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Abstract: Nanomaterials (NM) arouse interest in various fields of science and industry due to their
composition-tunable properties and the ease of modification. They appear currently as components
of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents,
computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in
products for topical applications improves the permeation/penetration of the bioactive compounds
into deeper layers of the skin, providing a depot effect with sustained drug release and specific
cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic
treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques,
and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and
potential threat to human health are still open and not fully explained. This review gives a brief
outline of the latest nanotechnology achievements in products used in topical applications to prevent
and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin
(influence of physical–chemical properties of NPs, the experimental models for skin penetration,
methods applied to improve the penetration of NPs through the skin, and methods applied to
investigate the skin penetration by NPs). The review summarizes various therapies using NPs to
diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and
UV-protectant nano-cosmetics.

Keywords: nanotechnology; nanoparticles; nanomaterials; skin disorders; dermatology; cosmetology;
drug delivery systems; nanocosmeceuticals; nanopharmaceuticals

1. Introduction

Nanoparticles (NPs) are defined as materials with dimensions smaller than 100 nm
and presenting various shapes, i.e., spheres, rods, dendritic shapes, etc. [1]. This definition
is accepted by the European Union (EU) Commission [2]. It should be noted, however,
that there exists no uniform definition of nanomaterials [3]. The Environmental Protection
Agency (EPA) emphasizes, in its opinion, the unique properties of NPs, which largely
differentiate them from equivalent chemical compounds [4]. In turn, the US Food and
Drug Administration (USFDA) clearly states that NPs should exhibit dimension-dependent
phenomena [5]. The International Organization for Standardization (ISO), as the basic
criterion, considers the nanoscale dimension of both the external dimension as well as the
internal surface structure [6].

Naturally occurring nanostructures include allergens [7], microorganisms, i.e., viruses
and bacteria [8,9], but also NPs formed during volcanic eruptions [10]. In the human
body, there are numerous nanostructures without which the normal functioning of the
body is impossible, i.e., enzymes, proteins, antibodies, or DNA. Human bone, which is a
multifaceted composite of hierarchical inorganic nanohydroxyapatite and organic collagen,

Int. J. Mol. Sci. 2022, 23, 15980. https://doi.org/10.3390/ijms232415980 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232415980
https://doi.org/10.3390/ijms232415980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2742-3989
https://orcid.org/0000-0001-6881-3161
https://doi.org/10.3390/ijms232415980
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232415980?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 15980 2 of 54

can also be classified as a nanomaterial [11,12]. In the anthropogenic environment, one can
find atmospheric NPs produced as a result of industrial activity, i.e., exhaust fumes, smoke,
and dust [13,14].

The history of synthetic NMs begins 4500 years ago in ancient Egypt [15]. Probably
one of the first synthetic NMs was lead(II) sulfide NPs (5 nm) (PbS-NPs) used for dyeing
or the so-called “Egyptian blue”, being a mixture of cuprorivaite CaCuSi4O10 and silicon
dioxide (SiO2). The first scientific report describing the synthesis of gold NPs (Au-NPs)
was made by Michael Faraday in 1857.

Generally, NMs are classified into four categories: carbon nanomaterials, inorganic, or-
ganic, and composite-based nanomaterials. Technologically produced nanotubes, fullerenes,
quantum dots (QD), metals (silver Ag, gold Au), metal oxides (titanium dioxide TiO2, zinc
oxide ZnO, iron (III) oxide Fe2O3, SiO2), and lipophilic NPs find more and more applica-
tions in cosmetics. This is due to the fact that NPs, thanks to their high surface-to-volume
ratio [16], in addition to interesting physicochemical, electronic, optical, mechanical, cat-
alytic, and thermal properties, also help in better penetration through the skin barrier [17].

Nanoparticles are ubiquitous in cosmetic products as antioxidants and anti-reflectants.
Examples include TiO2-NPs added to creams as a white pigment or Ag-NPs as a component
of shampoos and toothpaste [3]. In 1986, Christian Dior developed the first lysosomal
anti-aging cream—Capture [18].

Many applications of nanoparticles have been described, not only in cosmetics but
also in preparations for the treatment of skin diseases [19]. In nanomedicine, liposomal
systems for transdermal drug delivery [20,21], contrast agents for diagnosing diseases, and
gene therapies for cancer treatment have gained popularity [22–26].

An example of the use of NPs in medicine is Fe2O3-NPs used as a contrast in magnetic
resonance imaging (MRI) [22]. Fe2O3-NPs, similarly to other magnetic nanoparticles
(MNPs), besides their use as MRI contrast agents, can be used as vehicles, combined with
superconductors, in magnetic drug delivery systems (MDDS). Due to the possibility of
precision-guiding MNPs by an external magnetic field to the required area, MDDS has
become promising in cancer therapy. MNPs can not only effectively transport and deliver
drugs with a high concentration in cancerous tissues, but also generate heat through the
oscillation of their magnetic pulse (44–47 ◦C), enabling the process of thermoablation of
cancer cells (magnetic hyperthermia) [23].

In view of the growing trend of applying NMs in medicine, there is also an intensified
interest in their toxic side effects, especially of those NPs that are not biodegradable, i.e.,
NPs of metals and metal oxides (in contrast to biodegradable NPs prepared from a variety
of materials such as lipids, proteins, polysaccharides, and synthetic biodegradable polymers
such as starches, chitin/chitosan, or poly-(D,L-lactide-coglycolide). Obtaining a therapeutic
effect in the dermal or transdermal administration of drugs or cosmetic preparations chiefly
depends on passing through the skin barrier [27]. NMs in biomedical applications are
characterized by high bioactivity and bioavailability. Unfortunately, such features may
prove to be a threat in the event of potential toxicity. Previous studies have shown that
exposure to NPs contributes to the generation of reactive oxygen species (ROS) [28], as
well as cytotoxicity and genotoxicity [29–31]. In vitro studies have shown that the cytotoxic
effects of NPs may derive from many factors such as chemistry, dose and exposure time,
particle size particle shape, aggregation, surface area, crystal structure, surface function-
alization, and pre-exposure effects [29,32–34], which are crucial for optimizing potential
applications. It should not be forgotten that the availability of pharmaceuticals, as regards
topical administration, is rather limited to the organelles of the skin, i.e., hair follicles, sweat
glands, and sebaceous glands. In this case, the systemic circulation is bypassed, which
reduces adverse or toxic reactions.

It turns out, nevertheless, that the benefits of using NPs outweigh potential concerns
related to the toxicity of NMs. The review article written by Gupta et al. [35] summarizes the
regulatory guidelines and recommendations concerning the safe use of nanocosmeceutical
products in India, Europe, and the USA. Since 2006, the FDA [36] and 2013, the EU [37] have
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been collecting data on the impact of NPs on humans and the environment. An example
of such a study is the work of Lee et al. [38] describing the relationship between markers
of oxidative stress, i.e., urinary 8-hydroxy-2′-deoxyguanosin (8-OHdG) concentration and
the creatinine-adjusted concentration, and the exposure of cosmetics and clothing sellers
potentially exposed to TiO2-NPs and ZnO-NPs. It appeared that the co-exposure index
was significantly positively associated with both markers, reflected by β = 0.308, 95% CI
from 0.106 to 0.510, and β = 0.486, 95% CI from 0.017 to 0.954, respectively. Furthermore,
participants with exposure to NPs had a statistically higher level of 8-OHdG in urine
in comparison to the lower co-exposure group (5.82 vs. 2.85 ng/mL, p < 0.001). Other
studies [39] also confirmed higher levels of 8-OHdG and inflammatory markers such as
cytokines IL-6, IL-8, and TNF-α after exposure to NPs. There is no complete agreement on
the penetration of TiO2-NPs and ZnO-NPs through the epidermis into the bloodstream or
whether this causes long-term toxicity [40].

This review discusses various NPs used in dermatological and cosmetic products, high-
lighting their application in the therapy of different skin diseases (acne, psoriasis, vitiligo,
alopecia, skin cancer), as well as in cosmetology as anti-aging and UV-protecting agents.
The review focuses on NMs intended for topical application to the skin for protective and
healing purposes. It discusses the penetration of NPs through the skin and the parameters
influencing this process. Furthermore, the present review highlights the experimental
models used for in vivo and in vitro studies of skin penetration and the potential threats
to the environment associated with the production of NMs. Literature was searched in
PubMed, Scopus, Google Scholar, and Web of Science databases using key search terms, i.e.,
nanotechnology, nanoparticles, nanomaterials, skin disorders, dermatology, cosmetology,
drug delivery systems, nanocosmeceuticals, nanopharmaceuticals.

2. The Penetration of NPs through the Skin
2.1. The Routes of Penetration

The skin consists of several heterogeneous layers, i.e., the epidermis, the dermis, the
hypodermis, and its appendages (hair follicles, sweat glands, sebaceous glands). The epider-
mis consists of keratinocytes stratified from a basal layer of viable cells to an outermost layer
of terminally differentiated keratinocytes. The stratum corneum (SC) is a very thin layer of
about 10 µm and comprises the three main components: (1) natural-moisturizing-factor
(NMF)-laden and lipid-bound corneocytes (differentiated keratinocytes); (2) corneodesmo-
somes (proteinaceous rivets holding corneocytes together); and (3) lipids. The SC has a
lamellar structure with well-structured lipid bilayers. The SC performs a barrier func-
tion thanks to the high content of proteins and lipids, i.e., ceramides (50%) containing
phytosphingosine, fatty acids (10–20%, highly enriched in linoleic acid), and cholesterol
(25%) [41].

NPs that do not have sufficient ability to penetrate the skin can be applied to the skin
surface as photoprotective and antimicrobial agents (Ag-NPs, TiO2-NPs, ZnO-NPs, calcium
carbonate CaCO3-NPs).

In recent years, more and more attention has been paid to the use of NPs as carriers in
so-called transdermal drug delivery systems (TDDSs) [42]. The condition for the use of a
TDDS is that the drug passes through the skin barrier, enters the bloodstream, and ensures
therapeutic concentration. Carriers with NPs might not only improve the penetration of
macromolecular compounds through the skin and improve their bioavailability, but also
reduce their immunogenicity [43]. In addition to liposomes, solid lipid NPs (SLNs), polymer
micelles, and inorganic NPs are used for this purpose, i.e., SiO2-NPs, Au-NPs, copper
sulfide nanoparticles (CuS-NPs), and Fe3O4-NPs. Inorganic NPs have many advantages,
such as good stability, the ability to modify the surface, and the ability to adjust size and
shape, which determines their potential to penetrate the skin. Therefore, inorganic NPs are
most often used to study the effect of the size of NPs on skin penetration. So far, TiO2-NPs
and ZnO-NPs have been commonly used as reference NPs [44]. In another study, air
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pollutants such as soot and fine dust have been applied for this purpose [45]. The observed
skin-aging effects were evidence of penetration of NPs through the skin.

As for the process of penetration, the skin is a porous barrier in which there are
numerous semi-circular channels of a diameter between 0.4 and 36.0 nm. The primary
barrier that NPs must overcome is the SC. There are three possible ways of NPs’ penetration
through the skin: through the lipid matrix of the SC, through the pores of sweat glands
(diameter: 60–80 µm), or through hair follicles, pilosebaceous pores (diameter: 10–70 µm),
and sebaceous glands.

An interesting way to deliver the drug by the skin and transdermal route using NPs
is through hair follicles, which are an important site of translocation and accumulation of
NPs [46–50].

Topical drug delivery takes place across the SC via intercellular and intracellular routes
or along the skin appendages via the transfollicular route (Figure 1). The SC is a lipidic
acidic compartment, whereas the deeper layers form a more aqueous environment. Thus,
small (<10 nm) lipophilic particles with a positive charge are able to passively penetrate
through the epidermis into the deeper layers of the skin [51], whereas polar molecules
diffuse into the deeper tissues. It can be assumed that the partition coefficients (log P) in
the range from 1 to 3 provide effective skin absorption [52].
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Figure 1. The schematic representation of the possible routes of the NPs permeation through the
multilayered structure of the skin together with its main components and blood vessels (artery-red,
vein-blue).

2.2. The Models of Skin Penetration

Skin penetration tests are necessary to confirm the performance of topical or transder-
mal products. For NPs to be therapeutically useful, they should penetrate the skin barrier,
deliver their contents, and degrade without undesirable side effects. Penetration of NPs
through a damaged skin barrier is indisputably easier. Penetration through a normal skin
barrier is still being tested on various in vivo and ex vivo skin models. NPs, i.e., TiO2,
ZnO [53–57], quantum dots (QD) [51,58–64], and Au-NPs [57–60,62,64–66], were most often
tested for penetration through the skin barrier. The FDA/EMA guidelines should be used
in the design of the experiment; however, other methods are used in scientific experiments,
which makes it impossible to compare the results.

Human skin is regarded as the so-called “gold standard” of membrane models in ex
vivo skin penetration studies. Human skin is obtained from autopsy or plastic surgery
resources. However, most studies on skin penetration by NPs are performed on animal skin
(pig, mouse, rat, guinea pig, and rabbit), both in in vivo and in vitro conditions. It should
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be remembered that there are both structural and morphological interspecies differences
in epidermal thickness and hair follicle density [67,68] that might affect the penetration of
NPs. The results between the models of human skin and animal skin can differ because
of the varied thickness of the SC, the number of hair follicles by area, the diameter of the
follicles, and the amount, composition, and packing of the lipid matrix surrounding the
corneocytes [69,70]. Caussin et al. [71] compared porcine and human SC lipids, which are
arranged in a hexagonal lattice and a denser orthorhombic lattice, respectively. However,
SC thickness appears to be comparable in the range of 21 to 26 µm, as well as hair follicle
density, established as 20/cm2 for porcine ear skin and 14–32/cm2 for human forehead
skin [72]. In turn, the dermis of a rat is thicker than that of humans. In addition, the skin of
rats lacks subcutaneous fat and subcutaneous muscle, as well as the border between the
papillary and reticular layers of the dermis.

Prior to the particle penetration test, the hairy skin is often subjected to depilation,
cutting, or shaving, which may affect the barrier function of the skin. Senzui et al. [73]
confirmed the effect of hair removal on obtained results by carrying out an experiment of
the TiO2-NPs’ penetration through pig skin. He proved that hair removal enhances skin
penetration by NPs, possibly through empty hair follicles. In in vitro skin penetration tests,
the results are affected by the measurement method, i.e., flow cells through diffusion vs.
static Franz diffusion cells [74], and the condition of the skin (damaged/undamaged) [75].

The ability to penetrate the skin also depends on the diffusion area and, more specif-
ically, on the ratio of the volume of the preparation to the surface of the skin. An exam-
ple is the comparison of the results presented in the works of Sonavane et al. [66] and
Labouta et al. [76]. While Sonavane reported good penetration of citrate-stabilized Au-NPs
into rat skin, Labout’s team presented no penetration by similarly sized NPs. The observed
differences resulted from the almost 2-fold lower value of the ratio of the volume of the
preparation to the surface of the skin (cm2) used by the second team.

Penetration testing can be performed using epidermal membranes, dermatomed skin,
or full-thickness skin. There is a consensus that the use of the epidermis provides more
reliable information and better simulates the in vivo situation. The presence of the dermis,
when there is no continuous blood flow, creates an incorrect imitation of the skin barrier [77].
The use of the epidermis requires appropriate preparation, heating, or chemical treatment
with enzymes, detergents, and salts, which unfortunately can cause structural damage and
change the metabolic activity of the skin [78]. Particularly dangerous when separating the
epidermis from the dermis is damage to the hair follicles. The lack of hair follicles affects
the penetration of substances of hydrophilic nature and high molecular weight, which
prefer the transappendageal route.

For the study of the role of the follicular route in the penetration of drugs through the
skin barrier, it is recommended to use pig skin, due to its histological similarity and the
number of hair follicles similar to the human model (20–30 hair follicles per cm2 of skin
surface and hair density of 11–25 hairs/cm2, diameter 58–97 µm) [79]. Other models can be
used for testing, such as EpidermFT™ (skin without hair follicles) or models of fibroblasts
or keratinocytes with hair follicles [80].

