humans [59], might be crucial. 

It has been proven that systemic ACTRII inhibition improves systolic function in murine 

age-related HF models [59]. There are several similarities between the pathophysiology of 

frailty and HF, including many inflammatory markers such as IL-6, CRP, and TNF-α [60]. 

Remarkably, several microRNAs regulate aging [61], and there is a large overlap between 

these age-related microRNAs and the microRNAs involved in both HF and inflammation 

in Toll-like receptor (TLR) signaling [62,63]. Biomarkers involved in extracellular matrix 

organization, inflammation, and tumor cell regulation were up-regulated in older patients 

with heart failure with reduced ejection fraction (HFrEF), with a strong association be-

tween aging and WAP four-disulfide core domain protein 2 (WFDC2), while pathways 
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in O2 demand in the context of a diminished O2 supply leads to myocardial ischemia. The patho-
physiological factors that cause these alterations are listed in the upper figure. In the lower figure, the
molecular modifications secondary to the increased cellular stress are listed.

• Inflammatory markers and cardiovascular risk

In the last years, inflammatory markers have emerged as strong independent risk
indicators for cardiovascular disease; however, their specificity and predictivity may differ
in older people [37]. Interleukin-6 (IL-6) was shown to be a stronger predictor of inci-
dent coronary disease [38], stroke, and cardiovascular mortality than C-reactive protein
(CRP) [39]. Tumor necrosis factor-α (TNF-α) is another marker of CVD in older patients, but
not of stroke [38]. Fibrinogen was not associated with increased CVD risk in people aged
≥ 70 years [40]. One of the key factors in this context is microRNA-217, which accelerates
atherosclerosis and coronary lesion development and triggers impaired left ventricular
function. On the other hand, microRNA-217 inhibition improves vascular contractile func-
tion and reduces atherosclerotic development, which is suggestive of a role as a biomarker
of cardiovascular aging in humans [41]. For example, plasminogen activator inhibitor-1
(PAI-1) could promote age-associated thrombosis and atherosclerosis [42]. In addition,
dysregulated activation of the renin-angiotensin-aldosterone system (RAAS) accelerates the
atherosclerotic process [43]. Age-related impairment of autophagy, which may lead to en-
dothelial dysfunction, arterial stiffness, and vascular pathologies, including atherosclerosis
and calcification, is strongly associated with vascular aging [44].

• T cells and cardiovascular risk

It has been suggested that senescent T cells are directly involved in the pathophys-
iology of atherosclerosis and acute coronary syndrome through the release of several
factors, such as IFN-γ, that induce macrophages activation and, consequently, the release
of metallo-proteinases that degrade the extracellular matrix [45,46]. These lymphocytes
also discharge a great amount of perforin and granzyme, resulting in direct lysis of en-
dothelial and vascular smooth cells [47]. During the process of aging and related ischemic
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conditions, NAD+ levels decrease and lead to nuclear and mitochondrial dysfunctions
that result in age-related diseases. It has been demonstrated that restoring NAD+ using
intermediates, including nicotinamide mononucleotide and nicotinamide riboside, may be
a good approach for recovering from ischemic injury and age-associated defects [48].

• Telomere shortening and cardiovascular risk

Progressive telomere shortening and dysfunction are responsible for physiological
and pathological aging, including cardiovascular diseases [49,50]. Telomere ablation, as
well as length-independent telomere damage, possibly due to oxidative stress, is respon-
sible for age-related cardiac dysfunction [51]. Massive oxidative stress, as seen in cardiac
ischemia-reperfusion injury, has been shown to induce telomere damage, with rescue by the
clearance of senescent cells [52]. Telomeres also play a role in vascular pathobiology [53].
Circulating leukocytes and atherosclerotic plaque-associated vascular smooth cells have
shorter telomeres than age-matched controls [54,55]. Therapeutic strategies for the selective
elimination of senescent cells may improve cardiac function in older patients.

Table 1. Molecular mechanisms and intracellular modifications underlying ischemic cardiomyopathy
(ICM).

