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Abstract: Breast cancer is among the most common cancers in women, second to skin cancer. Mam-
mary gland development can influence breast cancer development in later life. Processes such
as proliferation, invasion, and migration during mammary gland development can often mirror
processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress
post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs
play a key role in mammary gland development, and aberrant expression can initiate or promote
breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and
potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland
development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion,
and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due
to their ability to target many genes at once. Investigation of miRNAs and their role in mammary
gland development may inform about their role in breast cancer. In particular, by studying miRNA
in development, mechanisms and potential targets for breast cancer treatment may be elucidated.

Keywords: mammary gland; microRNA; development; breast cancer

1. Introduction

Breast cancer is among the most common cancers in women, second to skin cancer [1].
Treatment of breast cancer is complex and often depends on the subtype, as developed
by Perou et al. [2]. Currently, breast cancer subtypes have evolved to include genomic,
proliferative, and immune cell markers [3]. Early breast cancer detection and prevention
is commonly associated with BRCA1 or BRCA2 mutations [4], but other structures in the
mammary gland may have predictive value as well. For instance, during puberty, terminal
end bud (TEB) structures develop, which are the most common sites for tumorigenesis.
In later life, these structures differentiate into alveolar buds (AB), which have a reduced
risk of de novo tumorigenesis. It has been shown that the number of TEB structures in
early life is modifiable, for example via dietary interventions, leading to reduced breast
cancer risk later in life [5]. Furthermore, processes critical to normal mammary gland
function such as apoptosis, proliferation, and invasion are often altered, leading to breast
cancer formation. In fact, a subset of microRNAs (miRNAs) with expression varying
through stages of development (juvenile, puberty, mature virgin, gestation, lactation, early
involution, and late involution) were also found to be associated with the luminal A breast
cancer subtype [6]. This suggests that parallel roles for oncogenic and anti-oncogenic
miRNAs may exist during development and during breast cancer. MiRNAs are short, non-
coding RNAs, and are required for normal development across species. In the mammary
gland, aberrant expression of miRNAs can alter critical functional and developmental
processes leading to the development of breast cancer [7]. Therefore, miRNA expression
in the mammary gland is a promising clinical biomarker. MiRNAs are also a promising
therapeutic target for breast cancer. Investigation of the role of miRNAs in mammary gland
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development can help to improve our understanding of which miRNAs affect apoptosis,
proliferation, invasion, and angiogenesis, and how these miRNAs may serve an oncogenic
or tumour suppressive role in breast cancer [7]. It may also provide important insight for
preventative strategies. In this review, we provide an overview of the stages of mammary
gland development, the stages and characteristics of breast cancer, and discuss miRNAs
that may affect both processes.

2. Mammary Gland Development

Mammary gland development occurs in five stages: embryo, puberty, pregnancy,
parturition, and involution [8] (Figure 1A). Below, we provide a brief synopsis of this
process, with reference to the time points that are relevant for miRNA regulation, as
discussed in Section 5.
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Figure 1. (A), A timeline of mammary gland development through six stages and (B), Intrinsic breast
cancer subtypes, markers, and characteristics from best prognosis to worst prognosis. Cancer type
incidence are as per [1,9] Created with BioRender.com.

Embryo: The mammary gland is separated into the ectoderm and mesoderm, with
development beginning around day 10, where it appears as an epithelial bud. The ecto-
derm forms multiple layers which develop into one pair of placodes (five pairs in mice,
six pairs in rats) by day 12 [8]. Around day 13, epithelial cell fate begins to be guided
by inductive signals from the mesenchyme. This signaling guides the patterning of the
placodes and the positioning of extracellular matrix components. At day 14, the epithelium
of the placodes expands and invades the preadipocytes, which are thought to emerge from
the mesenchyme [10]. The epithelial cells reach these cells and begin branching, leading to
an early ductal system. The ductal lumen forms from day 16 to day 18. Finally, the sexual
delineation and nipples are formed. During embryogenesis, the epithelial-mesenchymal in-
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teraction and transformation plays a critical role in polarization, tissue repair, and formation
of the mammary gland.