The thickness of the full skin can be reduced by removing connective tissue and sub-
cutaneous fat with a dermatome. The effect of membrane thickness on permeation rate has
been studied many times [81–83]. In the example of testosterone, higher flow rates were con-
firmed for a thinner dermatomized skin thickness of 300–500 µm (2.82 to 5.39 µg cm−2 h−1)
than for full-thickness skin of 700–900 µm (0.40 to 0 0.80 µg cm−2 h−1) [84]. This observa-
tion shows that for lipophilic molecules, the results obtained using epidermal membranes
and even the dermatomed skin of full thickness may be overestimated due to the incomplete
skin barrier devoid of part of the dermis, which actually hinders transport [85]. According
to the OECD guidelines, skin penetration tests should be performed using dermatomed skin
with a thickness between 200 and 400 µm. The use of cultured and reconstructed human
skin models (e.g., constructed from keratinocytes) is not recommended, because they gener-
ate results incomparable with human skin [86]. Synthetic membranes are simple substitutes
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for human skin that provide better reproducibility of permeation results. For example,
synthetic silicone membranes showed higher testosterone permeability (Kp = 176.4 × 10−5

and 777.6 × 10−5 cm h−1) compared to human skin (Kp = 7.6 × 10−5 cm h−1) and porcine
(Kp = 31.7 × 10−5 cm h−1) [87]. Reconstructed skin is devoid of physiological receptors
and constitutes a weaker barrier that is more permeable than human skin. Despite these
imperfections, efforts are being made to create synthetic models. It is known that the
properties of proteins, as well as the composition and proportions of fatty acids, especially
supplementation with linoleic acid, are of great importance for ensuring the barrier function
of the skin [88,89].

Another important aspect regarding in vitro research is tissue storage conditions.
According to the guidelines proposed by the OECD, the EU Scientific Committee on Con-
sumer Products, the US Environmental Protection Agency, and the International Program
on Chemical Safety, the skin can be safely frozen without compromising its structural
integrity at −20 ◦C. However, there is no agreement on the duration of storage. The In-
ternational Program on Chemical Safety (IPCS) states that human skin can be stored for
one year, whereas the US Environmental Protection Agency (EPA) allows storage for up
to 3 months. There are large discrepancies in the published reports, e.g., Hewitt et al. [81]
propose storage for 3 months, while Veryser et al. [82] proposed a maximum of 6 months.
However, it should be emphasized that while frozen tissue can be used for permeation
testing, it is not suitable for testing the metabolic activity of drugs. In addition, frozen skin
after thawing should be adequately hydrated to be similar to fresh tissue [83].

2.3. Influence of Physical–Chemical Properties of NPs on Skin Penetration Efficiency

The way in which the physicochemical properties of NPs determine penetration,
systemic translocation, and toxicity have all been studied in detail [16,52,90–98]. There is a
consensus that the physicochemical properties of NPs, i.e., shape, chemical composition,
stability, surface area, and charge, have a decisive influence on the interaction with the skin.

2.3.1. Size Effect

The most important parameter determining the ability of NPs to penetrate the skin is
the NPs diameter [99,100]. NPs smaller than 10 nm or smaller than 600 Da [101] have the
ability to passively transfer through skin barriers and reach systemic circulation [102,103].
The outermost layer of the skin, i.e., the SC, is practically impermeable to larger parti-
cles [104]. Many studies describe a decrease in the permeability of NPs through the skin
with the increase in their size [69]. The exception is TiO2-NPs, which cannot penetrate the
skin layers, regardless of their size or shape [105]. The follicular route allows penetration
into the hair follicles, which can become a reservoir of much larger NPs [99,106,107]. An
experiment conducted on rats [107] showed that solid lipid NPs (SLNs) with different
particle sizes have different abilities when penetrating different layers of the skin. When
SLNs of approximately 100, 300, and 900 nm were exposed to rat skin, 300 nm SLNs were
retained by the upper layers of the skin, while 100 nm NPs diffused through the hair
follicles. The ability of larger NPs to reach the deeper layers of the skin via hair follicles has
been confirmed by many researchers for both organic and inorganic NPs [108–111].

2.3.2. Surface Charge Effect

Another important parameter, from the point of view of the permeability of NPs
through the skin barrier, is the charge on the surface. In the absence of a surface charge,
NPs can agglomerate due to the lack of electrostatic repulsion. The surface charge also
determines the interaction of NPs with the skin. Negatively charged skin will repel negative
NPs, causing them to aggregate on the surface. This reasoning is consistent with the work
of Shanmugam et al. [112], who showed that cationic liposomes had a greater ability
to penetrate the skin than anionic and neutral liposomes. Other studies reveal that Au-
NPs functionalized with cell-penetrating peptides present a greater ability to penetrate
the skin than negatively charged polyethylene-glycol (PEG)-functionalized NPs [113].
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Current knowledge of Ag-NPs’ and Au-NPs’ cellular uptake was collected in a review by
Talarska et al. [114]. Ryman-Rasmussen et al. [115] studied QDs of different sizes (4.6 nm,
12 nm core/shell diameter) and shapes (spherical, ellipsoid) and different surface coatings,
i.e., neutral (PEG), anionic (carboxylic acids), or cationic (PEG-amine). The research was
performed using the in vitro method using pig skin in flow diffusion cells. Once again, the
results indicate that faster skin penetration for cationic and non-ionic QDs is related to the
negative charge of the skin surface. Baspinar et al. [116] described that the penetration of a
nanoemulsion containing prednicarbate with a positive charge owing to phytosphingosine
was enhanced compared to the negatively charged formulation, thanks to myristic acid.
Chitosan-coated NPs [117] showed a promising system for transdermal delivery of a
lyophilic substance.

The aforementioned papers assumed that a positively charged topical formulation
could lead to enhanced penetration due to an increased interaction with the SC, especially
corneocyte components, which carry a negative charge [118]. Wu et al. [119] studied the
disposition of charged NPs 100 nm in diameter (cationic amino-functionalized polystyrene,
anionic carboxyl-functionalized polystyrene, and anionic poly-(L-lactide)) after their top-
ical application on a porcine skin model. The fluorescent dye N-(2,6-diisopropylphenyl)
perylene-3,4-dicarboximine as a model active compound was incorporated within each of
NPs. The obtained results showed that the cationic NPs possessed the highest affinity for
the negatively charged skin surface and delivered the greatest amount of the active agent
into the SC.

One should note the danger that positively charged NPs, due to easier penetration, may
generate a greater toxic effect. Although most studies have confirmed easier penetration of
positive and neutral NPs, there are also conflicting reports in this respect. Gillet et al. [120]
studied the effect of the surface charge of liposomes on skin penetration, concluding that
charged liposomes of phosphatidylcholine (150 nm) had better permeability of the model
drugs betamethasone and betamethasone dipropionate through the skin compared to
positively charged liposomes developed using stearylamine and neutral liposomes. Similar
conclusions can be drawn based on the work of Lee et al. [121]. The authors studied the
effect of the surface charges of gold nanorods (GNs) on skin penetration using a Franz-type
diffusion cell (FDC), transmission electron microscopy (TEM), and inductively coupled
plasma mass spectrometry (ICP-MS). The results showed increased permeability to the
SC of the electron-dense dots of GNs compared to those with a positive charge (p < 0.01).
Better diffusion coefficients of negative NPs crossing biological barriers are also confirmed
by other studies [122,123].

2.3.3. Hydrophobic/Hydrophilic Effect

Skin presents variable hydrophilicity and hydrophobicity in its different layers. Thus,
effective penetration into the deeper layers of the skin provides the molecules with an
amphiphilic character. There are several surface modification strategies for inorganic NPs,
including physical adsorption, covalent bonding, layer-by-layer assembly, ligand exchange,
and in situ polymerization [124]. Metallic NPs have usually already stabilized during
the synthesis process. Stable dispersion in aqueous solutions is ensured, for example, by
a hydrophilic citrate coating formed in the process of reducing the appropriate salt. In
turn, coating the surface with oleic acid can make the surface hydrophobic. It is assumed
that the hydrophobicity of the particle surface significantly improves skin penetration.
This was demonstrated in the example of Au-NPs [76]. Au-NPs (15 nm) modified by
cetrimide, creating a hydrophobic surface, had better penetration ability compared to
citrate-stabilized NPs of the same size. Surface modification with lecithin, owing to the
hydrophilic surface, reduced the penetration of even smaller Au-NPs (6 nm). It should
be emphasized that hydrophobicity/hydrophilicity has a much smaller impact on skin
penetration than differences in the size of NPs [125].



Int. J. Mol. Sci. 2022, 23, 15980 8 of 54

2.3.4. Shape Effect

Another parameter that affects the crossing of the biological barrier by NPs is their
shape, or rather distinct aspect ratios (length/width = ARs). The synthesis conditions
determine the final product, which can have various shapes, from simple spherical and
rod-shaped to rose-shaped NPs. Monteiro-Riviere et al. showed that spherical QD core
shells had a greater ability to penetrate the skin than ellipsoidal QDs [115], while gold
nanorods penetrated deeper than gold nanospheres [113].

Among the monodisperse mesoporous silica NPs (MSNs) which were sphere-shaped,
short-rod-shaped, and long-rod-shaped, the latter were more easily internalized by cells
compared with spherical NPs [126]. Xie et al. [127] observed that methyl-PEG-coated
Au-NPs in the shape of stars, rods, and triangles differ in the efficiency of cellular uptake by
RAW264.7 cells, which seems to be the worst for the star and the best for the triangles. An
interesting observation was that, depending on the shape, NPs use different endocytosis
pathways. Observations related to the influence of the shape of NPs on overcoming the
biological barrier are described in the review by Wang et al. [128]. Fernandes et al. [113]
studied the interactions between human and mouse skin and colloidal Au-NPs (15 nm)
with different physicochemical properties. The penetration of Au-NPs through the skin
was assessed using various techniques, i.e., ICP-OES, TEM, and a two-photon photolumi-
nescence microscope (TPPL), which enabled the visualization of NPs’ migration within
different skin substructures. These studies revealed that Au-NPs functionalized with TAT
and R7 cell-penetrating peptides (CPP) accumulated in the skin in greater amounts than
PEG-functionalized NPs and were able to penetrate deeply into the skin structure. The
authors noticed that positively charged NPs penetrated the skin in larger numbers in
comparison to their negatively charged counterparts. Furthermore, the rod-shaped NPs
showed a higher accumulation in the skin compared to the spherical NPs. It turns out that
the shape of NPs plays a greater role in permeation via the intercellular pathway, while
permeation via the vesicular pathway is independent of shape [129].

2.3.5. Chemical Composition Effect

NPs can be composed of various materials that interact with skin components and
regulate the penetration of skin layers. There are lipid NPs, i.e., solid lipid NPs (SLNs), lipo-
somes, nanostructured lipid carriers (NLCs), nanoemulsions, polymeric NPs, and inorganic
NPs [130]. Thanks to low interfacial tension and good wetting properties, nanoemulsions
ensure even deposition on the skin surface [27]. Lipid-based NPs form uniform layers on
the SC and extend the residence time, thus promoting interaction with the skin layers and
modulating its barrier properties. SLNs and NLCs combine the advantages of polymer
particles, liposomes, and emulsions and can be used for dermal as well as transdermal
drug delivery. SLNs contain lipid droplets that are fully crystallized. NLCs are modified
SLNs in which the lipid phase contains both solid and liquid lipids. Both forms ensure
high drug stability, controlled release profile, and high percentage of encapsulation.

Solid Lipid Nanoparticles (SLNs) (400–1000 nm) are based on solid lipids and emulsifiers.
The physicochemical properties of SLNs depend on the lipid composition. Chantabu-
ranan et al. [131] showed that the addition of secondary solid complex triglycerides to SLNs
produced with cetyl palmitate resulted in higher ibuprofen encapsulation efficiency and
improved sustained release capability. SLNs, as local drug delivery systems, are safe due to
biocompatibility, biodegradability, and low toxicity. SLNs can be used as carriers for local
delivery of high-molecular lipophilic molecules, ensuring their better efficiency in reaching
the deeper layers of the skin. The adhesive properties provide even distribution of SLNs by
creating a film on the surface of the skin. By interacting with the SC, they change its barrier
properties and allow the drug to penetrate into the deeper layers of the skin [27]. Local
drug delivery, thanks to SLNs, allows for increased drug deposition in areas such as hair
follicles or sebaceous glands, which increases the therapeutic effect and prevents systemic
negative effects [132]. This is confirmed by in vivo studies conducted on SLNs loaded
with cyclosporin A and calcipotriol, which improved the treatment of lesions in psoriasis
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compared with free drugs [133]. Similar results were obtained with SLNs loaded with
benzoyl peroxide (BPO) used in the topical treatment of acne [134]. The disadvantage of
SLNs is the crystal structure of some solid lipids, high viscosity, and low physical stability,
as well as the possibility of polymorphic transitions. Some limitations can be avoided by
adding secondary solid complex triglycerides (Softisan 378; S378) to the matrix, e.g., cetyl
palmitate [131]. The improvement of the penetration of SLNs through the skin is ensured
by the addition of surfactants, which loosens the SC. SLNs are used in preparations for
the treatment of dermatologic disorders, such as acne, psoriasis, androgenetic alopecia,
hirsutism, ichthyosis, etc., as well as in anti-wrinkle cosmetic products. An example may be
SLNs loaded with retinyl palmitate [135]. In the work of Chen et al. [136], SLNs were used
as carriers to deliver powerful antioxidants to the skin, i.e., resveratrol, vitamin E, and epi-
gallocatechin gallate (EGCG). In the work of Kelidari et al. [137], SLNs were used to deliver
spironolactone (SP) to the skin. SP-loaded SLNs (SP-SLNs) were tested for drug release,
skin penetration, and drug retention. SP-SLNs were characterized by a spherical shape
with an average diameter, zeta potential, and trapping efficiency of 88.9 nm, −23.9 mV, and
59.86%, respectively. The analysis showed that the amount of SP penetrating the skin of the
SP-SLN rat was almost double that of SP alone 24 h after administration.

Nanostructured lipid carriers (NLCs) are formed from a mixture of solid and liquid
lipids such as oleic acid, triolein, copaiba oil, almond oil, etc. These systems are used to
deliver dermal, transdermal, and vesicular drugs. The determining factor for the depth
of delivery is the diameter of the NPs. Smaller particles reach the systemic circulation,
while larger ones are located on the surface of the skin, and medium particles in the hair
follicles [46]. A promising effect of using NLCs is the ability to improve skin hydration
by creating a protective film in the SC and preventing water loss through the skin [138].
The use of NLCs for the purpose of vesicular drug delivery for the treatment of acne,
hirsutism, and alopecia, i.e., the so-called androgenic skin diseases, seems to be promising
as well. NLCs also act as nanocarriers for sunscreens and chemotherapeutics for wound
healing, thanks to the possibility of extending the residence time of the preparation at the
site of injury. It turns out that NLCs loaded with octyl methoxycinnamate (OMC) have
better photoprotective properties than SLNs loaded with OMC [135]. NLCs prepared from
lipids of natural origin are characterized by low toxicity. They can be used to encapsulate
active pharmaceutical ingredients (APIs) and deliver them directionally through the skin.
An example is thymol encapsulated in NLCs, with 107.7 (±3.8) nm composed of natural
lipids [139]. The gel containing thymol NLCs exhibited anti-inflammatory and antipsoriatic
activity on mouse models.