Molecular Mechanisms and Intracellular Modifications
Underlying Ischemic Cardiomyopathy Studies

- Increase of cytokines (IL-6; TNFα), microRNA, plasminogen
activator inhibitor-1 (PAI-1) [38,41,42]

- Impairment of autophagy [44]
- The release of IFN-γ, perforin and granzyme by senescent T
cells [45–47]

- Reduction of NAD+ levels [48]
- Telomere shortening and dysfunction [49,50]

5. Heart Failure

Heart failure (HF) is a clinical syndrome with a prevalence that increases consider-
ably with age. This disease might be considered the result of the interaction between
cardiovascular aging and specific risk factors, comorbidities, and disease modifiers [56]
(see Table 2 and Figure 4). The aging process relates to various alterations in the vascular
system [57] and myocardium, such as elastin fiber degradation and an increase in collagen
quantity, that may predispose an individual to HF. Smooth muscle cells also tend to grow
and accumulate. These tissue and cellular changes could result in vascular stiffening and
an increased afterload for the left ventricle. The aging process also affects the vascular
endothelial cells and their capacity to produce NO and other vital peptides. All these
alterations contribute to myocardial interstitial fibrosis, calcium deposition, and amyloid
accumulations [8]. Similarly, cardiac valves also suffer through the aging process, thereby
exacerbating cardiac stress and HF vulnerability [58]. In this context, the role of activin
type II receptor (ActRII) ligands, including FSTL3, which is an endogenous inhibitor of
ActRII ligands that increases with aging and HF severity in humans [59], might be crucial.
It has been proven that systemic ACTRII inhibition improves systolic function in murine
age-related HF models [59]. There are several similarities between the pathophysiology of
frailty and HF, including many inflammatory markers such as IL-6, CRP, and TNF-α [60].
Remarkably, several microRNAs regulate aging [61], and there is a large overlap between
these age-related microRNAs and the microRNAs involved in both HF and inflammation
in Toll-like receptor (TLR) signaling [62,63]. Biomarkers involved in extracellular matrix
organization, inflammation, and tumor cell regulation were up-regulated in older patients
with heart failure with reduced ejection fraction (HFrEF), with a strong association be-
tween aging and WAP four-disulfide core domain protein 2 (WFDC2), while pathways
associated with tumor proliferation were down-regulated [64]. On the other hand, heart
failure with preserved ejection fraction (HfpEF) is very common among older people with
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other conditions. HfpEF is characterized by chronic, low-grade, systemic inflammation,
with the inflammatory milieu differing according to the specific comorbidities present [65].
From a molecular point of view, levels of TNF and its receptors (TNFR1 and TNFR2),
interleukin (IL)-6 and IL-8, high-sensitivity C-reactive protein (hs-CRP), pentraxin-3, and
the chemokine (C-C motif) ligand 2 (CCL2) are all often raised in individuals with HfpEF.
Chronic, low-grade, systemic inflammation may harm cardiac structure and function. Ex-
perimental results indicate that increased pro-inflammatory cytokine production increases
oxidative stress, drives fibroblast differentiation into collagen-secreting myofibroblasts,
and induces extracellular matrix degradation, resulting in increased myocardial stiffness
and coronary microvascular dysfunction (CMD). Local inflammation also decreases the
availability of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP), leading to
hypophosphorylation of the large sarcomeric protein titin, which increases cardiac stiffness
and affects diastolic function. Oxidative stress may also be involved in the development
of metabolic heart disease, which suggests that inflammation and cardiac dysfunction
could be linked in a bidirectional manner [65]. Understanding the different mechanisms
underlying HF in the elderly may help to identify potential therapeutic targets.

Table 2. Molecular mechanisms and intracellular modifications underlying heart failure (HF).