Puberty: Around 2–3 days after birth, preadipocytes are completely differentiated
into adipocytes [11]. Mammary gland growth is largely isometric until puberty (6–8 weeks
postnatal in rodents), when mammary growth becomes allometric [8,12]. This growth
is triggered by paracrine and endocrine signals from the pituitary gland, hypothalamus,
and gonads. These signals include growth factors and hormones, which develop the
rudimentary ductal system into a branched ductal system prepared for pregnancy. The ends
of preliminary ducts invade the fat pad and differentiate into TEBs. TEBs and connected
ducts are composed of myoepithelial cells on the outer layer and a thicker inner layer of
luminal epithelial, with a layer of cap cells at the end of the TEB which have multipotent
capabilities [13]. The duct is surrounded with stromal cells and adipocytes. Secondary and
tertiary branches emerge from the primary ductal branches, leading to a more expansive
ductal system. Overall, pubertal mammary gland growth is characterized by increased
invasion and proliferation. After puberty, the mammary gland remains relatively quiescent
until pregnancy.

Pregnancy: During estrous cycles and pregnancy, the ductal lumen undergoes minor
developments of small, sac-like structures that protrude 90◦ from the ducts, often called AB.
Some of these AB elongate to form secondary or tertiary branches. During pregnancy, this
branching is increased in response to progesterone and prolactin secretion from the ovaries
and pituitary gland, respectively [8]. The mammary gland undergoes ductal and alveolar
proliferation with the guidance of progesterone and prolactin. The alveoli continuously
expand and divide, with the alveolar epithelial cells invading the remainder of the fat pad
such that the alveoli have filled most of where the adipose used to be. The alveoli also form
clusters surrounded by blood and secretory vessels, prepared for lactation.

Lactation: Post-pregnancy, serum progesterone levels drop significantly and the num-
ber of prolactin receptors on alveolar cells increase [8]. These alveolar cells are polarized
and sequester proteins, fats, and nutrients, while lactating. Prolactin levels increase in
response to nursing stimuli, and decrease without, with involution beginning as soon as
24 h of no stimuli.

Involution: Involution begins within 24 h of weaning. It occurs in two phases: in the
first phase, the mammary gland alveoli undergo apoptosis without an appreciable change
in structure [8]. This phase of involution is reversible within 48 h with the resumption of
suckling [14]. The second phase of involution is irreversible. After 48 h of weaning, the
second phase begins, which involves destruction of the alveolar structures and lactation-
competent cells. With the breakdown of the alveolar structures, adipose cells repopulate
the mammary gland and the mammary gland structure returns to the pre-pregnancy state.

3. Breast Cancer

Breast cancer is diagnosed and treated based on a subtype-classification system that
delineates tumours based on genomic, proliferative, and immunological markers. There are
five main types of breast cancer: luminal A-like (ER+, PR+, HER2-, low Ki-67), normal-like
HER2- (lower ER+, PR+, HER2-, high Ki-67), luminal B-like HER2+ (ER+, PR+, HER2+, high
Ki-67), HER2-enriched (ER-, PR-, HER2+, high Ki-67, non-luminal), and triple-negative (ER-,
PR-, HER2-, high Ki-67) [4] (Figure 1B). Triple-negative breast cancer can be divided into six
categories which determine its proliferative, apoptotic, and invasive characteristics: basal-
like 1, basal-like 2, immunomodulatory, mesenchymal, mesenchymal stem cell-like, and
luminal androgen receptor. Out of these, luminal A-like breast cancer is the most commonly
found in women and has the highest survival rate [15]. Triple-negative breast cancer has the
worst prognosis, with a highly metastatic, aggressive, and invasive phenotype [16]. Several
factors are involved in the likelihood of malignant tumour development and metastasis in
the mammary gland. Oncogenic factors include the number of undifferentiated structures
(particularly TEB) [13], number of estrous cycles [17], mammographic density [18], and early
age at menarche [9]. Factors affecting the potential for epithelial-to-mesenchymal transition
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(EMT) may increase the likelihood of metastasis and expression of breast cancer stem-cell-
like properties [19]. Anti-oncogenic factors include early age at pregnancy and factors
associated with pregnancy such as high doses of estrogen and progesterone, differentiation
of TEB structures, and involution [12].