Liposomes are in the form of vesicles of an aqueous phase surrounded by one or more
lipid bilayers, usually composed of phospholipids or cholesterol. Liposomes can be used
for local administration of APIs, providing them with controlled release and retention in
the skin, limiting systemic absorption. The above beneficial effects depend on the compo-
sition of the liposomes, particle size, lamellarity, fluidity, and occlusive properties [140].
Liposomes, especially transfersomes, are suitable for TDDSs [141], as they can even pass
through the dermis [141]. Improving the elasticity of the lipid bilayer of liposomes, using
surfactants or ethanol (ethosome), can increase penetration through the deeper layers of the
skin. Most liposomes are applied together with surfactants to improve penetration [142].
Surfactants are mainly responsible for disorganizing the intercellular lipids of the skin,
making it more permeable. In the case of ionic surfactants, such as sodium lauryl sulfate,
this is done by interacting with keratin fibrils and non-ionic surfactants, such as Tween
80 and polysorbates, by dissolving lipids and interacting with keratin [143]. Ethosomes and
transfersomes as ultradeformable vesicular carriers were used the percutaneous delivery
of sulforaphane for the treatment of skin cancer diseases [144]. Sulforaphane is known
to have antiproliferative effects against melanoma and other skin cancers. However, its
poor permeability limits its clinical use. The applied ethosomes (<400 nm) consisting of
40% ethanol (w/v) and phospholipon 90G 2% (w/v) ensured an increase in the percu-
taneous penetration of sulforaphane and an improvement in the anticancer activity on
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SK-MEL 28 compared to the free drug [144]. In another study, elastic and ultradeformable
liposomes (<300 nm) were used for delivering the anti-inflammatory and anticancer 3-(4′-
geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid [145]. Nanotechnology has great
potential in the treatment of actinic keratosis and malignant skin lesions, e.g., squamous
cell carcinoma caused by UV radiation. Antiproliferative and antimitotic drugs are used
to treat these diseases. Paclitaxel-loaded ethosomes [146], in an in vitro study, improve
paclitaxel penetration and increase antiproliferative activity compared to the free drug.
The vesicular colloidal carriers, ethhosomes and transfersomes loaded with linoleic acid,
were applied in the therapeutic treatment of hyperpigmentation disorders [147]. The li-
posomes were prepared using the lecithin component and ethanol and sodium cholate.
Experimental findings showed that both carriers were accumulated in the skin membrane
model and can be applied for topical delivery of linoleic acid. As with other nanostructures,
smaller liposomes, e.g., small uni-lamellar vesicles (SUV) of around 70 nm, can penetrate
deeper compared to multi-lamellar vesicles (MLV) with a diameter of around 300 nm.
Liposomes > 600 nm remain on the surface of the SC. There are several mechanisms for the
penetration of liposomes into the lipid lamellae of the SC and through the epidermis [27].

Niosomes are vesicular systems with a single- or multi-layer spheroidal structure
formed from the connection of amphiphilic molecules, i.e., Spans and Tweens. As non-ionic
surfactants, they are non-toxic and biocompatible to enhance the penetration of local drug
delivery systems. Tweens, however, prove to be more effective in the TDDS as compared to
Spans. A similar effect is obtained by reducing the amount of cholesterol in niosomes [148].
Penetration of the skin by niosomes is strongly related to the type of surfactants, mainly
their hydrophilic–lipophilic balance (HLB) number. Lipophilic surfactants (HLB = 9–10)
cause greater drug retention in the skin. Cationic niosomes, as a rule, enhance penetration
into the skin, which is negatively charged due to surface lipids, in contrast to anionic or
neutral niosomes [149]. The mechanism of skin penetration by niosomes includes reduction
in transepidermal water loss (TEWL), and the second is fusion or adsorption of vesicular
drug delivery systems to the surface of the skin. Niosomes can loosen the SC, thanks to the
presence of terpenes, which makes it more permeable and bioavailable for encapsulated
drugs to pass through the skin [150]. The addition of ethanol or essential oils improves the
elasticity of the bubbles and causes fluidization of the lipids of the SC, which improves
the solubility of drugs in the stratum corneum. Ethanol allows a reduction in the size of
niosomes by modifying the surface charge and steric stabilization. The essential oils in the
follicular membrane also improve elasticity and improve drug delivery across the skin.
The addition of clove, eucalyptus or lemon essential oils to niosomes has been studied for
transdermal delivery of felodipine [151]. Spherical niosomes (279–345 nm) (Span 60 and
cholesterol) were used. Thanks to the presence of essential oils, the fluidization effect of
the membrane and the improvement of drug release were obtained. One of the niosomal
formulations is a preparation containing 5-aminolevulinic acid (ALA) for photodynamic
therapy (PDT) of skin cancers [152]. Niosomes were prepared with a Span 60–cholesterol
mixture, ethanol and various boundary activators, diethyl phosphate (DCP), and sodium
cholate (SC). Niosomes were more effective in ex vivo permeation and penetration of ALA
through human skin than the drug solution. Other niosomal preparations were obtained
from a mixture of Span 60 and Tween 60 for encapsulation of the plant antioxidant ellagic
acid (EA), which in the water form is poorly soluble and poorly permeable to the skin.
Nanosomes were prepared with Span 60 and Tween 60 and various solubilizers, i.e., PEG
400, propylene glycol (PG), and methanol (MeOH) [153]. The obtained niosomes had the
shape of spherical multilayer vesicles of 124–752 nm. The in vitro study showed that the
penetration of EA depended on, among others things, the type of added solubilizers. In
order to improve the penetration of proteins and peptides into niosomes, additives such as
poly-oxyethylene ether and diacyl glycerides are added [154].

Nanocrystals are systems with a size of 1 to 1000 nm formed from solid particles of
drugs [155]. In order to avoid aggregation, the particles are suspended in ionic (sodium
lauryl sulfate), non-ionic (Poloxamers, Tweens), or polymer stabilizers (hydroxyl propyl
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methylcellulose, polyvinyl alcohol, polyvinyl povidone, hydroxyl propyl cellulose). The
advantage of these carriers is a very high drug-loading capacity, thanks to which it is possi-
ble to obtain a high therapeutic concentration at the target site [156]. In turn, nanonization
allows, by reducing the size of particles, to increase the surface area of nanocrystals, which
is important in the case of penetration of poorly hydrated skin. Nanocrystals improve the
delivery of poorly water-soluble drugs through the skin [156]. The literature describes
many examples of improved skin penetration by drugs applied in the form of nanocrystals
compared to conventional forms, e.g., nanosuspension of lutein [157] and dexamethasone-
nanocrystal-loaded ethyl cellulose nanocarriers [156]. The increase in the penetration of
nanocrystals is the result of an increase in the concentration gradient, which enhances the
passive diffusion of APIs through the skin layers [155,158].

Polymer NPs are colloidal nanocarriers with dimensions below 1000 nm. Polymer
NPs are characterized by very good adhesion, which ensures a long residence time on
the skin, which is why they have gained recognition for topical application [159]. There
are basically two types of nanopolymers, i.e., nanocapsules and nanospheres. Nanocap-
sules have a bubble structure with an oil component, and nanospheres have no oil in
their composition. Natural and synthetic polymers have rather low toxicity and good
biocompatibility; however, to improve the APIs’ permeability and extend the contact time,
interpenetrating polymeric networks (IPNs) such as hydrogels have been introduced. Hy-
drogels are nanocarriers suitable for transferring hydrophilic molecules such as peptides,
proteins, and oligonucleotides. The advantage of hydrogels is primarily better stability
compared to nanoemulsions and suspensions. It should be noted that synthetic poly-
mers are superior to natural polymers in terms of purity, i.e., uniformity of composition.
Polymer NPs can be made of poly-ε-caprolactone, chitosan, poly (lactide-co-glycolide),
poly-(ε-caprolactone)-block-poly (ethylene glycol), poly (butyl cyanoacrylate), poly (ethyl
cyanoacrylate), ethylcellulose, cellulose acetate phthalate, and a fatty-acid-conjugated poly
(vinyl alcohol) [160]. The chitosan nanogel (370.4 ± 4.78 nm) formulation containing anti-
diabetic drugs glibenclamide and quercetin was prepared by ionic gelation [161]. The
percentage of cumulative drug release through skin showed favorable results. Other types
are dendritic polymers (dendrimers), i.e., poly (amidoamine) and poly (propylene imine)
dendrimers with a core–shell structure, which enhance the penetration of APIs through
the skin by interacting with skin lipids and denaturing keratin proteins. As in the case
of other nanoparticles, the permeation efficiency is determined by the size, charge, and
functionalities on dendrimers [162]. Polymer NPs can be used as carriers of lyophilic APIs
and UV-protective ingredients in topical applications due to the possibility of retention on
the skin surface [159]. This was confirmed in the study of passive penetration of human
skin by fluorescent dyes 5-dodecanoylaminofluorescein and Nile Red, as model lipophilic
compounds, enclosed in tyrosine-derived nanospheres [163]. Nanospheres (50 nm) were
formed from a copolymer of PEG, oligomers of suberic acid, and desaminotyrosyl tyrosine
alkyl esters. In turn, the penetration of deeper layers of the skin is ensured by hydrophilic
nanogels [164].

Inorganic NPs are very stable with wide-range functionality. Skin penetration in this
case is size-dependent, similarly to other types of NPs [66]. Many authors indicate the
possibility of aggregation of inorganic NPs that are applied on the surface of the skin. This
phenomenon is highly unfavorable in terms of penetration [69]. The surface of inorganic
NPs can be modified, which significantly changes the effectiveness of skin penetration. An
example may be Au-NPs with a surface modified with a hydrophobic coating, thanks to
which they can penetrate deeper [74,165]. Silica NPs can be used as carriers for transdermal
drug delivery. They have many advantages, i.e., adjustable pore size and size and ease of
functionalization via reactive silanol groups on the surface [166]. Human skin blocks the
penetration of silica NPs larger than 75 nm [167]. NPs with a hydrophobic surface penetrate
into the deeper layers of the skin [125]. Negatively charged and smaller silica NPs (20 nm)
are more toxic [168]. It turns out that amorphous silica NPs can penetrate the skin barrier
and induce an immunomodulatory effect [169]. A relationship between the size of the NPs
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(300–1000 nm) and adjuvant activity was proven using an atopic dermatitis model induced
by intradermally injected Dermatophagoides pteronyssinus (Dp) mite antigen in NC/Nga
mice. Reducing the silica particle size increased interleukin IL-18 and the production of
thymic stromal lymphopoietin (TSLP), leading to systemic inflammatory T helper (Th)
2 responses and exacerbation of allergic skin lesions. Another example of carriers used for
transdermal drug delivery are Au-NPs. Numerous studies confirm that the size of Au-NPs
and their shape have a large impact on the rate of skin penetration [66,170]. A solid-in-oil
dispersion of Au nanorods can be used to enhance the transdermal delivery of protein, as
well as skin vaccination [171].

2.4. Methods to Improve the Penetration of NPs through the Skin

For an effective therapeutic effect, NPs must pass through the SC barrier [172]. Trans-
dermal delivery of particularly hydrophilic molecules is hindered by the lipid layer of the
epidermis. To generate a perforation in the SC, various technologies are used, such as mi-
croneedles, cavitation ultrasound, microdermabrasion, electroporation, and thermal ablation.

2.4.1. Exposure to UV Radiation

Exposure to UV radiation is used to improve skin penetration by inorganic NPs.
Studies have shown that UVB not only increases the penetration of NPs through the skin,
but also changes the biology of skin cells. For example, the uptake of QDs in keratinocytes,
primary melanocytes, and related cell lines is increased after initial exposure to UVB.
Increased penetration of QDs as model NPs is the result of skin damage on the surface of
the SC around the hair follicles [173].

2.4.2. Local Hyperthermia

Mild local hyperthermia can be used for the percutaneous application of vaccines.
Mild local hyperthermia (42 ◦C) enhances transdermal (HET) immunization. This is consid-
ered a novel strategy employing the application of antigens along intact skin, resulting in
detectable antigen-specific immunoglobulins (Igs) in serum [174]. For example, mice trans-
dermally immunized with diphtheria toxoid generated an antibody response. Therefore, it
can be assumed that local hyperthermia increases the transport of high-molecular-weight
NPs and antigen-labeled NPs [175].

2.4.3. Iontophoresis

Iontophoresis, thanks to the use of direct current, improves the transdermal penetra-
tion of drugs through the skin [176]. The combination of nano-drugs and iontophoresis
was first described in 1996. Electromigration and electro-osmosis appearing due to the
application of a low-level electric current (≤0.5 mA/cm2) are responsible for enhancing
the passage of drugs throughout the skin. It should be emphasized that positively charged
NPs are preferable for iontophoresis.

The deposition of triclosan by triclosan-loaded cationic nanospheres (261.0 ± 15.1 nm)
combined with iontophoresis was 3.1-fold greater in comparison to the application of the
triclosan solution by passive diffusion [177]. Ethylcellulose/Eudragit® RS NPs loaded with
dexamethasone (105 nm) and positively charged (+37 mV) have shown the potential to
control the release and penetration of corticosteroids into the skin, thereby reducing the
side effects of corticosteroids [178]. Results show that electric fields of different intensities
(3.2~9.8 V/cm) can improve the permeability of a transdermal chip system for the delivery
of Au-NPs [179]. Penetration of Au-NPs into the human SC via the intercellular route
was proven.
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2.4.4. Dermaportation and Sonophoresis

Penetration of NPs through the skin is improved by the use of pulsed electromag-
netic fields (PEMF) [180] and ultrasound at low frequency (20–100 kHz) [181], known as
dermaportation and sonophoresis, respectively. The penetration enhancement mechanism
is related in these cases to the formation of transient pores in the SC.

2.4.5. Mechanical Permeation Enhancement

In the in vivo study conducted by Gulson et al. [182], humans were exposed to sun-
screens containing 19 nm and >0 nm ZnO-NPs, with the aim to determine if zinc (Zn) can
be absorbed through the undamaged skin. Stable isotope (68) Zn tracing allowed dermally
absorbed Zn to be distinguished from Zn already present in the blood compartment. It
appeared that the majority of applied (68) Zn was not absorbed, and the amount of tracer
detected in blood after the 5-day application period was ~1/1000 that of total Zn in the
blood. So far, mechanical treatments, i.e., skin flexion and massage, have not been re-
ported to affect the penetration of NPs into the skin. However, regarding the research of
Lademann et al. [183], it appears that hair movement simulated by massaging the skin
may facilitate the penetration of medium-sized NPs (~400–700 nm) into the hair follicles.
Additionally, a study by Gratieri et al. [184] performed using the gold standard of human
skin showed that QDs passed into the deeper skin layers (DSLs) after massaging (5–10 min)
of tape-striped skin. Thus, the use of NPs as drug delivery vehicles seems to be most
effective for partially damaged skin.

TDD is made possible by the use of microneedles. Microneedles (MNs) are micron-
sized needle protrusions 10–2000 µm high and 10–50 µm wide that painlessly penetrate the
skin. However, frequent use of MNs may lead to skin damage and even inflammation.

Mechanical methods of enhancing penetration include tape-stripping and dermabra-
sion. These methods involve complete or partial removal of the SC [185–189]. Dermimage
is used in cosmetic procedures to increase skin permeability to hydrophilic preparations.
Few studies describe the penetration of NPs through dermabraded skin [58–60]. Tapeless
skin has an altered permeability to NPs [51,58–61,64,190]. The 2009 Gopee study showed
that nail-shaped QDs coated with neutral-charge PEG (CdSe/CdS core/shell, 37 nm) and
negatively charged QDs coated with spherical dihydrolipic acid (CdSe/ZnS core/shell,
15 nm) accumulate in the mouse liver after topical application in dermabraded but not in-
tact SKH-1 hairless mouse skin [60]. Neutral QDs showed greater accumulation compared
to negatively charged ones, further indicating the influence of surface charge.

2.4.6. Chemical Permeation Enhancement

In order to improve the efficiency of NPs’ penetration through the skin, chemical
permeation enhancers can also be used. The results showed that oleic acid (OA), ethanol
(EtOH), and oleic acid-ethanol (OA-EtOH) were all capable of enhancing the transdermal
delivery of ZnO-NPs by increasing the intercellular lipid fluidity or extracting lipids from
the SC [191]. Among the tested chemical enhancers, dimethyl sulfoxide (DMSO) could
induce the penetration of hydrophilic (citrate-stabilized) gold colloid [192].