Molecular Mechanisms and Intracellular Modifications
Underlying Heart Failure Studies

- Degeneration of elastin fibers and increase in collagen [57]
- Clustering and hypertrophy of smooth muscle cells [57]
- Endothelial dysfunction, which affects the production of NO
and other peptides [57]

- Myocardial interstitial fibrosis, calcium deposition, and
amyloid accumulations [8]

- Upregulation of the activin/ActRII pathway and TLR
signaling [59,62,63]Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 23 
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6. Arrhythmias

Aging is associated with an increased prevalence of cardiac arrhythmias, which con-
tribute to higher morbidity and mortality in the elderly [66–69] (see Table 3 and Figure 5). The
incidence of cardiac dysrhythmias, both bradyarrhythmia and tachyarrhythmia, increases
with advancing age [70–72], with more than 80% of pacemaker implantations in the US needed
to relieve symptoms caused by bradycardia and/or chronotropic incompetency from sinus
node dysfunction or His-Purkinje disease [70,73,74]. Among tachyarrhythmias, AF is the most
common arrhythmia encountered in clinical practice, with a 100-fold higher prevalence in
octogenarians (8–10%) compared to those younger than 55 years [68,70,75–78]. Alterations in
the mechanical and electrical cardiac system, as well as energetics and metabolism associ-
ated with the aging process, which is exacerbated by comorbidities or use of medications,
increase predisposition to cardiac arrhythmias [69,79–81]. Deposition of amyloid, lipid,
and lipofuscin around the atrial pacemaker tissue contributes to bradyarrhythmia in the
aging heart [69,70,74,82,83]. In addition, pacemaker cells within the sinoatrial node and
AV conduction fibers are progressively replaced with an extracellular matrix composed of
collagen and elastin fibers [84], with up to a 10% reduction of the number of pacemaker
cells up in individuals 75 years of age or older compared to young adults [85]. Signaling
via β-adrenergic receptors also lowers with age, contributing to a diminished heart rate
response and heart rate variability and a resultant reduction in aerobic work capacity
in the elderly [84,86–89]. Furthermore, aging-induced degenerative changes to the car-
diac skeleton affect areas close to the AV node, His-Purkinje tissue, and bundle branches,
thereby delaying conduction and predisposing elderly patients to arrhythmias [90,91]. An
increased prevalence of first-degree AV block, mostly secondary to the pathological fibrosis
of the conduction system, has been observed in older people. Although largely considered
benign, a prolonged PR interval has been associated with increased AF [92,93]. These
modifications also increase the prevalence of fascicular and bifascicular block, which are
associated with a high risk of subsequent advanced AV block, syncope, and even sudden
cardiac death (SCD), especially in the presence of alternating bundle branch block, type 2
or advanced second-degree AV block, or transient third-degree AV block [92,94]. Another
study pointed out that since mitochondria are the primary producer of ROS, this organelle
could be considered a potential target for free radical damage. Indeed, a general decrease in
mitochondrial-encoded gene expression, which is related to mitochondrial genomic DNA
deletions [95,96] and mitochondrial loss, followed by reduced mitochondrial function has
been observed with age [96–98]. Changes in mRNA abundance associated with aging have
recently been examined by gene expression arrays [96]. Bodyak et al. [99] found reduced
mRNA levels of several transcription factors (e.g., Nkx2.5, GATA-4, JunB) in ventricular
cardiomyocytes that might be implicated in aging. However, Lee et al. [100] showed that
only 10% of the transcripts in the whole mouse heart demonstrated significant changes
in abundance with aging [99], meaning that many age-associated changes in transcript
abundance may instead be associated with non-cardiomyocytes, strain differences, or al-
tered transcript abundances associated with isolation procedures. It is therefore critical to
consider biological diversity when performing studies of aging [96].

It has been demonstrated that electrical and structural remodeling with action potential
duration prolongation and connexin remodeling increases the refractoriness of cardiac tis-
sue and slows conduction [74,101–103]. Action potential duration and repolarization are de-
layed in the senescent heart [74,104,105], in part due to the downregulation of K+ currents,
including Ca2+-activated IK+, transient outward (Ito), and ATP-sensitive K+ channels, and
in part due to a delay in Ca2+ current inactivation (ICaL) [105–108]. This delay, along with
an increase in sodium-Ca2+ exchanger activity, enhances the tendency for Ca2+-overload-
mediated triggered activity and re-entrant arrhythmias [68,78,109–115]. A decrease in
sarcoplasmic reticulum Ca2+-ATPase expression [78,116,117] and post-translational modifi-
cations that affect the function of the sarcoplasmic reticulum Ca2+-ATPase, phospholamban,
and the sarcoplasmic reticulum Ca2+-release channel (ryanodine receptor 2) further al-
ter Ca2+ homeostasis and the aging heart’s susceptibility to arrhythmias [78,118–123].
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The effects of age-related changes on cardiac microstructure, including the sarcolemma,
cytoskeleton, intercellular gap junctions, cellular geometry, and interstitium, as well as
mitochondria [78,124,125], are not well defined and require further studies.
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Table 3. Molecular mechanisms and intracellular modifications underlying arrhythmias.