Breast cancer largely arises in epithelial cells in terminal ductal lobular units [20],
or undifferentiated TEB in rodents [21]. The TEB, when in the process of differentiating,
also has the potential for carcinogenesis. The differentiation of TEB into AB reduces the
potential for the development of malignant tumours. This has been demonstrated with
7,12-dimethylbenz[a]anthracene (DMBA) in vivo [22,23], where administration of DMBA
at 20 days of age resulted in death of 36/42 rats. Tumour incidence increased with age until
46 days, after which there was a decrease in malignant tumour incidence and increase in
benign tumours.

4. MicroRNAs

MiRNAs are short, non-coding 19–22 nucleotide RNAs which post-transcriptionally
regulate gene expression [24]. MiRNAs are transcribed by RNA polymerase II in the nu-
cleus, after which Drosha—a ribonuclease type III (RNAse III)—and DGCR8 binds and
preprocesses the pre-miRNA. The pre-miRNA (~70 nt long) is transported into the cyto-
plasm where another RNAse III Dicer cuts pre-miRNA into mature miRNA approximately
22 nt long. This mature miRNA associates with argonaute protein (AGO) to form a RNA-
induced silencing complex (RISC) where the miRNA can bind to the 3′ UTR of a mature
mRNA, among other possible binding sites, as previously reviewed [24]. One miRNA can
target multiple mRNAs, and one mRNA can be regulated by multiple miRNAs, allowing
for the coordinated regulation of several mRNA targets and, by extension, proteins and
pathways. In development, miRNAs are critical in regulating developmental timing and
progenitor cell fate, and these roles have been extensively reviewed by DeVeale et al. [25].
Dysregulation of miRNAs involved in developmental or homeostatic processes can lead
to breast cancer; the role of miRNAs involved in breast cancer development, treatment,
diagnosis, prognosis, and in exosomes have been previously reviewed [26–28]. Here, we
discuss miRNAs which can be found in both mammary gland development and breast
cancer in the context of functions they may have in common.

5. MiRNAs in Mammary Gland Development and Breast Cancer

This section discusses characteristics common to development and cancer of the breast,
such as EMT, stem-cell characteristics, proliferative ability, angiogenesis, apoptosis, and
epigenetic regulation. Previous reviews on miRNAs in mammary gland development and
breast cancer focus on subsets of developmental stages [29,30]. Here, we seek to provide a
comprehensive updated review of miRNAs in mammary gland development and breast
cancer. The literature was searched for miRNAs in mammary gland development and
breast cancer across species; 32 miRNAs were found to be shared in both processes, as
specifically discussed below and illustrated in Figure 2.
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Figure 2. Breakdown of 32 microRNAs found in mammary gland development and breast cancer pro-
cesses based on their association with their typical stages. Rows correspond to biological mechanisms
that can be found in both processes. Columns correspond to stages of mammary gland development.
MicroRNAs in red are oncogenic microRNAs. MicroRNAs in black are tumour suppressive in breast
cancer. Italicized microRNAs have a debated role in breast cancer. Created with BioRender.com.