2.4.7. Thermal Ablation

Thermal ablation is used to generate perforations in the SC by microheaters, ra-
diofrequency, or laser. Photothermal NPs, e.g., Au-NPs, absorb near-infrared (NIR) light
(650–900 nm), causing resonance and the transfer of thermal energy to the surrounding
tissue. The photothermal effect can be used, for example, in the ablation of tumor cells [193]
or to increase drug permeability [194]. Another class of photothermal NPs is the semicon-
ductor copper monosulfide NPs (CuS-NPs). They have an advantage over Au-NPs because,
in addition to lower cost, the absorption wavelength of CuS-NPs is independent of the
dielectric constant of the surrounding medium [195].



Int. J. Mol. Sci. 2022, 23, 15980 14 of 54

3. Methods Applied to Investigate the Skin Penetration by NPs
3.1. Visualization

Detection and quantification of NPs is a great challenge for analytical chemistry. The
techniques applied to monitor skin penetration by NPs should offer low detection limits
due to the trace concentration of NPs penetrating the skin barrier. Most studies were
conducted using inorganic NPs. Scanning electron microscopy (SEM), TEM, fluorescence
microscopy, and confocal and multiphoton microscopy are useful for the qualitative visu-
alization of these NPs. The penetration of NPs as a carrier of bioactive compounds into
the skin can be carried out using confocal laser scanning microscopy (CLSM). The confocal
and multiphoton laser scanning microscopy enables the achievement of three-dimensional
visualization of NPs’ distribution in skin layers via optical sectioning [69]. These techniques
offer high image resolution as well as magnification of objects up to two million times.
Determining the presence or absence as well as concentration of NPs in biological tissue has
been enabled by multiphoton microscopy (MPM). MPM, in combination with fluorescence
lifetime imaging microscopy (FLIM), can identify fluorophores with overlapping spectral
properties. The use of MPM and FLIM to visualize the disposition of NPs and QDs in
the skin was described in a review article [196]. For the understanding of nanomedicines’
in vivo behavior, imaging techniques such as nuclear imaging by positron emission to-
mography (PET) and single-photon emission computed tomography (SPECT) are highly
attractive because of high sensitivity and non-invasive quantification. The nuclear imaging
techniques can provide information about pharmacokinetic parameters, biodistribution
profiles, or target site accumulation of nanocarriers [197]. Freeze-fracture electron mi-
croscopy (FFEM) can visualize the effects of interactions occurring between NPs and the
skin structures. Samples should be appropriately treated by freezing and subsequently
fracturing under a high vacuum [198].

3.2. Quantification of NPs and Structural Changes in Skin

Quantification of elemental composition requires other analytical methods, such
as inductively coupled plasma optical emission spectroscopy (ICP-OES), ICP-MS, and
atomic absorption spectroscopy (AAS). The disadvantages of these techniques are spectral
interferences from trace elements and the possibility of analyzing atoms or ions originating
from biological materials not just from the NPs themselves. In turn, high-pressure liquid
chromatography (HPLC) with diode array DAD or mass spectrometry (MS) detection
provides for the quantitative analysis of medicinal products.

Fourier Transform infrared (FTIR) spectroscopy can be used not only to evaluate drug
stability, but also the organization of the SC, especially the lateral lipid organization of the
intercellular lipid matrix. FTIR modification, namely attenuated total reflectance FTIR (ATR-
FTIR), enables the measurement of the SC in vivo to generate a penetration profile of APIs
as well as to evaluate their effects on lipid organization after topical application. Differential
scanning calorimetry (DSC) is used to answer the question of how drug penetration through
the skin influences the lipid bilayers. Another method used to study the effects of NPs on
the lamellar organization of lipids in the intercellular matrix of the SC is small-angle X-ray
diffraction (SAXD) [199].

3.3. NPs Physicochemical Characteristics

The NPs physicochemical characteristics cover particle size (nm), shape, and zeta
potential (mV) evaluation. Light scattering can be useful for assessing these properties.
The particle size, the zeta potential, and size distribution can be measured by wet laser
diffraction sizing known as dynamic light scattering (DLS) using a Zetasizer. The specific
surface area is measured by Brunauer, Emmett, and Teller’s method, known as the BET,
through the evaluation of gas adsorption, typically krypton or nitrogen, by a monolayer.
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4. Nano-Drug Therapy

Nanomedicine uses various types of engineered nanoparticles for dermal and trans-
dermal drug delivery. In addition, there are so-called nanoparticle carriers, i.e., colloidal
systems with a diameter < 500 nm, such as nanoemulsions, nanostructured lipid carriers
(NLC), liposomes, niosomes, and others used as the TDDS.

The advantage of the TDDS is precise drug deposition, increased drug stability, and
its controlled release [200]. Owing to topical application, the TDDS ensures avoidance
of hepatic first-pass metabolism as well as the gastrointestinal tract. Furthermore, the
amount of drug administered can be lower, permitting the use of a relatively potent
drug without the risk of system toxicity. Nanoparticle therapies include (i) skin cancer
imaging and therapeutic targeting, (ii) immunomodulation and vaccine delivery [201], and
(iii) antimicrobial agents and wound healing (Figure 2).
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4.1. The Transdermal Drug Delivery
4.1.1. Skin Cancer Imaging and Targeted Therapy

The most dangerous skin cancer is metastatic melanoma [202]. Nanotechnology has
been used both in its diagnosis (magnetic NPs, QDs, Au-NPs) and therapy [203–209].

Tumor-selective diagnostic probes must meet safety criteria, i.e., low nanotoxicity
in vivo, no particle residues in the reticuloendothelial system, favorable distribution kinet-
ics, efficient renal clearance, prolonged circulation time, and adequate tumor penetration.
In molecular imaging of skin cancers, Au-NPs are used due to the possibility of cou-
pling with many detection methods based on optical absorption, electrical conductivity
fluorescence, atomic and magnetic force, and Raman scattering [210]. QDs offer other
possibilities. They are usually covered with an anionic oligomeric phosphine envelope.
After absorbing the radiation, they emit constant and stable fluorescent radiation with a
wavelength depending on the size of the particles [211]. Cornell dots (C dots) received
the first recommendation approved by the FDA. Core–shell silica NPs containing Cy5
dye (>650 nm) coated with methoxy-terminated PEG chains (PEG ~0.5 kDa) have also
been described as potentially useful for selective tumor targeting in animal models of
melanoma [209]. The neutral PEG coating prevented uptake by other cells. The use of
bifunctional PEGs enabled the attachment of cRGDY peptide ligands targeting the ανβ3
integrin, additionally labeled with 124I positron-emitting radionuclide, with the aim of
3D visualization with PET. Despite rapid clearance, silica NPs had the advantage of being
non-toxic and biodegradable [212,213]. Currently, the product is cleared for clinical trials
for tumor targeting and lymph node mapping.

Nanomaterials are also being tested for the treatment of melanoma. Lipophilic and
polymeric NPs are commonly used to deliver substances into the skin [214–216], mainly
because of their easy degradation compared to insoluble NPs that accumulate in the skin.
Compared to standard chemotherapeutic agents, which are cytotoxic to healthy cells,
nanodrugs enable the selective delivery of higher drug doses to cancer cells [58,59,217–226].
An example is Au nanospheres modified with antibodies, which are used in phototherapy
for selective photothermolysis of the tumor [227].

Other NPs are also used to attach homing ligands. Au nanocages [228], Au nanospheres [229],
QDs [230,231], and polymeric liposomes [220,232] have been described in melanoma metasta-
sis studies. The ligands associated with NPs target receptors that are overexpressed on
melanoma cells. One such receptor is the melanocortin 1 receptor [228,229,233–235]. The
mechanism of functioning of these receptors is mediated by the G protein and consists
in signal transduction by increasing the concentration of cAMP in the neuroplasma and
mobilizing intracellular calcium reserves [236]. MC1R is a classical receptor for α-MSH. It is
expressed in melanocytes of the skin, but also in keratinocytes, fibroblasts, endothelial cells,
and antigen-presenting cells (APCs). It is a key protein involved in melanogenesis. MC1R,
after binding to α-MSH, initiates a complex signaling cascade that leads to the production
of a black-brown pigment—Eumelanin. The attachment of peptide agonists or antagonists
to NPs targeting the melanocortin 1 receptor does not present sufficient cellular specificity.
In addition to melanocytes and melanoma cells, other cells also express the melanocortin
1 receptor [237–240]. Another receptor target is the sigma 1 receptor, delivering c-Myc small
interfering RNAs to B16F10 melanoma tumors using a mouse model [220].

4.1.2. Immunomodulation and Topical Vaccine Delivery

The skin contains a network of skin APCs, such as Langerhans cells (LCs), epidermis
and dermal dendritic cells (DCs), dermal macrophages in the dermis, and other infiltrating
cells, such as neutrophils, monocytes, inflammatory DCs (CD206+), and plasmocytoid
DCs. The immune response is generated mainly by DCs and LCs, which are key regulators
in the immune system [241–243]. For example, the skin is known to be responsible for
sensitization to allergens [244–246]. Typical LCs are present in the suprabasal epidermis
and rectal skin, foreskin, and body mucosa [247]. LCs are mainly recognized by the
expression of the human leukocyte antigen (HLA)-DR and CD1a. Currently, the marker
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for LC identification is langerin [248]. CD1a+ cells are known to concentrate in the funnel
epithelium of hair follicles [249]. NPs can easily accumulate in hair follicles, especially after
mechanical stimulation [249,250]. The amount and depth to which the NPs penetrate along
the alveolar duct depends on their size. However, it should be borne in mind that cleaning
the hair follicle openings and reducing the barrier function in healthy skin has the potential
to trigger an inflammatory response [251]. From the hair follicles, NPs diffuse into the
perifollicular tissues and are taken up by LCs (CD207ţ) and dendritic cells (CD205ţ), which
migrate to the lymph nodes [252,253].

Using an in vivo mouse model, it was shown that NPs, e.g., carbon nanotubes, have
an immunostimulating effect. They are responsible for inducing macrophage activation,
antigen-specific and non-specific T cell proliferation, cytokine production, and induction of
antibody responses to ovalbumin [254,255]. TiO2-NPs injected subcutaneously in NC/Nga
mice, after simultaneous exposure to mite allergen, intensify the development of skin
lesions similar to atopic dermatitis (AD) [256]. In turn, combined exposure of the skin to
TiO2-NPs and UVR exacerbated the symptoms of atopic-like dermatitis in DS-Nh mice [257].
In this case, UVR induces a defect in the skin barrier [258] and an increase in the penetration
of NPs through the SC.

NPs are capable of carrying an antigen [259], acting as an adjuvant [260]. Thus,
nanotechnology has the potential to modulate the immune system [261–265] and deliver
vaccines through the skin [266,267]. The nanocarrier-based model vaccines appeared to
be effective in animals, e.g., the transcutaneous application of a model HIV-p24 particle-
based vaccine, which triggered serum and mucosal antibodies as well as cellular immune
responses [268]. The most likely route of penetration for topical vaccination is through
the hair follicles due to the abundance of immune-competent cells around the root sheath
and the sebaceous gland. Jung et al. [269] reported that other routes of penetration, such
as interalveolar penetration, play a minor role. The first study presenting the potential of
non-invasive, transfollicular vaccination using NPs without compromising the SC barrier
was published by Mittal et al. [201]. NPs were prepared from polymers poly(lactide-co-
glycolide) (PLGA) or chitosan-coated PLGA (Chit-PLGA) with polyvinyl alcohol as a
stabilizer. Ovalbumin (OVA) was used as a model antigen. The mean size of OVA-loaded
NPs was ca. 170–180 nm, and a negative surface charge of −24.8 ± 0.89 mV was measured
for OVA-loaded PLGA or a positive surface charge of 20.2 ± 1.05 mV for OVA-loaded
Chit-PLGA. Blank PLGA and Chit-PLGA NPs without incorporated antigen had slightly
smaller particle sizes and elevated the overall surface charges compared to the loaded
NPs. Malleable NPs composed of organic substances such as lipids, proteins, and polymers
can be the matrices for antigens used in vaccines. For instance, ISCOMs composed of
phospholipids, cholesterol, saponifiers, antigens [270], or virosomes, viral hybrid liposomes,
are used in HBV and HPV vaccines [271,272]. Vogt et al. [249] proved that a maximum of
40 nm nanoparticles may be efficiently used to transcutaneously deliver vaccine compounds
via the hair follicle into cutaneous APCs. Skin penetration routes of NP-based vaccines
are presented in Figure 3. Excellent reviews concerning nanoparticulate carriers used as
vaccine adjuvant delivery systems have been recently published [60,61,273–275].

4.1.3. Gene Therapy

The morphogenesis of the epidermis involves, among others things, miR-203, which
supports the transition from proliferation to differentiation during epidermal stratification,
miR-205, which maintains the proliferative capacity of basal cells in the nascent epidermis,
and miR-214, which is involved in the embryonic development of hair follicles. In turn,
miR-146a and miR-21 are relevant in the context of psoriasis. Several review articles have
been written on the role of miRNAs in skin development [276,277].
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The highly proliferative stem cells, located in the bulge region of the hair follicle, are
capable of differentiating into other cell types like keratinocytes and melanocytes. There-
fore, these cells are attractive targets for gene therapy of hair and skin genetic disorders.
Gene-suppressing oligonucleotides, such as antisense DNA oligonucleotides and RNA
interference with small interfering RNAs (siRNA) and microRNAs (miRNA), are designed
to be complementary to the genetic targets.

Recently, RNA interference was used for the treatment of pachyonychia congenita
(PC). This genetic skin disease is characterized by mutations in one of four keratin genes
(KRT6a, KRT6b, KRT16, or KRT17) [278]. The methods of the transdermal delivery of
oligonucleotides that mimic or inhibit miRNA function taking part in the mechanism of
skin diseases are constantly being developed.

NP carriers are able to deliver DNA and si-RNA molecules to the stem cells as well
as protect them from degradation. It was described that nanoparticle carriers are able
to deliver the lacZ reporter gene, as well as DNA and oligonucleotides to hair follicle
progenitor cells [279] in animal models, and the gene encoding β-galactosidase to follicular
stem cells at wound borders. The carriers are usually equipped with penetrating peptides or
viral vectors, such as HIV-based vectors [280], or a retrovirus, which was used to deliver the
tyrosinase-gene pLme/SN in the therapy of albinism and hair growth disturbances [281].

Au-NPs provide an attractive and applicable scaffold for the delivery of nucleic acids.
Ding et al. [282] prepared the review focusing on the use of covalent and noncovalent
Au-NP conjugates for applications in gene delivery and RNA interference technologies.
Transdermal siRNA delivery via liposomes, transfersomes, etosomes, transetosomes, and
SECosomes has been reported [277,283].

4.2. NPs for Topical Application

In case of poor ability to penetrate the skin, NPs are used for topical application.
Left on the surface of the skin, they are used to heal wounds, treat skin inflammation, or
prevent damage caused by UV light. Calcium carbonate (CaCO3) and calcium phosphate
Ca3(PO4)2-NPs have the potential to prevent nickel (Ni) allergy due to their ability to
trap metal ions in the cation exchange process [284]. Several valuable reviews of NPs in
dermatology have been published in recent years [285,286].
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4.2.1. NPs as UV Protestant (against Photoaging and Photocarcinogenesis)

The ultraviolet radiation (UVR) spectrum we are exposed to on earth includes UVA
(320–400 nm), UVB (290–320 nm), and UVC (100–290 nm). UVA reaches the earth through
the ozone layer, UVB is partially blocked, and UVC is completely filtered out by the ozone
layer. UVB radiation is responsible for sunburn and direct DNA damage (formation of
thymidine dimers). UVA penetrates into the DLS and generates ROS that damage proteins,
lipids, and nucleic acids (guanine). ROS are responsible for the destruction of collagen
in the skin and the reduction in its synthesis [287]. UV radiation is therefore dangerous
for the skin, as it causes not only the desired tanning, but is responsible for sunburn
and subsequent consequences in the form of photoaging [288,289]. Photoaging of the skin
causes dryness, wrinkles, seborrheic keratosis, as well as loss of elasticity and slower wound
healing. Unfortunately, regular UV exposure and repeated sunburn cause hyperalgesia,
which is associated with skin cancer.