Molecular Mechanisms and Intracellular Modifications
Underlying Arrhythmias Studies

- Accumulation of amyloid, lipid, and lipofuscin, which leads to
bradyarrhythmia [69,70,74,82,83]

- Replacement of pacemaker cells with collagen and elastin
fibers [84]

- Delay of action potential duration and repolarization [74,104,105]
- Impairment of Ca2+ homeostasis [78,118–123]

7. Cardiomyopathies

Age-related changes in the heart’s pathophysiology, such as vascular, cellular, and
interstitial molecular changes, could result in left ventricular hypertrophy, a general de-
terioration in organ function, and stress-related cardiovascular illness [126] (see Table 4
and Figure 6). While younger patients tend to be more impacted by DCM and HCM,
elderly patients appear to be less afflicted, with only 10% of affected patients being above
the age of 65. Restrictive cardiomyopathies are rare in the elderly, while severe and con-
centric hypertrophy are more commonly associated with hypertrophic cardiomyopathy
(HCM) [127]. HCM patients of more advanced age are being increasingly recognized due
to greater awareness of this disease and increased use of advanced cardiac imaging in
clinical practice [128–130]. Exposure to several stressors may cause aggregation of proteins,
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impair cell viability, and cause pathological conditions, including age-related vascular
diseases. To reduce this risk, the cell initiates a mechanism involving molecular chaperones
to maintain protein homeostasis. Small heat shock proteins (HSPs) as molecular chaperones
prevent aggregation or misfolding of proteins and enable their correct refolding under
stress [106,131–133]. Among them αB-crystallin (CryaB) [134,135] binds to intermediate
filaments and sarcomeric myofibrils, preventing their aggregation during stress [136–138].
In terms of function, CryaB phosphorylation has been reported to decrease the ability
of this protein to act as a molecular chaperone and to provide protection from oxidative
stress [71]. A dysfunction of CryaB could cause various forms of muscular disorder, in-
cluding restrictive, hypertrophic, and dilated cardiomyopathies, heart failure, and skeletal
muscle weakness. The phosphorylation status of CryaB is in dynamic equilibrium under
physiological conditions and is usually increased under stress and during aging, although
changes in the heart remain unknown [106]. In HCM pathophysiology, disturbances in
the physiological protein quality control system (PQS), which is formed by heat shock
proteins (HSPs), autophagy/lysosomal, and the ubiquitin-proteasome system (UPS), have
been reported. Under conditions of oxidative stress, ROS are found to suppress autophagy,
which leads to the accumulation of ubiquitinated proteins and subsequently to cardiac
fibrosis and hypertrophy [128]. Furthermore, as reported in recent studies using mice,
the knock-out of autophagy-associated genes results in the development of age-related
cardiomyopathies. This suggests that continuous constitutive autophagy may play a crucial
role in maintaining cardiac structure and function [139]. Furthermore, suppression of
the WNT pathway could attenuate age-dependent expression of cardiac dilatation and
dysfunction, myocardial fibrosis, and apoptosis in a mouse model of ACM [69,140]. The
prognosis of elderly DCM patients has significantly improved over the past 20 years, thanks
to advances in pharmacologic treatments and earlier diagnosis [141]. In many patients
with HCM, age represents a negative risk marker for sudden death, although they are
still more likely to die of non-cardiac competing morbidities [128]. Genetic HCM and
DCM are characterized by shorter telomeres in cardiomyocytes [142], with a correlation
between hypertrophic phenotype severity and leukocyte telomere length [143]. Myosins
and myosin-encoded microRNA networks may explain phenotype differences and could
represent putative therapeutic targets in HCM patients [144].