5.1. EMT

Embryogenesis in the mammary gland is marked by differentiation, migration, and
invasion facilitated by a progenitor cell population and epithelial–mesenchymal reci-
procity [31]. One hallmark of breast cancer is the reactivation of embryonic programming,
particularly with respect to stem-like breast cancer traits and EMT, leading to oncogenesis
and metastasis. Embryonic development relies on a delicate interplay between regulatory
molecules, such as miRNAs, and expression of genes or transcription factors, and aberrant
expression of miRNAs at any stage can dysregulate gene expression leading to breast cancer
invasion or metastasis. EMT traits also increase breast cancer chemoresistance by inhibiting
apoptosis and increasing chemoresistance-related gene expression [32]. Previous work on
embryonic programs in breast cancer has largely focused on parallels in gene-based signa-
tures and pathways [33], and here we will explore this link through miRNA expression.
During embryogenesis, miR-137 was found to be highly expressed in the mammary gland,
a 30-fold increase compared to surrounding regions [34]. Lentiviral overexpression of miR-
137 in ICR mouse embryos led to the thickening of mammary epithelium and inhibition of
invasion of the mammary epithelial bud, while MDA-MB-231 tumour formation in vivo
was inhibited by miR-137 overexpression [34]. The restriction of mammary bud invasion
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and tumour formation is consistent with a decreased ability for EMT, where EMT loss may
reduce the ability of mammary cells to lose polarity and migrate/invade the underlying
fat pad [35]. Indeed, several studies have shown a suppression of invasion, migration,
or EMT from miR-137 overexpression [36–39], leading to reduced metastatic potential
and chemoresistance. For example, Lee et al. found that miR-137 was downregulated in
triple-negative MDA-MB-231 and Hs578T breast cancer cell lines, and targeted the 3′ UTR
of Del1, encoding for a protein which is abundantly expressed in plasma of breast cancer
patients [38]. MiR-137 has been found to increase protein expression of epithelial marker
E-cadherin, and reduce mesenchymal markers N-cadherin and vimentin by modulating
DUSP4, leading to reduced doxorubicin resistance [37]. The overexpression of miR-137 in
triple-negative MDA-MB-231 cells decreased migration and invasion, pointing to a tumour
suppressor role of miR-137 in breast cancer. Thus, an embryogenesis-related miRNA is
dysregulated in breast cancer EMT. As shown in Table 1, only one other miR (miR-206) that
is altered in mammary gland embryogenesis has been studied in breast cancer, highlighting
a research gap for further investigation.

5.2. Stemness Characteristics

A stem cell population is present in the mammary gland at all stages of development.
Multipotent stem cells are present in the embryo, and, as the development stage progresses,
the progenitor cell population becomes restricted to bipotent and unipotent progenitors.
These progenitor cells are most active in puberty and pregnancy, when there is rapid
proliferation and differentiation of ductal structures or alveologenesis. Some “stem cell”
genes have been found to be exclusively expressed in the outer cap cell layer of the TEB
in puberty, while others are also present in the basal cell population. The multipotent
mammary stem cells have a gene signature which resembles claudin-low and basal-like
breast cancer types, characterized by increased aggressiveness and metastasis [40]. Due to
their plasticity, stem-cell-like breast cancer cells, identified by CD44+/CD24−/low markers,
have an increased proclivity for invasion, treatment resistance, and cancer recurrence [19].

During embryogenesis, miR-206 was found to be highly expressed in the mesenchyme
at day 11.5. At day 13.5, miR-206 expression was reduced in the mesenchymal layers and
localized to the mammary fat pad. Overexpression of miR-206 led to severe stunting of
mammary bud formation, indicating that miR-206 may abrogate mesenchymal differentia-
tion [41]. MiR-206 has also been found to be highly expressed in pregnancy, indicating it
may play a role in restricting lineage/differentiating progenitor cells [42]. In triple-negative
breast cancer cell lines, miR-206 mimics reduced the CD44+/CD24−/low cell population. In
breast cancer stem cells, miR-206 has been found to inhibit proliferation, metastasis, and in-
crease apoptosis [43]. However, miR-206 has also been found to promote MDA-MB-231 and
SK-BR-3 in vitro invasion, migration, and proliferation as well as tumour size in vivo [44].
The differences in response may be due to differing cell types or heterogeneity of miRNA
targets, and further investigation is necessary.

Female puberty is characterized as a period of ductal growth, invasion, and prolif-
eration, led by differentiation of bipotent and unipotent stem cells. The nulliparous TEB
contains a unique progenitor cell population, with alveolar progenitors, basal progen-
itors, and cap cells able to differentiate into myoepithelial cells [13]. MiRNAs that are
enriched/depleted in TEBs or alter TEB morphology may give information as to their role
in breast cancer. For example, miR-34a expression has been found to be low in a stem
cell (PKH26+ or CD61+/CD49+) population, but increased along a luminal differentiation
route. MiR-34a depletion increased TEB size through an increase in the progenitor cell
population [45]. Based on the effect of miR-34a on TEB development, it could be predicted
that miR-34a confers a tumour-suppressive effect through the inhibition of a highly pro-
liferative, cancer stem-cell-like phenotype. In several studies, miR-34a has been found to
reduce cancer stemness by targeting genes such as CD24, NOTCH1, NOTCH4, HDAC1,
or HDAC7. It has also been found to suppress tumour proliferation, EMT markers, and
reduce chemoresistance.
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Changes during pregnancy may result in a marked reduction in the proliferative
population of cells in the mammary gland, leading to reduced breast cancer risk. In a
comparison of Holstein cows during mid-pregnancy and during mid-lactation, miR-139
was found to be upregulated in pregnancy [46]. During pregnancy, there is a population
of luminal progenitor cells that gradually differentiates as pregnancy advances, ending
with fully differentiated cells in lactation [12]. MiR-139 mimics downregulated members of
the IGF1R and PI3K/Akt pathways through binding of the GHR 3′UTR. In breast cancer,
miR-139 reduced stemness through modulation of the PI3K/Akt pathway by targeting
CXCR4. In vivo, miR-139 transfection in MDA-MB-231 cells reduced lung metastatic nodule
development. Thus, miRNAs upregulated in pregnancy compared to lactation may be
involved in directing the fate of progenitor cells.