The Himba society inhabiting the northern part of the Kunene region in Namibia
uses natural red Namibian ocher in the form of a preparation called Otjize as a skin and
hair beautifying cream. Red ocher has been found to be a solar heat IR reflector and an
effective UVA- and UVB-blocking agent. It should be noted that the Himba community
has an extremely low rate of skin cancer, although due to weather conditions they are
exposed to the standard 5% UV (300–400 nm) all year round. Morphological and crys-
tallographic studies of the red ocher pigment have confirmed the presence polymorphic
forms of iron (III) oxide and iron (III) oxy-hydroxide, namely α-Fe2O3 and lepidocrocite
(γ-FeOOH) nanocrystals [290]. Ocher Otjize additionally showed antimicrobial efficacy
against Escherichia coli (E. coli) and Staphylococcus aureus (S-aurus). The antibacterial activity
of the Himba Otjize’s red ocher relies on three potential mechanisms: a photocatalytic
mechanism, an ROS mechanism, and a bacterial cell surface interaction with iron (III) oxide
nanocrystals. Besides the effective UV filtration, Otjize minimizes the skin overheating by
reflecting back at least half of the solar heat in the IR region.

The American Academy of Dermatology and other medical scientific groups, such
as the American Cancer Society, recommend topical UV protection in the form of sun-
screen. UV-absorbing agents should accumulate in the upper skin layers to form a dense
light-absorbing layer and additionally guarantee water resistance. The development of
nanotechnology has allowed the replacement of physical and chemical (octyl methoxycinna-
mate, oxybenzone, octocrylene, and luteolinone) sunscreen agents without the risk of side
effects. TiO2-NPs and ZnO-NPs are among the strong means of physical protection against
UV radiation. Mixtures of TiO2-NPs and ZnO-NPs are even more effective, protecting
against both UVA and UVB [291].

It is known that under the influence of UV radiation, free radicals are formed, which
cause cellular damage, e.g., collagen responsible for skin aging. Topical in situ skin de-
livery of antioxidants can be used to protect the skin from free radicals’ attack. Plant
extracts, rich in phenolic compounds, can effectively protect the skin against photoaging.
Bucci et al. [292] developed nanoberries, ultradeformable liposomes made from soybean
phosphatidylcholine and sodium cholate carrying blueberry (Vaccinium myrtillus) extract.
Nanoberries of about 100 nm appeared to be nontoxic and effective for protecting the
skin from UV. Shetty et al. [293] developed PLGA polymeric NPs (diameter 90.6 nm, zeta
potential of −31 mV encapsulated with flavonoid-morin possessing antioxidant and UVR
protection properties).

For protection against UV radiation, NPs are used: (i) polymer, (ii) metallic, and
(iii) fullerenes.

Polymer NPs: Benzophenone-3 (BZ-3) is a molecular filter that protects the cosmetic
against deterioration of its quality under the influence of light and protects the skin against
the harmful effects of solar radiation. The ingredient is included in the list of radioprotective
substances and, in principle, does not pose a health risk, apart from its contact allergic and
photoallergic potential. It turns out that the nanoencapsulation of such traditional UV filters
in organic nanocarriers, such as biocompatible and biodegradable polymers (poly(lactic
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acid) (PLA), poly(glycolic acid) (PGA), their copolymer PLGA, poly(caprolactone) (PCL),
N-(2-hydroxypropyl)-methacrylate copolymers, and poly (amino acids)), improves their
retention in the skin, stability, and radiation-blocking effect [294,295]. Nanocarriers particu-
larly preferred are PCLs, as they provide reduced penetration through the skin and thus
are able to maintain the preparation on the skin surface for a long time without penetrating
into the deeper layers of the epidermis and dermis [296]. Hyperbranched polyglycerol
(PLA-HPG) NPs are an example of a nanocarrier with strong adhesive properties. In animal
studies, padimate-O (PO) encapsulated in PLA-based nanocarriers was tested [297]. Such a
formulation had more than 20 times the ability to protect against UV radiation than the UV
filter alone. It is a natural polymer that has the ability to absorb UV radiation like lignin.
Lee et al. [298] developed a skin protection product containing light-colored lignin (CEL)
NPs from rice husk and organic UV filter BIOTHERM Lait Solaire Hydratant (SPF 15),
achieving a synergistic protective effect against exposure to UVA radiation.

Metallic NPs TiO2 and ZnO have been known for decades as effective UV filters.
Their use, however, has been limited, as they also reflect light in the visible spectrum,
creating the undesirable effect of a white grainy coating on the surface of the skin. NPs of
these metal oxides, TiO2-NPs and ZnO-NPs, with dimensions of 40–60 nm, thanks to the
absorption, reflection, and scattering of UV light, are more effective and transparent, thanks
to which they are accepted by consumers and can be used in sunscreen products. These NPs
have been approved by the FDA as filters to protect the skin from photoaging [299]. The
photoprotective effect is the result of physical phenomena such as absorption, scattering,
and reflection of UV radiation [294]. ZnO-NPs protect against UVA and UVB radiation,
while TiO2-NPs only protect against UVB. Metallic MPs are not biodegradable and remain
on the surface of the skin for a long time, ensuring its protection [300]. Studies show that
these NPs cannot penetrate into the DLS [105,191]. Increased penetration may occur in
the presence of chemical enhancers that have increased the intercellular lipid fluidity of
the epidermis, i.e., ethanol, oleic acid, ethanol, and oleic mixtures [191]. Photoinduced
disaggregation may have a similar effect on percutaneous penetration [301]. It turns out that
after a few minutes of lighting, the hydrodynamic diameter of TiO2 aggregates decreases
from ~280 nm to ~230 nm, which causes an almost three-fold increase in penetration.
An interesting finding was the increase in the photostability of ketoprofen (KP) under
the influence of TiO2-NPs [301]. ZnO-NPs can, under certain conditions, release Zn2+

ions, which, as an essential chemical element, have many beneficial biological properties.
Particularly beneficial, from the point of view of skin protection, is the participation of Zn
in enzymatic processes. Zn, by inhibiting nicotinamide adenine dinucleotide phosphate
oxidase (NADPH), protects the skin against ROS [302]. Somewhat worrying are the data
collected in 2006–2010 by James et al., which showed that a small amount of Zn from NPs
can enter the circulation and trigger an immune response [303]. Topically applied ZnO-NPs
suppress allergen-induced skin inflammation but induce vigorous IgE production in the
atopic dermatitis mouse model [304]. On the other hand, TiO2-NPs are insoluble, and in
the form of agglomerates, they cannot penetrate. It should be emphasized that Ti has a low
toxicity and has been used in dentistry for years to produce orthopedic implants.

In order to increase biocompatibility and improve photoprotection, various modifi-
cations of metallic surfaces with organic molecules with defined activity are used. The
product of such modifications is nanocomposites. In a study by Jo et al. [305], ZnO-NPs
(70 nm) were coated with chitosan or niacinamide, which are known as cosmetic skin-
lightening agents. The ability of surface-coated ZnO-NPs to protect against UV radiation
was expressed as a sun protection factor (SPF). It turned out that ZnO-NPs coated with
niacinamide showed an improvement in SPF compared to ZnO-NPs and ZnO-NPs coated
with chitosan. The combination of NPs and antioxidants enhances free radical scavenging
activity. In the work of Shetty et al. [293], a plant flavonoid morin with antioxidant and
UV-protective properties was used for this purpose. The polymeric NP loaded with morin
in the presence of ZnO-NPs and TiO2-NPs ensured the delivery of morin to the epidermis,
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preventing it from penetrating into the systemic circulation. The combination of NPs used
showed antioxidant activity and protection against UV radiation.

In 2019, the first report on the photoprotective properties of peptide-modified NPs
was published [306]. ZnO-NPs (60 nm) were modified with a secondary amphipathic
peptide M9 (CRRLRHLRHHYRRRWHRFRC). Modification of the ZnO-NPs’ surface was
aimed at obtaining dispersion stability and protection against aggregation. Aggregation of
NPs is an unfavorable phenomenon, because the sunscreen should be evenly distributed
over the surface of the skin. The modification of the NPs with the M9 peptide imparted
a positive charge on the surface of the ZnO-NPs, due to the sequence of arginines and
histidines, which prevented aggregation and ensured skin compatibility. Other benefits
of the modification turned out to be the lack of toxicity, limited percutaneous penetration,
and extended residence time in the stratum corneum. Improved retention of modified NPs
in the upper epidermal layer resulted from the interaction of the peptide with skin lipids
and corneal-desmosome proteins. The peptide coating protected the NPs from releasing
the free Zn2+ ions. The photoprotective properties of the modified NPs were tested on an
animal model. In an in vivo study, SKH-1 mice irradiated with UVB showed lower genotox-
icity, lower levels of oxidative stress induction, less response to DNA damage, and lower
immunogenic potential for peptide-modified ZnO-NPs compared to unmodified NPs.

UV-photoprotective properties are also presented by NPs obtained as a result of the so-
called ‘green synthesis’. An example may be a study from 2022, confirming the effectiveness
of a natural water extract of Hoodia gordonii as a means for the synthesis of single-phase
CeO2 nanocrystals with an average diameter of ~5–26 nm with 4+ electronic valence [307].
The average value of the reflectivity varies from 45 to 63%, depending on the annealing
temperature. The authors declare that UV selectivity is the result of dominant absorption
in the UV spectral region. An NPs-CeO2 was characterized by photostability coupled with
low formation of harmful reactive oxygen species (ROS), like singlet oxygen and hydroxyl
radicals, that damage skin cells.

Fullerenes: Fullerenes (C60) are known as free radical scavengers [308], as they have
many conjugated double bonds in the LUMO (lowest unoccupied molecular) orbital,
enabling them to accept an electron. One C60 molecule neutralizes as many as 34 methyl
radicals [309]. Fullerenes encapsulated in polyvinylpyrrolidone (PVP) with the so-called
“radical sponge” have been studied as a protective component of human skin keratinocytes
against UVA radiation [310]. In general, fullerenes dispersed in water are safe in mammals.
It is worth noting that their water-soluble derivatives have greater ROS-scavenging activity
and better membrane-tropic functions through a greater affinity for nucleic acids and
proteins [311].

Carbon fullerene and its polyhydroxylated derivatives as free radical scavengers
contribute to the improvement of the skin’s antioxidant capacity [308]. In a study from
2010 [312], the effectiveness of new fullerenols (C(60)(OH)(6–12):LH-F, C(60)(OH)(32–34)
7H(2)O:HH-F, and C(60)(OH)(44)8H(2)O:SHH-F) for UVA or UVB damage to human skin
was demonstrated. Irradiation of HaCaT cells (UVB) causes many harmful effects i.e.,
increase in oxidative stress, formation of cyclobutanepyrimidine dimers, and chromatin
condensation, all of which were inhibited by SHH-F. The authors reported suppression of
these damages by one of the new derivatives, namely SHH-F.

Fullerenes have the ability to protect against photodamage to the skin barrier. Mu-
rakami et al. [313] describe the photoprotective effect of UVB inclusion complexes of
fullerenes with polyvinylpyrrolidone (PVP/fullerenes). The inhibition of keratinocyte pro-
liferation after UVB irradiation of human skin was restored in the presence of PVP/fullerenes.
In addition, the use of PVP/fullerenes protected against the consequences of UVB, i.e.,
reduced expression of transglutaminase-1 and transepidermal water loss.
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4.2.2. Antimicrobials and Wound Healing

Wound healing is not just a local problem. It is known that some chronic diseases,
such as obesity, diabetes, and atopic dermatitis, may impede this process [314]. Most
hard-to-heal wounds are infected by strains of bacteria that are resistant to antibiotics,
such as methicillin-resistant SA (MRSA) [315]. Silver compounds, i.e., metallic silver, silver
nitrate, and silver sulfadiazine, have been used for a long time to treat burns, wounds and
skin infections of bacteria, viruses, and fungi, which have an effect on both Gram-positive
and negative bacteria [316]. However, silver ions in high micromolar doses (1 to 10 µM) are
toxic to mammals [317].

As it turns out, silver in the form of NPs exhibits better antimicrobial activity com-
pared to silver compounds [318]. Antibacterial and antifungal effects have been con-
firmed [78,319], along with poor skin penetration by Ag-NPs. This may be due to the large
surface area, which is able to provide better contact with microorganisms.

Ag-NPs have been found to be useful in the production of clothing [320,321], food
storage containers [322], washing machines [124], soap, and surgical masks [323]. Wound
dressings containing a nanocrystalline silver coating are available on the market, e.g.,
Acticoat (SMITH & NEPHEW), Silverlon (KIK), and Actisorb Silver 220® wound dressings.
Products containing nano Ag are highly effective for wound healing (nano Ag) [324,325].

Ag-NPs and Ag+ present different action mechanisms. While Ag+ ions binding to
DNA cause inhibition of bacterial enzymes [326], Ag-NPs cause damage to the bacterial
wall and cytoplasmic membrane of bacteria [327]. The mechanism of action of Ag-NPs on
bacteria is not fully understood. Proteomic studies show that exposure of bacteria to Ag-
NPs causes an increase in the level of three precursors of outer membrane proteins. Ag-NPs
have also been reported to affect the cis–trans isomerization of membrane unsaturated fatty
acids. All this indicates that the action of Ag-NPs is primarily related to the destruction of
the structure, and thus the permeability of bacterial membranes [328] (Figure 4).
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Chronic exposure to Ag-NPs can lead to silver accumulation, which is manifested by
a bluish graying of the skin (Argyria-6.4 g of colloidal silver per a year) [329]. Exposure to
AgNPs via inhalation was linked to numerous neurodegenerative disorders [330]. Ag-NPs,
thanks to their antimicrobial properties, are found in a wide range of products that come
into contact with the skin (clothing, creams). However, the safety profile for Ag-NPs is still
under investigation. The exposure of damaged skin to Ag-NPs is of great concern [331,332].
The toxicity of Ag-NPs has been confirmed in in vivo and in vitro studies in pigs. Toxic
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effects in the form of epidermal edema and dermatitis and epidermal hyperplasia have
been observed [333]. In vitro studies have shown cytotoxicity and increased production
of cytokines in keratinocytes on skin devoid of a protective barrier, e.g., on open wounds.
Korani et al. [334] reported the dermal toxicity of Ag-NPs in an animal model of the male
guinea pig. Dermal toxicity was shown to be dose-dependent. For animals treated in the
low doses of 100 µg/mL, a reduction in the thickness of the epidermis and dermis was
observed, with a slight increase in inflammation of Langerhans cells. In animals that were
exposed to 10,000 µg/mL Ag-NPs, collagen fibers ruptured. Studies performed using a
pig skin model [333] showed that after topical application of Ag-NPs (20, 50, and 80 nm),
areas of focal inflammation were observed. Ag-NPs were detected on the surface and
in the upper stratum corneum, as well as in cytoplasmic vacuoles of human epidermal
keratinocytes (HEKs).

Currently, more and more attention is paid to Ag-NPs modified or functionalized
through covalent and non-covalent bonds to ligands and thiol groups, which have even
stronger antibacterial properties. The modified surface of Ag-NPs by antibiotics is able to
refine the effectiveness of their antimicrobial activities. The conjugation of Ag-NPs with
medicaments can be directly carried out by ionic/covalent bonding or physical absorption.
For example, Morales-Avila et al. [335] proved that the functionalization of Ag-NPs with
the cationic peptide ubiquicidin 29–41 (UBI) causes a significant increase in antibacterial
activity against E. coli and P. aeruginosa.

TiO2-NPs also exhibit antibacterial properties. After irradiation (UVR), NPs act as a
photocatalyst in the peroxidation reaction of a polyunsaturated phospholipid in the lipid
membrane of bacteria [336]. On the other hand, chlorhexidine-loaded nanocapsule-based
gel (Nanochlorex) provides prolonged antibacterial activity, the effectiveness of which is
comparable to 60% 2-propanol [337]. Another example of products that support wound
healing is nitric-oxide (NO)-releasing nanoparticles. A NO-releasing platform can be
prepared using silane-hydrogel-based nanotechnology [338]. NO-releasing NPs (10 nm) are
made of components such as tetramethylorthosilicate, polyethylene glycol, and chitosan.