Table 4. Molecular mechanisms and intracellular modifications underlying cardiomyopathies.

Molecular Mechanisms and Intracellular Modifications
Underlying Cardiomyopathies Studies

- Dysfunction in the physiological protein quality control
system, which includes heat shock proteins, the
autophagy/lysosomal pathway, and the ubiquitin-proteasome
system (HCM)

[128]

- WNT pathway, due to its correlation with cardiac dilatation
and myocardial fibrosis (ACM) [69,140]

- Telomere shortening (HCM and DCM) [142]

Finally, older patients with a previously healed myocarditis or a subtle chronic active
inflammation may suffer from post-inflammatory DCM, which may cause HF and/or
ventricular arrhythmias [145].

LMNA-associated cardiomyopathy may be underdiagnosed in older patients with
DCM, atrio-ventricular conduction disorder, AF, and ventricular arrhythmias [146].

Amyloidosis, especially wild-type transthyretin (TTR) amyloidosis, is underdiagnosed
in older people, for whom “red flags” may be misread [147] and prognosis may be affected
by diagnostic delays, despite available treatments [148]. The aggregation of misfolded
TTR monomers and deposition of extracellular fibrils is favored by age-related oxidative
modifications [149].
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In conclusion, the aging of the healthy heart is a complex process characterized by mild
cardiomyocyte hypertrophy, increased cellular senescence, and cell replacement within the
extracellular matrix; these changes eventually result in a loss of both contractile function
and endogenous protection from irreversible injury [106,136]. However, primary genetic
and acquired cardiomyopathies should still be considered among differential diagnoses.

8. Clinical Management of CVD in Older People

Aging, as well as cardiovascular aging, is a natural and inescapable process; neverthe-
less, detecting people with accelerated aging is difficult. It is critical to identify patients
with accelerated cardiovascular aging and define the mechanisms behind this process to
develop preventative interventions targeted at reducing the process of accelerated cardiac
and vascular aging. Firstly, it is essential to evaluate and treat each cardiovascular risk
factor. This is because the acceleration of cardiovascular system aging primarily depends
on the harmful role of both traditional and emerging cardiovascular risk factors, such
as familial history, arterial hypertension, dyslipidemia, diabetes, obesity, smoking, and
unhealthy lifestyle [150]. Secondly, it is necessary to perform cardiological evaluations to
identify cardiac organ damage (hypertrophy, dilation, systolic and/or diastolic dysfunction)
and vascular organ damage (atherosclerosis or vascular stiffness) using a multiparametric
diagnostic approach [151] (Figure 7). Similarly, non-drug therapies, such as changes in
diet and activity, represent the cornerstone of anti-aging medicine. Moreover, identifying
the optimal medical therapy for specific cardiac diseases represents the first step toward
slowing down accelerated cardiovascular aging [152]. Finally, novel diagnostic (genome,
miRNome, transcriptome and metabolomics) and therapeutic tools, such as cytokine an-
tagonists, TGF-β inhibitors or endothelin and VEGF inhibitors [153], are also emerging as
potential methods to slow down accelerated cardiovascular aging (Figure 7).
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Older adults, especially those aged ≥ 75 years and with multiple disabilities, are
underrepresented in most cardiovascular clinical trials, resulting in knowledge gaps related
to cardiovascular care for this population [4]. In addition, there is great heterogeneity
and biological diversity in this population, which are independent of age [152]. Adopting
a patient-centered-approach, which considers individual comorbidities, life expectancy,
cognitive function, frailty, and patient preferences, is critical for establishing the optimal
management strategy [152]. According to recent guidelines, reducing blood pressure to a
cut-off of <140/90 mmHg is recommended for older adults suffering from hypertension, and
a further lowering to 130 mmHg should be considered in individuals aged ≥ 70 years [150].
Aspirin in primary prevention did not demonstrate a reduction in CVD, and increased
major bleeding risk in individuals aged ≥ 70 years [154]. A statin-based therapy for primary
prevention in older adults aged ≥ 70 years who have a high 10-year CVD risk, as estimated
by the SCORE2-OP algorithm, has been proposed [150,155]. Recently, a polypill containing
aspirin, ramipril, and atorvastatin was proven to be effective in secondary prevention
in adults aged ≥ 75 years [156]. Aging is a risk factor for both ischemic and bleeding
events, but the need for antithrombotic therapies is increased in older people, mainly due
to atrial fibrillation (AF). New oral anticoagulants (NOACs) have shown better efficacy and
safety than warfarin with regards to reducing stroke, all-cause mortality, and intracranial
hemorrhage, even in patients aged ≥ 75 years [157]. However, due to competing mortality
risks, other studies failed to confirm the net clinical benefit of anticoagulation for AF in
older patients [158]. Invasive procedures, such as revascularization and transcatheter valve
interventions, have been proven to reduce major cardiovascular adverse events (MACE)
and mortality, without additional major bleeding risk, in patients aged ≥ 75 years [159–
164]. Palliative care and treatment discontinuation, based on the evaluation of life quality,
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symptom burden, and disease acceptance, are often neglected in CVD [165]. However,
patients with end-stage heart failure (HF) could benefit from this kind of intervention [166].