For the maintenance of the progenitor population in the mammary gland, miR-205
is required. MiR-205 is expressed predominantly in basal cells through all development
stages. It is also expressed in the mammary stem-cell population, although expression is
markedly reduced mid-to-late lactation and in involution. In histological sections at the
involution of the mammary gland, miR-205 expression was not detectable until the third
day of involution with the return of the increased progenitor population. Transplantation
of miR-205-deficient mammary epithelial cells revealed that miR-205 is not necessary for
mammary gland development but supports stem cell regenerative potential [47]. In a
review of miR-205 in breast cancer, its expression has been shown to decrease as breast
cancer aggressiveness increases [48]. Indeed, in xenograft mouse models, miR-205 has been
shown to reduce tumour growth and vasculogenic recruitment, characteristics of aggressive
cancers closer to a stem-like phenotype. Thus, miRNAs enriched in the healthy progenitor
cell population may become dysregulated in aggressive breast cancers, imparting a stem-
like phenotype.

5.3. Epigenetic Regulation

Another mechanism by which cell lineages become restricted, such as from embryonic
stem cells to a luminal cell in the developed mammary gland, is through epigenetic regula-
tion. There are two types of epigenetic regulation commonly seen in the mammary gland:
DNA methylation and histone modification. Hypomethylation is more commonly found in
stem and progenitor cells, and methylation can direct cells into specialized identities. Most
studies regarding epigenetic regulation in mammary gland development relate to silencing
or activation of genes for lineage-specific differentiation such as luminal-driving GATA3
or stem and basal-driving Angptl2. The role of epigenetic regulation in mammary gland
development has been reviewed by Holliday et al. [49]. Although epigenetic regulation in
mammary gland development is mainly studied on the coding gene level, miRNAs can
promote or be regulated by regulators of methylation or histone modification. For example,
the oncogenic miR-150, which is more highly expressed in pregnancy compared to lactation,
has been found to repress members of the DNA methyltransferase family DNMT3A and
DNMT3B, leading to an increase in the stem-cell-like population, likely due to hypomethy-
lation [50]. Conversely, the puberty-related tumour suppressor miR-184 has been found
to be methylated in lymph node metastases samples compared to normal tissue [51]. In
puberty, miR-184 is found to be more highly expressed in ductal cells compared to the
highly proliferative TEBs and may be identified as an anti-proliferative miRNA. Thus, the
function of miRNAs found to be methylated in breast cancer can be examined through the
lens of mammary gland development.

5.4. Invasion, Migration, and Proliferation

Invasion, migration, and proliferation are regulated through signaling pathways,
including the PI3K/Akt/mTOR and Wnt/β-catenin pathways [52,53]. In puberty, the
PI3K/Akt pathway can be activated by ligand-induced phosphorylation of fibroblast
growth factor receptors or epidermal growth factor receptors, leading to proliferation and
cell survival [13]. This pathway is dysregulated in breast cancer, leading to changes in
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cellular phenotype, metastasis, and drug resistance [52,53]. Dysregulated signaling path-
ways in puberty and cancer are regulated via miRNA. For example, miR-184 and miR-34a
regulate the expression of genes and proteins of the phosphatidylinositol-3-kinase/protein
kinase B (PI3K/Akt) and Wnt pathways, respectively. MiR-184 expression is increased
in mature ducts compared to TEBs and reduces the activation of the PI3K/Akt by de-
creasing phosphorylation of Akt and related genes such as AKT2, PRAS40, and GSK3A.
Through deregulation of these genes, tumour proliferation, invasion, and metastatic burden
were reduced [51,54]. Similarly, miR-34a was found to reduce Wnt/β-catenin signaling
in both puberty and breast cancer, regulating differentiation and suppressing stem-cell
like characteristics [45].