Recently, the photocatalytic and antibacterial properties have been described for
a new orchestration of X-CuTiAP (X-ethylenediamine (en), triethylenetetramine (trien),
ethanolamine (ETA) and dimethylamine (DMA)) nanospheres, and Au-NPs synthesized us-
ing Bauhinia tomentosa Linn extract by Gnanamoorthy et al. [339,340]. The authors studied
the activity of the obtained NPs against Staphylococcus Aureus (Gram-positive), Pseudomonas
aeruginosa (Gram-negative) pathogens, and Candida albicans (fungal) pathogens compared
with Gram-negative Escherichia coli (E. coli) and Staphylococcus aureus, respectively.

Borate Bioactive Glasses (BBGs) are interesting biodegradable, bioactive materials for
wound-healing applications. Currently, BBGs are exploited for not only soft tissue (wound
healing, nerve, and muscle regeneration), but also hard tissue (bone regeneration, drug
delivery for osteomyelitis, or osteonecrosis treatment) engineering applications [341]. In the
case of BBGs, the wound-healing process improves due to the ionic dissolution products
of BBGs [342], especially boron, which is important in different stages of wound healing.
It stimulates angiogenesis [343], takes part in the synthesis of the extracellular matrix,
and stimulates the secretion of collagen and proteins; it stimulates HUVEC proliferation
and migration associated with the MAPK signal pathway [344], promotes keratinocyte
migration [345], and upregulates the vascular endothelial growth factor (VEGF) [346].
Moreover, boron is also an antiseptic agent that aids the wound-healing process [347].
Mirragen microfibers made of boron 13–93B3 glass are an example of a commercial product
approved by the U.S. Food and Drug Administration (FDA) in 2016.

BBGs can be also incorporated in polymeric scaffolds usually enriched with different
dopants (copper, zinc, gallium, and silver), enhancing antimicrobial properties [343,348].
However, it should be remembered that this action is dose-dependent, and too low a level
cannot inhibit bacterial growth [349], whereas too high a dose could harm fibroblast and
keratinocyte cells or reduce angiogenesis [350].
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4.2.3. Treatment of Psoriasis

Psoriasis is an inflammatory skin disease that attacks the immune system. The causes
of skin changes include abnormal interactions of keratinocytes with T lymphocytes [351].
Psoriasis therapy includes local, systemic (methotrexate, cyclosporine) and phototherapy
(narrowband UVB (NB-UVB), excimer laser/lamp (targeted phototherapy), and psoralen
plus UVA (PUVA). One of the first topical treatments for psoriasis was coal tar, which is
now banned in Canada and the European Union. UV light has the ability to delay the
growth of skin cells and remove psoriatic plaques. The recommended PUVA therapy for
clinical treatment uses this effect, which is a combination of the light-sensitive natural
compound psoralen plus UVA (UVA) radiation.

The main drugs for topical treatment of psoriasis are corticosteroids, which inhibit
the release of phospholipase A2 and act directly on deoxyribonucleic acid (DNA) and
inflammatory cytokines [352]. Corticosteroids act synergistically with retinoids, salicylic
acid, and vitamin D analogs. Retinoids (tazarotene) act on retinoic acid receptors and
retinoid-X-receptors, initiating gene expression’s modification of inflammatory cytokines,
and thus inhibiting keratinocyte proliferation. Psoriasis therapy also includes immuno-
suppressants such as calcineurin inhibitors (tacrolimus, pimecrolimus), suppressing the
production of the inflammation’s potent cytokine mediators (IL-2, IL-6, and IFN-γ) and
stimulating suppressor T cells [353]. Dithranol is also used topically to reduce epidermal
hyperproliferation and inflammation [354].

Unfortunately, topical delivery of traditional drugs is not effective due to poor skin
penetration and possible skin irritation caused by high doses of drugs. A breakthrough in
the treatment of psoriasis was the discovery of IL-17 and IL-23 pathways involved in the
pathogenesis of psoriasis and the introduction in 2004 of biological drugs containing recom-
binant proteins (monoclonal antibodies and fusion proteins), which inhibit the activity of
inflammatory cytokines [355]. An example is Secukinumab-blocking interleukin-17 (IL-17)
cytokine related to the T-helper-17 (TH-17) pathway. Currently, there are many biologics
for the treatment of psoriasis such as etanercept, guselkumab, infliximab, ustekinumab, etc.

To overcome the SC, various types of NPs have been developed, mainly lipid-based,
as drug delivery systems. Thanks to the amphiphilic properties, the lipid envelopes reduce
the toxicity and increase the bioavailability of APIs of a lipophilic and hydrophilic nature.

4.2.4. Treatment of Vitiligo

Vitiligo is an acquired idiopathic skin disease that is characterized by depigmentation
mainly in exposed areas of the body. The cause of the appearance of white spots on the
skin is apoptosis or damage to melanocytes. The etiology of vitiligo is not fully understood,
but autoinflammation and oxidative stress are considered to be the most important factors.
Endogenous killer and inflammatory dendritic cells are known to be hyperactive in patients
with vitiligo. As a result of the autoimmune response, autoantibodies and cytokines are
secreted, i.e., INF-γ,14–16 CXCL10,14,17,18 TNF-α, IL-6, and IL-17 [356], which contribute
to the destruction of melanocytes. The first-line drugs in the treatment of vitiligo are
anti-inflammatory and immunosuppressive corticosteroids (betamethasone dipropionate,
clobetasol dipropionate, and mometasone furoate) and calcineurin inhibitors (tacrolimus,
pimecrolimus). In order to remove excess ROS and hydrogen peroxide from the epidermis,
antioxidants are also used, i.e., polypodium leucotomos, vitamin E, vitamin C, and minocy-
cline. Phototherapy, including narrow-band ultraviolet (NB-UVA) and psoralen ultraviolet
A (PUVA), is also effective in inducing repigmentation [357]. Currently, special systems
have been developed for the treatment of vitiligo, i.e., liposomes, polymer nanoparticles,
microspheres, solid lipid nanoparticles and nanofibrous structures, and more advanced
liposomes such as invasomes, transferosomes, ethhosomes, and niosomes. Transfersomes
get their excellent elasticity due to surfactants such as sodium cholate, spans, and tweens.
Invasomes, on the other hand, gain transdermal permeability due to the presence of soy
phosphatidylcholine, ethanol, and terpenes.
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4.2.5. Baldness Treatment

NPs have been shown to increase drug penetration into the hair follicles by acting as
a deposit for sustained drug release; therefore, they are effective in the treatment of hair
growth disorders such as androgenetic alopecia and alopecia areata. Minoxidil, a pyridine
derivative, is mainly used for topical treatment of androgenetic alopecia. The drug works
by widening the blood vessels around the hair follicles. The problem of the treatment is
irritation and contact dermatitis. The elimination of side effects is ensured by the use of
nano-systems that allow the drug to be delivered to the hair follicles.

Examples of drug-loaded NPs for topical applications in the treatment of different
skin diseases are summarized in Table 1.

Table 1. Recent developments of drug-loaded NPs for topical treatments of skin diseases.

Nanocarriers NPs Parameters Drug Loaded Skin Permeation Studies Ref

therapy of psoriasis

NLCs (Precirol VR ATO 5,
LabrafacTM PG, TweenVR 20)

203.3 ± 1.20 nm; PDI
0.29 ± 0.04;
EE% 100%

dithranol IMQ induced a murine
model of human psoriasis [358]

liposomes
(DOTAP + CHl)

111 ± 1.62 nm; PDI
0.27 ± 0.08; EE%
93 ± 2.12%; ZP
41.12 ± 3.56 mV

cyclosporine IMQ induced a murine
model of human psoriasis [359]

1-liposomes (PC + CH),
2-niosomes (Span 80 + CH),

3-emulsomes
(PC + CH + tristearin)

1-(368.5 ± 43 nm, PDI
0.136 ± 0.024, EE%

70.98 ± 2.36%);
2-(342.7 ± 35 nm, PDI

0.167 ± 0.045, EE%
54.30 ± 2.16%);

3-(172.8 ± 10 nm, PDI
0.116 ± 0.019;

EE% 83.79 ± 3.58%)

capsaicin

hairless albino rat skin
from the abdominal and

dorsal area after removing
underlying fat and

subcutaneous tissues

[360]

liposomes
(PC + OA), (PC + CH)

80–140 nm; PDI
0.14−0.37;

ZP 6.64–2.56 mV; EE
mol% 2.41–10.20%

methotrexate

the abdominal skin of
newly born pig, the hairs,

and lipid layer
were removed

[361]

niosomes
(Span 60 + CH)

477.8 nm;
EE% 83.02% diacerein

in vitro-the albino rats; the
hairs, and subcutaneous

tissues were removed
[362]

niosomes
(Span 60 + CH)

369.73 ± 45.45 nm;
EE% 90.32 ± 3.80%;

ZP −36.33 ± 1.80 mV
acitretin

ex vivo- HaCaT cells
(a keratinocyte cell line);
in vivo-mouse tail model

[363]

niosome hydrogels
(Span 20, Span 60, CH)

147.4 nm ± 5.6 nm; PDI
0.258 ± 0.02; ZP

48.9 mV ± 1.1 mV; Y%
90.42% ± 3.38%.

celastrol
female C57/BL6 mice, the
dorsal hair was removed (a
razor + depilatory cream)

[364]

ethosomes
(soya lecithin + ethanol)

376.04 ± 3.47 nm; EE%
91.77 ± 0.02%

methotrexate +
salicylic acid

ex-vivo-pig ear skin;
in vivo-the shaved dorsal

surface of Albino mice
[365]

ethosomes, liposomes

116 to 199 nm
(liposomes); 146 to

381 nm (ethosomes);
EE% ≥ 97.2%

(liposomes), ≥77%
(ethosomes)

anthralin (1,8-
dihydroxy-9-anthrone)

in vitro-a dialysis
membrane (MWCO: 6–8

kDa); ex vivo-Wistar male
albino rats with abdominal

skin freed from hair; the
connective tissue, fat, and

subcutaneous tissues

[366]
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Table 1. Cont.

Nanocarriers NPs Parameters Drug Loaded Skin Permeation Studies Ref

cationic liposomes
(DC-CH, CH),

anionic liposomes (egg lecithin,
CH, tetramyristoyl cardiolipin)

100 nm; ZP + 25.8 mV,
EE% 75.12% (cationic);

ZP −28.5 mV, EE%
60.08% (anionic)

psoralen + UVA
(PUVA)

IMQ-induced psoriatic
plaque model [367]

nanoemulsion
202.6 ± 11.59 nm; PDI

0.233 ± 0.01;
EE% 76.57 ± 2.48%

methotrexate

in vivo, in vitro: male
rabbits, male Sprague

Dawley rats; the abdomen
skin cleaned of lipids and

connective tissues

[368]

nanoemugel
76.93 nm;
PDI 0.121;

ZP −20.5 mV

Curcumin + imiquimod

ex vivo, in vivo-BALB/c
mice; the abdominal, and

the dorsal skin hair shaved,
the subcutaneous tissue,

and fat at the
dermis removed

[369]

nanoemusion 93.37 ± 2.58 nm; PDI
0.330 ± 0.025.

tacrolimus and
kalonji oil

in vitro-a dialysis bag
membrane with a

molecular weight cut-off
12,000 Da; in vitro-A-431

cell lines; ex vivo-the
dorsal portion of pig ear

skin shaved; subcutaneous
fat removed; in vivo-IMQ
induced psoriasis model

on BALB/c mice shaved on
their back

[370]

the nanomiemgel
composed of nanomicelle-NMI

(with Vit.E TPGS) +
nanoemulsion – NEM
(olive oil + miglyol +

Polysorbate80
+ Transcutol)

229 ± 16 nm (NEM);
185 ± 10 nm (NMI);

PDI 0.18 ± 0.06 (NEM);
PDI 0.12 ± 0.08 (NMI);

EE% 96.74 ± 4.24%
(ACE-NEM); EE%

95.72 ± 3.58%
(CAP-NEM); NMI,

94.88 ± 3.76%
(ACE-NMI);

92.69 ± 3.08%
(CAP-NMI)

aceclofenac (ACE)
capsaicin (CAP)

ex vivo-human skin with a
thickness of 0.5–0.1 mm;

in vivo-C57BL/6 mice with
shaved backs

[371]

liposomes (DDC642) 100 nm RNA interference
(RNAi) molecule

in vitro-psoriasis-induced
keratinocytes, and

melanocytes cultured
[372]

transfersomes 94.49 ± 6 nm–
154.65 ± 8.46 nm;

EE% 59.17 ± 5.03%
tacrolimus

ex vivo, in vivo-Albino
Wistar Rat, the
hairs trimmed

[373]

flexible liposomes
(lecithin, Tween-80)

76.1 ± 0.5 nm; PDI
0.251 ± 0.009;

EE% 99%

all-trans retinoic acid,
betamethasone

in vitro-immortalized
human keratinocytes

(HaCaT), full-thickness
skin from the ventral part

of rats with
removed extraneous

subcutaneous fat;
in vivo-BALB/c mice

model induced by IQM

[374]

polymeric NPs
(PLGA)

307.3 ± 8.5 nm; PDI
0.317; ZP

−43.4 ± 2.6 mV; EE%
61.1 ± 1.9%; DL

1.9 ± 0.1%

apremilast male Wistar albino rats [375]
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Table 1. Cont.

Nanocarriers NPs Parameters Drug Loaded Skin Permeation Studies Ref

PLGA NPs 100 nm indomethacin rat skin/iontophoresis [376]
polymeric micelles

(poly(ethylene glycol)-b-
oligo(desaminotyrosyl-

tyrosine octyl ester
suberate)-b-

poly(ethylene glycol)

70 nm; PDI ≤ 0.22 paclitaxel

HaCaT
(a cell line of human

keratinocytes);
human cadaver

skin samples

[377]

polymeric micelles
(methoxy-poly(ethylene

glycol)-dihexyl substituted
polylactide (MPEG-dihexPLA)

diblock copolymer)

10–50 nm tacrolimus human skin [378]

polymeric nanocapsules
(Eudragit RS 100)

139 ±3.6 nm; ZP
+11.38 ± 1.7 mV;

EE% 81 ± 2%
dexamethasone in vitro [379]

Nanospheres;
lipoglobules 70 nm thymoquinone

in vitro-cell lines and
IMQ-induced psoriatic

plaque model
[380]

biogenically obtained Au-NPs
(ethanolic extract of

Woodfordia fruticosa flowers)
10–20 nm myricetin quercetin

ellagic acid

in vivo-Swiss albino mice,
IMQ-induced psoriasis-like
skin inflammation model;
shaved dorsum surface of

the mice skin

[381]

Au-NPs functionalized
by 3-mercapto-

1-propansulfonate
(AuNPs-3MPS)

5 nm methotrexate

in vivo-C57BL/6 mice
(Charles River) with

shaved backs;
in vitro-acute toxicity

studied on human skin
equivalents (HSEs) after

21-day culture period
(adult human keratinocytes

seeded on a dermal
substitute consisting of a

collagen type I matrix
and fibroblasts)

[382]

therapy of vitiligo

liposomes (DC-CH, CH +
sodium deoxy cholate)

120–130 nm; ZP
+46.2 mV; EE% 74.09%

(psoralen), 76.91%
(resveratrol)

psoralen, resveratrol B16F10 cell line [383]

deformable liposomes

64.8 ± 1.3 nm; PDI
0.14 ± 0.03; ZP
−27.0 ± 1.1; EE%

82.7 ± 0.4 (baicalin);
61.1 ± 1.4 nm; PDI

0.24 ± 0.01; ZP
−38.1 ± 1.4; EE%

87.1 ± 1.2 (berberine)

baicalin, berberine

ex vivo-the epidermis
(thickness ~200 µm) from

newborn pig;
in vitro-human

immortalized keratinocytes
(HaCaT)

[384]

elastic cationic niosomes
(Tween61/CH/dodecyldimethyl

ammonium bromide)

163.5 ± 1.8 nm; ZP (+)
37.0 ± 0.6 (PE);

101.5 ± 0.5 nm; ZP (+)
36.1 ± 7.1 (TPE)

human tyrosinase
plasmid (PE)

Tat/human tyrosinase
plasmid (TPE)

the melanoma (B16F10) cell [385]

microemulsion 18.26 nm clobetasol propionate in vivo-human [386]

ethosomes
80 ± 1.2 nm; ZP
−0.531 ± 0.10 mV;
EE% 99.14 ± 0.32%

methoxsalen ex vivo, in vivo-shaved
skin of Wistar rats [387]
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Table 1. Cont.