9. Molecular Therapies

• mTOR pathway inhibitors

A recent study by Infante et al. [167] showed that the use of the mTOR inhibitor
everolimus in kidney transplant recipients dramatically reduced CVD risk by reducing
levels of inflammaging markers, namely serum pentraxin-3 and p21ink, and improving
mitochondrial function/biogenesis in PBMC, resulting in more efficient oxidative phospho-
rylation, antioxidant capacity, and glutathione peroxidase activity [167]. Further supporting
these antioxidant and anti-inflammatory effects of rapamycin, pathway analysis revealed
an upregulation of free radical scavenging genes and a downregulation of NF-κB signaling
genes after rapamycin treatment in adult stem cells [168]. A possible effect of berberine, a
Chinese herbal medicine, on both the mTOR pathway and AMPK has been reported [169]. A
novel possible therapy to modulate the mTOR, AMPK, and sirtuin pathways comes from the
CALERIE trial, which suggests that a short-term calorie restriction (CR) of 25% is effective at
delaying age-related phenotypes and improving CVD risk factors in adults [170–172].

While age-related increases in superoxide production are associated with increased
expression and activity of NADPH oxidase [96], CR appears to constrain this source of ROS,
with the expression of NOX4 and the p67 subunit of NOX2, as well as the activity of NADPH
oxidase, being reduced in old mice after CR [172]. Pharmacologically, AMPK activity can
be increased directly after treatment with aminoimidazole carboxamide ribonucleotide
(AICAR, an adenosine analog) and indirectly after metformin treatment. It has been shown
that long-term metformin treatment can increase an individual’s life span [173]. Direct
AMPK activation by AICAR has also been shown to increase tissue antioxidant defenses,
including increasing skeletal muscle expression of MnSOD [174]. Moreover, several studies
have shown that activating AMPK can lower inflammatory cytokines, and that this is
linked to muted NF-κB signaling in a range of tissues, including endothelial cells [172,175].

• SIRT1 stimulation

Genetic models provide direct evidence for a protective role of SIRT1. In particular,
it has been shown that cardiac-specific SIRT1 overexpression leads to cardiac protection
against ROS and delays age-related cardiac phenotypes [172,175]. One such small molecule
activator of SIRT1, SRT1720, has recently been shown to increase life span [172,174] and im-
prove metabolic function in aged mice [176]. Furthermore, treatment with SRT1720 seemed
to reverse age-associated NF-κB activation and reduced arterial cytokine expression in
old mice [177], consistent with the effects of CR on arterial inflammation [172]. Resver-
atrol, a plant polyphenol, exhibits antiaging, antitumor, and vascular protection effects
by enhancing the binding of SIRT1 and LKB1 and subsequent SIRT1 activation. In this
way, resveratrol, through LKB1-dependent SIRT1 activation could increase mitochondrial
biogenesis and respiration [178].