During pregnancy, the mammary gland undergoes its final stage of development,
once again characterized by significant proliferation and differentiation, leading to the
expanded ductal structure that is capable of milk production. The highly proliferative
cap cells of the TEB differentiate into myoepithelial cells. Basal and luminal progenitors
differentiate into alveolar and ductal cells in pregnancy, which expand and invade the
mammary fat pad [13]. The miR-17/92 cluster and miR-21 are both increased during
pregnancy relative to early adulthood, indicating it may be involved in the cellular invasion
or proliferation requisite for ductal structure growth [55,56]. In breast cancer, the miR-
17/92 cluster promotes invasion and metastasis by targeting HBP1, the deactivation of
which activates the Wnt/β-catenin pathway. By inhibiting miR-17 in vivo, metastasis of
MDA-MB-231 cells was reduced by 50% [57]. In breast cancer, miR-21 is a key miRNA in
the promotion of proliferation and dysregulation of apoptosis by inhibiting genes such as
PTEN, SMAD7, and PDCD4, ultimately leading to deregulation of the PI3K/Akt/mTOR
pathway [58,59]. MiR-21 in MCF-7 cells has also been shown to be modulated by exposure
to alpha-linoleic acid in a time-dependent manner, reducing cell viability after 48 h [60]. It
would be important to understand if alteration of miRNA regulating invasion, migration,
or proliferation pathways during development may be a breast cancer preventative strategy.
As well, it would be important to understand if shared miRNAs are altered similarly by
dietary or drug interventions during puberty and during breast cancer.

5.5. Angiogenesis

During development, angiogenesis is most prominent during pregnancy and lactation
during the rapid expansion of the ductal tree. Angiogenesis is necessary for alveolar
development and facilitates optimal milk development. In human breast milk, there
are high concentrations of vascular endothelial growth factor (VEGF). VEGF is secreted
by mammary epithelial cells and mediates vascular growth and permeability during
pregnancy and lactation [61]. VEGF has also been implicated in increased angiogenesis
in breast cancer and is expressed by tumour endothelial cells. In breast cancer, increased
angiogenesis provides nutrients and a platform for migration, leading to tumour growth
and metastasis [62]. We found two miRNAs, miR-34 and miR-193b, to be involved in the
regulation of angiogenesis in both pubertal and cancer processes. MiR-34 is a tumour
suppressive miRNA which has been found to reduce vasculogenic mimicry in breast
cancer by targeting AXL tyrosine kinase [63]. Overexpression of miR-34a was also found
to reduce invasion and migration. As mentioned previously, miR-34a inhibition led to
increased TEB size, an increased progenitor pool, and larger mammary gland in puberty.
In puberty, recruitment of vasculature accompanies the rapid proliferation of the TEB. The
anti-proliferative effect of miR-34a in puberty corresponds to its anti-angiogenic effect
in breast cancer. However, we found no studies confirming that increased angiogenesis
contributes to miR-34a-mediated proliferation in puberty.

In pregnancy, miR-193b deletion increased luminal differentiation and proliferation in
non-parous and pregnant mice. Yoo et al. postulate that miR-193 mediates proliferation
during puberty and pregnancy under the cytokine induced transcription factor STAT5 [64].
STAT5 and prolactin, a key hormone during pregnancy and lactation, have been implicated
in a positive autocrine feedback loop which promotes angiogenesis [65]. Thus, the anti-
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proliferative role of miR-193b is in line with its characterization as a tumour suppressor
in breast cancer (Table 1). Mir-193b has been found to reduce vasculogenic mimicry in
MDA-MB-231 cells, a triple-negative breast cancer cell line [66]. Other tumour suppressive
roles of miR-193 are a reduction in metastasis and drug resistance, which may be mediated
by its anti-angiogenic role. Angiogenesis in puberty and pregnancy is partially regulated
through miRNA expression, and these miRNAs can allow for identification and further
understanding of angiogenic mechanisms which promote metastasis and invasion in
breast cancer.