Nanocarriers NPs Parameters Drug Loaded Skin Permeation Studies Ref

therapy of alopecia

chitosan nanoparticles
235.5 ± 99.9 nm; PDI of

0.31 ± 0.01;
ZP +38.6 ± 6.0 mV

minoxidil sulphate in vitro-porcine ear skin [388]

NLCs

393.5 ± 36.0 nm;
PDI < 0.4; ZP

+22.5 ± 0.2 mV; EE%
86.9% (minoxidil),

99.9% (latanoprost)

minoxidil + latanoprost in vitro-porcine ear skin [389]

polymeric nanocapsules
(poly-ε-caprolactone)

/manual massage

197.8 ± 1.2 nm; PDI
0.15 ± 0.01; ZP

−30.1 ± 1.8 mV; EE%
93.9 ± 0.4%

latanoprost in vitro-the full-thickness
skin of the porcine ears [390]

NLCs
(stearic acid + oleic acid)

281.4 ± 7.4 nm; PDI
0.207 ± 0.009;

ZP −32.90 ± 1.23 mV;
EE% 92.48 ± 0.31%; DL

13.85 ± 0.47%

minoxidil
in vitro-the abdominal

full-thickness skins of male
Sprague Dawley rats

[391]

polymeric NPs 90–300 nm minoxidil C57BL/6 mice [392]

PLGA nanospheres 182–205 nm

hinokitiol,
glycyrrhetinic acid,

6-benzyl-amino-
purine

in-vitro, in-vivo
-C3H mice, extracted

human scalp skin
[393]

cationized gelatin
microspheres - Tbx21 siRNA

in vivo-C3H/HeJ mice, a
mouse model of
alopecia areata;

ex vivo-skin samples
obtained from the

peripheral region of the
alopecic skin of patients

[394]

liposomes
(saturated phospholipid + CH)

6.1± 1.8−16.6± 3.4 µm;
PDE 88.6% finasteride

in vitro-the full-thickness
abdominal, and the dorsal
mice skin after hair, and

subcutaneous fat removal

[395]

therapy of acne

Liposomes (egg PC + CH) 120 nm; ZP −43 mV
lauric acids

(anti-Propionibacterium
acnes (P. acnes)

in vitro, in vivo-a mouse
ear model [396]

SLNs 180 ± 2 nm; ZP 47 ± 4;
EE% 100 ± 1% retinoic acid in vivo-a mutant strain of

hairless mouse (rhino mice) [397]

niosomes - benzoyl peroxide,
clindamycin in vivo-110 patients [398]

therapy of skin cancer

cationic lipid NPs
(CTAB + stearic

acid + monoolein)

196.90 ± 39.73 nm;
PDI 0.26 ± 0.02; ZP
+63.85 ± 12.37 mV;
EE% 47.39 ± 2.52%

doxorubicin

in vitro-the pig ears skin
with removed hair;

in vivo-female nude
BALB/c/iontophoresis

[399]

cationic
liposomes/iontophoresis

192.6 ± 9.0 nm; PDI
0.326 ± 0.004;

ZP 56.4 ± 8.0 mV;
EE% (curcumin)

86.8 ± 6.0%

curcumin + STAT3
siRNA

in vitro-mouse melanoma
cells (B16F10),

ex vivo-porcine ear skin;
in vivo- C57BL/6 mice

[400]
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Table 1. Cont.

Nanocarriers NPs Parameters Drug Loaded Skin Permeation Studies Ref

liposomes
(lipoid S75 + oleic acid)

79.0 ± 4.1 nm; PID 0.12;
ZP 40.06.7 mV;

EE% 71.2 ± 10.9%
(QUE);

72.1 ±6.6% (RSV)

quercetin (QUE)+
resveratrol (RSV)

in vitro-human dermal
fibroblasts culture;

in vivo-female CD-1 mice
with the back skin shaved

[401]

Immunoliposome
/iontophoresis

137 ± 25 nm;
PDI 0.26 ± 0.04;

ZP −6 mV

5-fluorouracil+
cetuximab

in vitro-A431 (EGFR
positive) and B16F10

(EGFR negative) cell lines;
in vitro- dermatomed skin

of the outer portion of
porcine ears; in vivo-

immunosuppressed Swiss
nude mice

[402]

Au-NPs 55.1 ± 5.1 nm;
ZP −15 ± 1 mV

phytochemicals present
in Vitis vinifera seeds

in vitro-A431 cancer cell
line (skin carcinoma,

human); HaCaT (normal,
human immortalized
keratinocyte cell line)

[403]

Fe2O3-NPs 10 ± 2.5 nm; ZP
7.9 ± 0.4 mV epirubicin

in vitro-melanoma
WM266cells;

ex vivo-human cadaver
skin without

subcutaneous fat

[404]

polymeric NPs with EGFR anti-
body/photodynamic therapy - indocyanine green

in vitro-shaved the dorsal
skin area of the Female

CD1 mice
[405]

poly (lactic-co-glycolic
acid) NPs

130.4 ± 10.5 nm;
PDI 0.095;

EE% 52 ± 3.34%
bromelain in vivo-Male Swiss

albino mice [406]

Abbreviations: polydispersity index (PDI); soya phosphatidylcholine (PC); cholesterol (CH); the entrapment
efficiency (EE%); N-(1-(2,3-dioleoyloxy) propyl)-N, N, N-trimethylammonium chloride (DOTAP); phosphatidyl-
choline (PC); oleic acid (OA); zeta potential (ZP); entrapment efficiency (%EE); drug loading (%DL); poly-(D,L-
lactide-coglycolide) (PLGA); imiquimod (IMQ); trans-activating transcriptional (Tat,T); drug loading (DL); percent
drug entrapment (PDE); cetyltrimethylammonium bromide (CTAB); conjugated epidermal growth factor recep-
tor (EGFR).

5. Nano-Dermocosmetics

Reviews of the latest advancements of nanotechnology in cosmetics and cosmeceuti-
cals have been recently written [35,407–411].

5.1. Nanoparticles as Anti-Aging Agents

NPs in anti-aging products are used as a therapeutic agent to slow down aging and as
a means of protecting the skin from external stresses such as radiation and pollution [130].
Both biodegradable and non-biodegradable NPs have been studied for anti-aging applica-
tions. Biodegradable NPs are useful for encapsulating active substances, which enables
sustained release and thus an extended therapeutic effect. In turn, non-degradable NPs,
i.e., TiO2 and ZnO, act as protection against skin photoaging.

The inorganic NPs in these cosmetic products act primarily as effective sunscreens.
For their synthesis, simple techniques can be used that allow obtaining NPs of very small
sizes. It is also possible to modify the surface of the NPs, which extends the range of
their applications. However, long-term use may raise concerns about toxicity [412,413].
Currently, the cosmetics industry uses less toxic biocompatible NPs [414,415]. Commercially
available are Ag-NPs [416], platinum–palladium (Pt-Pd) [417], and Au-NPs [418], which
have anti-wrinkle, skin-whitening, or antioxidant properties owing to strong reducing
agents such as rutin and Panax ginseng (P. ginseng), used for the surface modification. TiO2-
NPs and ZnO-NPs are used mainly as UV filters [419]. CeO2-NPs, in addition, exhibit
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antioxidant and antiapoptotic properties [419]. In the case of ZnO-NPs coated by chitosan,
besides UV protection, a skin-whitening effect was observed by Schneider and Lim [299].
In turn, Aditya et al. [306] reported anti-inflammatory activity of peptide-coated ZnO-NPs.

Organic NPs as nanocarriers not only increase the stability of the supplied antioxidants,
vitamins, or peptides, but also ensure better penetration into the skin. No objections have
been raised regarding their long-term use, thanks to their proven biocompatibility and
biodegradation, which does not cause immunological reactions [203,264].

5.1.1. Lipid NPs

The composition of lipid NPs usually includes such lipids as phosphatidylcholine,
cholesterol, and lecithin, found in skin tissues, which ensures excellent biocompatibility.
The leading systems for the skin delivery of anti-aging active substances are various
types of nanostructured lecithin gels [420], from classic liposomal hydrogel to modified
forms (transferosomal, ethosomal, pro-liposomal, phytosomal), and vesicular phospholipid
gel (VPG).

Lipid NPs can be in the form of micelles, SLNs, nanostructured lipid carriers (NSCs),
and nanovesicles such as liposomes, niososomes, etasomes, transfersomes, and cubo-
somes. Lipid NPs possess the ability to carry both hydrophilic and hydrophobic bioactive
molecules, providing them with high drug loading, stability, and excellent permeation
through the skin layers. Several formulations have been described that are used in anti-
aging products. Bi et al. [421] described liposomes (93 nm) that have been used to deliver
vitamin D3. Liposomes enhanced the therapeutic effect of vitamin D3 and ensured the
stability and protection of the skin against photoaging, increasing the production of new
collagen fibers. The results indicate that liposome retention in the skin was 1.65 times
greater compared to the vitamin D3 solution.

Coenzyme Q10 (CoQ10) is a powerful antioxidant used, for example, to protect against
aging. Its lipophilicity and high molecular weight make it difficult to deliver it by topical
application. The development of a liposomal (<200 nm) formulation of soy phosphatidyl-
choline (SPC) and alpha-tocopherol (vit. E) improved the local bioavailability of CoQ10
(p < 0.05) and doubled its accumulation in the skin [422]. Another proniosomal (PN) gel
formulation of CoQ10 was prepared on the basis of soy lecithin and cholesterol [423]. In this
case, the spherical vesicles formed from the hydration of proniosomal gel exceeded 1 µm.
Despite this, CoQ10 PN showed better skin permeation, almost two-fold higher compared
to conventional gel. The effectiveness of skin photoaging treatment was confirmed by
measuring the level of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase
(CAT), and glutathione (GSH).

Both liposomes (LPs) and ethhosomes (ETHs) improve penetration of drug molecules
through the skin. In Yücel’s study [424], ETHs were found to be more effective than LPs in
the transdermal delivery of rosmarinic acid. The study was confirmed by measuring the
antioxidant activity and the inhibitory effect of the preparations on collagenase and elastase
enzymes. The measured size range of the etosomal formulation was 138 ± 1.11 nm.

In turn, dispersions of alpha-lipoic acid (ALA) cubosomes, obtained using poloxamer
gel (P407) as a carrier, have shown efficacy in the treatment of aging skin [425]. The product
was tested on volunteers, resulting in a reduction in facial wrinkles in the area of the eye
socket and upper lip, as well as an overall improvement in skin texture and color.

Cosmetic preparations containing extracts of rice (Oryza sativa L.) bran trapped in
niosomes by supercritical carbon dioxide proved to be very effective. The use of prepara-
tions by volunteers in a monthly treatment improved the state of hydration, brightening,
thickness, and elasticity of the skin [426]. It should be noted that rice bran extracts are a
rich source of antioxidant compounds, including ferulic acid, γ-oryzanol, and phytic acid.

Thanks to the nanosize, better bioavailability of the active substance is obtained, and
thus the effectiveness of the anti-aging effect. For the transdermal delivery of antioxidant
enzymes, i.e., Cu,Zn-SOD, and CAT, carriers composed of various mixtures of soybean
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phosphatidylcholine (SPC/NaChol), mainly in the form of lipid bilayers, have been devel-
oped [427].

5.1.2. Nanoemulsions

Nanoemulsions are kinetically stable colloidal systems. In the case of nanoemulsions,
droplet sizes range from 20 to 500 nm. The encapsulation of nanoemulsions of bioactive
compounds ensures ease of application and increases their solubility, controlled release, and
penetration through the skin. Topical formulations are usually O/W emulsions prepared
using emulsion inversion point or through high-pressure homogenization [428]. These
types of oil-based nanoemulsions are used in anti-aging products. Oil phases are usually
of natural origin, such as sunflower oil, tea tree oil, soya lecithin [429,430], olive oil, or
cosmetic oils such as Eutanol G. According to Gupta [428] the amount of API in the oil phase
is 80–100 mg/g, while the oil phase is typically about 15–20 wt. of the entire formulation.
Nanoemulsions also include surfactants, usually non-ionic surfactants such as Tween 20,
Tween 80, polyvinyl alcohol, or natural products like sucrose esters and cyclodextrins [431].
A common addition to facilitate application to the skin is the addition of a cross-linking
agent to convert the formulation into a gel, such as carbopol 940 [432], glycerol, or PEG.

An anti-wrinkle nanoemulsion containing the hydrophilic molecule acetyl hexapeptide-
8 (AH-8) was developed by Hoppel et al. [433]. Another example of a tea-tree-oil-based
nanoemulsion is a preparation for transdermal delivery of fish protein hydrolysates
(FPH) [434].

Nanoemulsions based on Compritol ATO containing an additional two-component
mixture of surfactants were used as carriers for applying resveratrol to the skin [435]. A
high drug load was achieved, which ensured the effectiveness of (i) antioxidant activity
confirmed by the study of the activity of antioxidant enzymes (CAT, GSH, SOD), (ii) anti-
inflammatory activity, confirmed by the study of anti-inflammatory markers interleukin 6
(IL-6), interleukin 8 (IL-8), and rat nuclear factor kappa B (NF-κB), and (iii) the anti-wrinkle
test (matrix metalloproteinase (MMP-1) and granulocyte macrophage colony stimulating
factor (GM-CSF)) after UVB irradiation.

5.1.3. Nanoparticles of Precious Metals, i.e., Pd, Pt, and Au

Noble metal nanoparticles are characterized by strong catalytic activity in many
chemical reactions, such as hydrogenation, hydration, and oxidation. This property results
from the large surface area and high proportion of atoms on the surface of NPs [436]. In
addition, noble metal NPs are believed to be powerful antioxidants [437,438]. Pd is known
to prevent the oxidative degradation of Pt. Already in 1915, Hideyo Noguchi and Saburo
developed a solution of Pd and Pt NPs used as a medicine against many chronic skin
diseases, i.e., burns, frostbite, and urticaria, as well as other diseases such as pneumonia,
acute gastritis, chronic gastritis, and rheumatoid arthritis [439]. Many years later, the
therapy was recreated by Dr. Ishizuka, who developed PAPLAL, a mixture of Pd and
Pt NPs [440]. PAPLAL was patented as an antioxidant against superoxide anions and
hydroxyl radicals [441] in the Japanese Patent Office (Patent No. 3411195, 2003). Recently,
Elhusseiny and Hassan confirmed the anticancer and antimicrobial activity of the complex
of Pd-NPs and Pt-NPs [439]. The anti-aging effect of the PAPLAL complex (Pd:Pt; 2.7:1)
applied transdermally in a mouse model was demonstrated by Shibuyai et al. [417]. Au-
NPs, unlike Au in the bulk state, can absorb light and convert it to heat, acting as miniature
thermal scalpels to remove, for example, cancer cells [69].

In the Cao et al [442] study, percutaneous permeation of Au from Au nanosheets as
well as a cream containing Au nanosheets was systematically investigated using guinea
pigs. Au from both preparations was demonstrated to be able to permeate into the skin in a
time-dependent manner, but could not enter the systemic circulation. The main permeation
route of Au nanosheets was through hair follicles. It was revealed by synchrotron radiation
X-ray fluorescence (SRXRF) imaging. Unfortunately, both the extracted Au nanosheets as
well as the Au nanosheets embedded in cosmetic creams inhibited the growth of hair. It
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has been observed that the expressions of hair growth marker proteins (CD34, ALP, and
KRT19) were downregulated after exposure to the cosmetics containing Au nanosheets. The
extracted Au nanosheets, in contrast to the cosmetic cream, were nontoxic to keratinocytes
and skin fibroblasts.