• Telomere-related therapies

Telomeres are repetitive DNA sequences located at the extremities of chromosomes [179].
Telomeres get shorter as we age in most of our tissues, contributing to the organ and
tissue failure we see as we age [179]. Telomerase is a reverse transcriptase that adds new
telomeric repeats to short telomeres and prevents them from triggering apoptosis or cellular
senescence [179–181]. Healthy lifespan is also positively correlated with longer telomeres
in humans, as not smoking and not being obese at the age of 71 were shown to be the
most significant factors associated with survival in men aged 85 years or older [180,182].
Patients suffering from age-related diseases and premature aging syndromes display shorter
telomeres compared to healthy individuals [183]. A vast number of studies have shown
how genetically engineered mice with an overexpression of telomerase had dramatically
increased lifespans [179]. While telomerase gene transfer therapy provides an attractive
method for cardiovascular restoration and deserves future investigations, many studies
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seem to agree that a combination of exercise, healthy diet, low everyday stress, and anti-
inflammatory agent intake may be beneficial in promoting human longevity by modulating
the telomere system and slowing down the effects of many chronic disorders [180,181].

• MicroRNAs inhibition

MiR-217 is a biomarker of vascular aging and cardiovascular risk, as it regulates an
endothelial signaling hub and downregulates a network of eNOS, including VEGF, which
results in diminished eNOS expression [184]. A recent study by De Yebénes et al. [184]
found out that the inhibition of endogenous vascular miR-217 in apoE−/− mice improved
vascular contractility and diminished atherosclerosis, highlighting the therapeutic potential
of miR-217 inhibitors.

10. Conclusions

Cardiovascular disorders of the aging heart are a difficult pre-clinical and clinical prob-
lem. The complexity of cardiac problems in elderly people is not explained by metabolic
remodeling, loss of proteostasis, DNA instability and telomere shortening alone, but also
by epigenetic transcriptome modifications by microRNAs. Pre-clinical and clinical research
demonstrates that dietary restriction with adequate intake of specific nutrients, as well as
regular exercise, stress management, and smoking cessation, are effective ways to prevent
or delay the accumulation of molecular damage that results in tissue degeneration and
cardiometabolic dysfunction. With the growing impact of aging, it is essential to reassess
CV research, including the increased use of real-world studies to measure long-term effects.
Clinical decision-making should integrate molecular and genetic indicators, pointing to
personalized therapy. Remarkably, the identification of new molecular targets, as well as
improved clinical characterization of older patients, may enhance knowledge and therapy
of the aging heart. Furthermore, the use of pharmacological treatments and other inter-
ventions should be based on both the patient’s quality of life and preferences, with the
appropriate strategy being defined by a multidisciplinary team that includes the individual
patient in the decision-making process.
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Abbreviations

ActRII = activin type II receptor; ACM = arrhythmogenic cardiomyopathy; AF = atrial fib-
rillation; AP-1 = activator protein-1; cGMP = cyclic guanosine monophosphate; CMD = coronary
microvascular dysfunction; CRP = C-reactive protein; CryaB = αB-crystallin; CVD = cardiovascular
disease; DCM = dilated cardiomyopathy; Erk = extracellular signal-regulated kinase; HCM = hyper-
trophic cardiomyopathy; HF = heart failure; HFpEF = heart failure with preserved ejection fraction;
HFrEF = heart failure with reduced ejection fraction; HSPs = heat shock proteins; IL = interleukin;
LVMI = left ventricular mass index; MACE = major cardiovascular adverse events; NO = nitric
oxide; NOACs = new oral anticoagulants; PAI-1 = plasminogen activator inhibitor-1; RAAS =
renin-angiotensin-aldosterone system; ROS = reactive oxygen species; SCD = sudden cardiac death;
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TLR = Toll-like receptor; TNF-α = tumor necrosis factor-α; TTR = transthyretin; UPS = ubiquitin-
proteasome system; WFDC2 = WAP four-disulfide core domain protein 2.
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