5.6. Apoptosis

Apoptosis is an important process for normal breast development. When apoptotic
processes are disrupted and reduced, breast cancer arises [67]. Involution is triggered
by sustained weaning and returns the mammary gland from a lactating state to its pre-
pregnancy state. It is characterized by a significant increase in apoptosis, breaking down
of the basement membrane, expression of metalloproteinases, and recruitment of phago-
cytes [68]. During involution, the mammary gland regains its pre-pregnancy potential
for lactation, including having a carried over and likely newly generated alveolar pro-
genitor population [40]. One miRNA more highly expressed in involution compared to
lactation and pregnancy is miR-142-3p. MiR-142-3p targets the 3′ UTR of the prolactin
receptor (PRLR) mRNA transcript. PRLR is required for the function of prolactin in lobu-
loalveolar maturation and milk synthesis. MiR-142-3p overexpression increased apoptosis
and decreased proliferation in primary murine mammary gland epithelial cells. Down-
stream, signaling pathways downregulated by miR-142-3p included the apoptosis/protein
synthesis-regulating Janus kinase/signal transducer and activator of transcription pro-
tein (JAK/STAT) and proliferation-regulating MAPK pathways [69]. In breast cancer,
miR-142-3p has a largely tumour-suppressive, anti-proliferative effect (Table 1), increasing
apoptotic markers such as the caspase family of cysteine proteases [70–72]. Similarly, the
miR-424(322)/503 family increases in involution, and knockout of this miRNA reduces
acini destruction and apoptosis [73]. Thus, the miR-424(322)/503 family plays an important
role in apoptosis and has a tumour-suppressive effect in breast cancer (Table 1). MiR-424-5p
has been shown to reduce chemoresistance and decrease breast cancer proliferation by
inducing apoptosis and targeting the PI3K/Akt/mTOR pathway [74,75]. By investigating
the role of miRNAs in apoptosis, particularly in involution, future studies may identify
dysregulated apoptotic miRNAs as potential therapeutic targets.
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Table 1. MicroRNAs found to be involved in both mammary gland development and breast cancer.

MiRNA Development Breast Cancer 1

Population
Characteristics Outcomes Population Characteristics Outcomes

Embryo stage

miR-137 Embryos from ICR (CD-1) time-mated pregnant mice [34]

- miR-137 was increased in the embryonic mammary gland compared to
surrounding region

- ↑miR-137→ ↑ epithelium thickness, failure to invade
underlying mesenchyme

Ex vivo tissue, breast cancer cell lines

Oncogenic
↑ EMT, invasion [76]
Tumour suppressive
↓ tumour weight, volume, invasion, proliferation,
migration, EMT, drug resistance, stemness
[34,36–38,77–80]

miR-206 Embryos from ICR time-mated pregnant mice [41]

- ↑miR-206 in the dermal and mammary mesenchyme at E11.5-E13.5 and fat
pad-forming layers

- ↑miR-206→ ↓ ER-α, Tachykinin1, Lef1, Gata3 (eliminated in mesenchyme); ↑
Tbx3 (mesenchyme)

Ex vivo tissue, breast cancer cell lines

Oncogenic
↑migration, invasion, proliferation [44]
Tumour suppressive
↓ proliferation, drug resistance, metastasis, stemness
↑ apoptosis [27,42,43,81,82] 2

Puberty stage

miR-184 5-week-old β-actin-GFP reporter FVB/n mice [51]
- ↑miR-184 in mature ducts vs. TEBs
- ↑miR-184 in differentiation/proliferation/invasion of TEBs into ductal

epithelial cells

Ex vivo tissue, breast cancer cell lines, mouse
tumour models

Tumour suppressive
↓ proliferation, invasion, methylation, metastasis
↑ cell cycle arrest [51,54,83]

miR-34a miR-34-knockout C57BL/6J (Trp53 strain) mice [45] - ↓miR-34a→ ↑ TEB size Ex vivo tissue, breast cancer cell lines, mouse
tumour models, review