Unfortunately, metallic NPs synthesized by chemical methods require the use of
toxic-reducing and stabilizing substances (hydrazine hydrate, sodium borohydride, DMF,
and ethylene glycol), which are adsorbed on the NPs. The above phenomena reduce the
biocompatibility of nanomaterials and limit their use in medicine and cosmetology [443].
Therefore, natural methods of synthesis are gaining more and more popularity. This is
the so-called green synthesis or biogenic or phytochemical synthesis using extracts from
plants, yeasts, fungi, and bacteria. NPs obtained in this way are stable and less toxic
compared to chemical synthesis products. Importantly, the bioactive components of the
reducing extract, e.g., vitamins, alkaloids, carotenoids, polyphenols, fats, carbohydrates,
and proteins, are adsorbed as stabilizing factors in the formation of NPs [444]. Ag-NPs
(468.7 nm) loaded with phytochemicals have so far been used in anti-aging applications.
Radwan et al. [416] showed that Ag-NPs stabilized with ethanolic Eucalyptus camaldulensis
bark extract, the main component of which is rutin, reduced cell senescence and apoptosis
in a human melanocyte cell line (HFB-4). The authors also confirmed a significant decrease
in the activity of elastase, collagenase, and tyrosinase enzymes. Another example is the
synthesis of Ag-NPs (87.46 nm) using Symphytum ofcinale leaf extract [11]. The anti-aging
effect of S-AgNPs was studied using HaCaT keratinocyte cells treated by Ag-NPs after UVB
irradiation. The authors emphasized photoprotective properties of Ag-NPs as indicated
by the inhibition of matrix-degrading enzymes metalloproteinase-1 and pro-inflammatory
cytokines IL-6 and increasing the expression of procollagen type 1 in keratinocytes.

Jimenez et al. [415] obtained Au-NPs in a green synthesis process using P. ginseng berry
extract. Non-toxic to human skin fibroblasts, Au-NPs have a high potential for cosmetic
applications, thanks to the ability to retain moisture and mitigate damage caused by
oxidative stress. In addition, Au-NPs significantly reduced melanin content and suppressed
tyrosinase activity in α-MSH-stimulated B16BL6 cells.

5.1.4. Cerium Oxide Nanoparticles (CeO2-NPs)

UVA radiation is particularly dangerous for the photoaging of human skin. The
reason for this phenomenon is the formation of ROS in the epidermis and dermis. CeO2-
NPs have been shown to have a protective effect against skin photoaging due to their
ability to scavenge free radicals [445]. The antioxidant activity of CeO2-NPs is similar to
that of the antioxidant enzymes SOD and CAT. Li et al. [419] studied the effect of CeO2-
NPs on human skin fibroblasts (HSF) irradiated with UVA. The authors confirmed that
CeO2-NPs may reduce the production of pro-inflammatory cytokines, intracellular ROS,
β-galactosidase activity, and phosphorylation of c-Jun N-terminal kinases (JNKs) after
exposure to UVA radiation.

5.1.5. Anti-Aging Polymeric Nanoparticles

Many polymer compounds are used for the production of NPs, i.e., PLA, PGA, PLGA,
polyvinyl alcohol (PVA), and PCL. Polymer NPs serve as drug delivery vehicles and are
rarely used in anti-aging cosmetic products [446]. In cosmetic products, polymeric NPs
play a photoprotective role. Among the few examples that report the use of polymeric
NPs in anti-aging products is curcumin encapsulated in silk NPs (700 nm) (silk/curNPs).
Curcumin is a natural antioxidant isolated from turmeric (Curcuma longa), thus it is func-
tional for anti-aging. Yang et al. [447] showed that synthesized silk/cur NPs had an effect
on markers of aging (P53, P16, HSP70 gene expression, and β-Galactosidase activity). In
the study, the percentage of ß-galactosidase in rat bone marrow mesenchymal stem cells
(rBMSCs) decreased from 36% to 25.7% after treatment with silk/cur NPs.

Nanocarriers present in cosmetic products along with active substances are listed in
Table 2, which was developed on the basis of review articles [286,448–450].
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Table 2. Types of commercial skin care nanoformulations with their active ingredients.

The Active Ingredients Nanoformulations

vit.E, panthenol nanocapsules

coenzyme Q10, vitamins (A, C and E), natural extracts (Symphytum officinale, Camellia sinensis, Gingko biloba,
Chondrus crispus, Rosa damascena, Aloe barbadensis), natural oils (Helianthus, Prunus Armeniaca,

Symphytum officinale), hyaluronic acid, SOD
liposomes

plant extracts (Canadian Willow, Camellia sinensis), olive oil, vit.E, hyaluronic acid, soy firming agent,
UVA/UVB filters nanospheres

gold powder (24 k), silk, plant extracts (Coffee arabica, Aloe barbadensis, Cucurbita pepo), vitamins (A, C and
E), hyaluronic acid, plant extracts, plant stem cell extracts Au-NPs

coenzyme Q10, natural oils (hemp, macadamia nut), plant extracts (Leontopodium nivale) NLCs, SNLs

ZnO-NPs, Fe2O3-NPs, TiO2-NPs, plant extracts, vitamins nanocomplexes

vitamins (E, B3, provitamin B5), UVA/UVB filters, bepanthol nanoemulsions

plant extracts (Gingko biloba), oils (almond, lavender), natural compounds (caffeine, amino
acids, polyphenols) nanosomes

6. NPs Protection against Pollution

Air pollution, in addition to the obvious threat to human health, affects the condition
of the skin. It is known that these pollutants generate a state of oxidative stress by reducing
antioxidant enzymes in the skin epidermis and the content of antioxidants, such as ascorbic
acid, tocopherol, or glutathione, and increasing the secretion of pro-inflammatory cytokines.
Exposure to PM therefore results in skin diseases such as acne, atopic dermatitis, psoriasis,
and cancer that develop over time [451,452]. The resulting cellular damage to the skin is
strongly associated with skin aging [453,454]. Rembies et al. [455] collected information
on the effect of pollutants on the skin in his review article. The authors took into account
particulate matter (PM) with sizes of about 2.5 and 10 µm and polycyclic aromatic hydro-
carbons (PAHs), volatile organic compounds (VOCs), nitrogen and sulfur oxides, carbon
monoxide, ozone, and heavy metals. The described skin changes associated with exposure
to air pollution include many changes, including changes in lipid composition, collagen,
elastin, melanin, lipids, proteins, pH value, and others. [455]. Changes in the composition
affect the rate of secretion of the serum and hydration.

D-biotin, or vitamin H or B7, known as coenzyme R or Biopeiderm, is used in cosmetics
to moisturize and smooth the skin. D-Biotin also supports the formation of collagen and
elastin, which is why it is sometimes used in the treatment of skin diseases, e.g., eczema
and acne [456]. Regeneration of skin affected by air pollution (reduction in erythema,
improvement of elasticity and hydration) was achieved using biotin encapsulated in a
water-in-oil-in-water W/O/W multiple emulsion system [429].

Eupafolin (6-methoxy 5,7,3′,4′-tetrahydroxyflavone) is another natural ingredient
isolated from Phyla nodiflora, belonging to the family Verbenaceae. The alcohol extract of this
plant has anti-inflammatory properties and is used in traditional Chinese medicine. In a
study by Lee et al. [457] Eupafolin has been shown to inhibit the production of inflammatory
mediators in a keratinocyte (HaCaT) cell line. Eupafolin has been shown to reverse the
state of oxidative stress and the inflammatory response induced by PM. The activity of
eupafolin in the treatment of skin inflammatory diseases in the molecular dimension is
expressed in the form of suppression of intracellular ROS generation, NK-κB activation,
cyclooxygenase-2 (COX-2) protein and gene expression, and prostaglandin E2 (PGE2)
production in HaCaT cells. Unfortunately, eupafolin is poorly soluble in water, which
impairs skin penetration. To address these issues, Lin et al. [458] synthesized a eupafolin
nanoparticle delivery system (ENDS) and checked its activity using PM-treated mice. As
nanoparticle carriers, a nontoxic polymer, Polyvinyl alcohol (PVA), and an acid-responsive
cationic polymer, Eudragit E100, were used. The prepared ENDS exhibited improvement
of antioxidant and anti-inflammatory properties in comparison to raw eupafolin.
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Fullerene derivatives, in particular glycomodification of fullerenes, in addition to
their antioxidant, antibacterial, and antiviral effects, have anti-inflammatory effects on
PM-induced skin diseases [459]. The three water-soluble glycofullerenes with glucosides,
galactosides, and mannosides sugar substituents with the hydrodynamic diameters of
69.3 ± 5.2, 103.2 ± 6.1, and 172.0 ± 17.7 nm, respectively, were synthesized and examined
for their ability to attenuate PM-induced oxidative stress and inflammation in HaCaT
keratinocytes. Glycofullerenes were synthethized using the Cu(I) alkyne–azide cycload-
dition (CuAAC) method. PM-induced redox imbalance in keratocyte cells causes the
activation of the mitogen-activated protein kinase (MAPK) and Akt (also known as protein
kinase B) pathways followed by upregulation of the expressions of inflammatory proteins
(ICAM-1, COX-2, HO-1, and PGE2, etc.). The PM-activated pathways were suppressed by
pre-treatment with glycofullerenes. The results confirmed that the obtained glycofullerenes
have a protective effect on the skin exposed to PM, thanks to their antioxidant and anti-
inflammatory effects and the ability to maintain the expression of barrier proteins (filaggrin,
involucrin, repetin, and loricrin), unlike unmodified fullerenes.

7. Impact of NPs on the Natural Environment

Taking into account the fact that the use of NMs in the cosmetics industry and pharma-
ceutical preparations is increasing every year, it is necessary to consider the possible threats
that the generated nano-wastes have on the environment. Wastewater treatment plants
that use microorganisms to remove organic waste are particularly at risk. It is known that
some nanoparticles, i.e., Ag-NPs, have a strong bactericidal effect. Due to the possibility of
NPs penetrating into groundwater, the assessment of NPs’ toxicity was performed mainly
on aquatic organisms, e.g., zebrafish, Chlorella sp., Catostomus commersonii.

TiO2-NPs, commonly added to sunscreens, have been observed to reduce the percent-
age of viable zebrafish embryos [460]. In the Iswarya et al. [461] study, the toxic impact
of anatase and rutile NPs was investigated using freshwater microalgae, Chlorella sp. The
authors noted the reduction in cell viability and chlorophyll content under the influence
of NPs and UV radiation. SEM microscopic analysis revealed damage to the cell nucleus
and cell membrane, as well as to chloroplasts and other internal organelles of the algae.
ZnO-NPs [462] can alter heart function and induce a cellular stress response in gill tissue of
the white sucker (Catostomus commersonii), a freshwater teleost fish. Exposure to ZnO-NPs
resulted in an increase in ventilation index by ~30% and a decrease in cardiac acetyl-
cholinesterase activity. The authors confirmed the cardio-respiratory toxicity of ZnO-NPs.
The toxicity of Ag-NPs and TiO2-NPs against planktonic crustaceans, Daphnia magna [463],
and the rainbow trout (Oncorhynchus mykiss) [464] was also assessed. It has been shown that
exposure to NPs triggers oxidative stress mechanisms in internal organs. TiO2-NPs’ effects
on eukaryotic cells were recently analyzed by Gojznikar et al. [465]. Carbon-based NPs are
cytotoxic and can accumulate in mammalian organs, such as the lungs and kidneys. It was
confirmed that NPs titanium, polystyrene, and fullerene induce oxidative stress [466]. The
NPs, after absorption by plants and translocation, may enter the food chain and become
biomagnified. On the other side, the synthesized amorphous iron oxide nanoparticles
(AIONPs) from waste incense sticks ash (ISA) were useful for the remediation of Congo
red dye from wastewater [467]. Using the adsorption method, more than 70% removal was
achieved after one hour. The benefits and risks of using nanoparticles in agroindustry have
been described in review articles [468–470].

8. Conclusions

In recent years, nanotechnology has made great progress in dermatology and cosme-
tology. This is a fairly new field, considering the fact that the Nanodermatological Society
was established only in 2010 by an outstanding dermatologist, Dr. A. Nasir. NPs have
been beneficial both as a standalone therapy and as a tool to enhance the effectiveness of
pharmacological therapy. The skin is a large and accessible area of the body. The interac-
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tion of NPs with human skin and their possible penetration is being investigated from a
toxicological perspective as well as a drug delivery route that reduces systemic side effects.

There are many benefits of using dermal and transdermal drug delivery systems
enriched with NPs. Benefits include such properties as exceptional skin penetration ability
and controlled drug release (depot effect) to skin and skin appendages. Owing to NPs,
many benefits can be achieved, such as improvement in the solubilization capacity of active
pharmaceuticals, increase in the bioavailability of practically insoluble drugs, drug protec-
tion against enzymatic and hydrolytic degradation, and enhancement of storage stability.
Advantages for therapy involve an increase in skin penetration of many active, potent phar-
maceuticals (hydrophilic/lipophilic), avoidance of hepatic first-pass metabolism and the
gastrointestinal (GI) tract, the reduction in adverse effects (safer in hepato-compromised pa-
tients), and multiple dosing, on-demand drug delivery. Besides the above advantages, NPs
in skin care products require special and expensive preparation techniques. Furthermore,
we must take into account the lag time for the drug to penetrate the skin. Unfortunately,
drugs that require high blood levels cannot be administered. As for disadvantages there are
the following: disruption of the stratum corneum lipids’ integrity as the result of interfacial
chemistry, limited epidermal targeting, the possibility of polymorphic as well as possible
toxicity (cytotoxicity, phototoxicity, genotoxicity, carcinogenicity), the ability to accumulate
in cells, and ROS generation and connected consequences. All these disadvantages are still
unsolved challenges.

There are methods of detection and synthesis of NPs. Currently, the most interesting
is so-called biogenic synthesis, which eliminates the use of toxic reagents and extends the
pharmacological activity of NPs. To our knowledge, there are no preparations on the market
that contain this type of NP. Single examples described in the paper come from innovative
experimental works. There is no doubt that, considering green chemistry requirements, the
biogenic synthesis of NPs belongs to future trends.

For transdermal delivery of active substances, healthy, undamaged skin provides a
solid barrier against penetration. Therefore, dermatology and cosmetology are interested
in the smallest possible size of NP that is able to use transcellular transport between
corneocytes in the stratum corneum and transport through hair follicles. Hence, with the
help of Langerhans cells, the way is opened to the lymph nodes. Of particular interest
is the study of the observed adjuvant effect, immunosuppression, and the use of NPs as
vaccine delivery systems. Taking into account contemporary needs, NPs should be further
examined in the field of immunology.

In the treatment of deep wounds, not only is the antibacterial effect important, but
also the need to supplement or rebuild cavities, e.g., after injuries, transplants, and deep
wounds such as diabetic foot ulcers and bedsores. The analysis of the literature shows that
the preparation of scaffolds designed specifically for the patient, e.g., with 3D printing, is
still a challenge. However, it is not only about mechanical stability, but also about increasing
angiogenesis, a key factor in wound healing. Commercial products containing BBG are
most often used for this purpose. Therefore, further efforts are needed to explore other soft
tissue repair options.

The use of nanomaterials in cosmetic and biomedical products has resulted in in-
creased interest in the negative effects of this exposure on humans and the environment.
Most attention is paid to the NPs of metal oxides, which are widely used as additives to
photoprotective cosmetics. The release of metallic NPs into the environment can pose a
serious threat to the ecosystem. The most extensively studied is the toxic effect of NPs on
aquatic flora and fauna due to the possibility of their penetration into groundwater. So
far, there are no data on the fate of nanoparticle carriers. Although it can be assumed that
biodegradable and biocompatible lipid carriers do not pose a threat to the environment,
easier access of plant and animal organisms to active substances carried by carriers may
raise concerns.
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