Tumour suppressive
↓ stemness, invasion, migration, tumour volume and
growth, EMT, proliferation, drug resistance
↑ apoptosis, cell cycle arrest [27,51,54,63,83–95] 2

miR-489 6-week-old FVP mice [96]
- ↑miR-489 in stem-like cells vs. luminal, luminal-progenitor, and

myoepithelial cells
- ↑miR-489 at 7 weeks vs. lactation day 9 and involution

Ex vivo tissue, breast cancer cell lines, mouse
tumour models

Tumour suppressive
↓ proliferation, migration, invasion, drug resistance,
stemness, tumour volume
↑ apoptosis, sensitivity to drugs [96–105]

4- and 6-week-old MMTV-miR-489 mice (n = 9) - ↓ ductal growth, TEB formation, Ki-67+ cells

Virgin adult and pregnancy

miR-17/92 cluster miR-17-92bfl/fl;MMTV-Cre mice [55]
- ↑miR-17/92 (2–3.5x) pregnancy day 6 vs. virgin adult
- miR-17/92 deletion did not affect pubertal development or lactation Review

Oncogenic
↑ proliferation, migration, invasion, angiogenesis,
metastasis, chemoresistance [28,58,106] 2

miR-193b C57BL/6 miR-193b−/− mice [64] - miR-193b deletion→ ↑ differentiation in non-parous and pregnancy Ex vivo tissue, breast cancer cell lines

Tumour suppressive
↓ growth, metastasis, migration, invasion, stemness,
chemoresistance
↑ apoptosis [66,107–113]

miR-21 Stat5fl/fl;Cre mice, miR-21−/− mice [56]

- ↑ prolactin→ ↑miR-21 (HC-11 cells)
- ↑miR-21 pregnancy day 6 vs. virgin adult (↑ proliferation)
- ↓ STAT5→ ↓miR-21
- miR-21 dispensable for mammary gland development

Review

Oncogenic
↑ invasion, migration, proliferation, metastasis,
radiotherapy and chemoresistance, tumour growth
↓ apoptosis [58,59,114–117] 2

Pregnancy and lactation

miR-27a Three-year-old Xinong Saanen Dairy Goat (n = 3) [118]
- ↑miR-27a mid-lactation vs. dry period (pregnancy/involution)
- ↑miR-27a→ ↓ triglyceride accumulation in cells, ↓ unsaturated:saturated

fatty acid ratio
Ex vivo tissue, breast cancer cell lines, review

Oncogenic
↑ cell growth, EMT, demethylation of tumour
suppressor
↓ apoptosis [81,114,119] 2

miR-139 Holstein cows mid-pregnancy (n = 3), mid-lactation (n = 3,
90 days in milk) [46]

- - ↑miR-139 in pregnancy vs. mid-lactation
- - ↑miR-139 a β-casein→ ↓ p-Stat5, IGF1R, p-AKT1, AKT1, Cyclin D1

(IGF1R and GHR signaling pathway)

Ex vivo tissue, breast cancer cell lines, mouse
tumour models

Oncogenic
↓ apoptosis [120]
Tumour suppressive
↓ proliferation, migration, invasion, EMT, stemness
↑ apoptosis [121–130]
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Table 1. Cont.

MiRNA Development Breast Cancer 1

Population
Characteristics Outcomes Population Characteristics Outcomes

miR-150-5p Stop-150fl/fl C57BL/6 mice [131]
- ↑miR-150-5p in pregnancy day 14 vs. lactation day 2
- ↑miR-150-5p→ ↓ FASN, ACACA, OLAH
- ↑miR-150-5p→ ↓ de novo fatty acid synthesis

Oncogenic
↑ cell proliferation, drug resistance, migration, EMT,
stem-like characteristics [50,132,133]

miR-204-5p Pregnant and lactating C57BL/6J mice
(n = 6 per group) [134]

- ↓miR-204-5p in pregnant vs. lactating mice Ex vivo tissue, breast cancer cell lines [27,135–138] 2

HC11 cells - ↑miR-204-5p→ ↑ casein, milk lipid synthesis through SIRT1

miR-206 Mammary gland from 2- month adult, pregnancy day 10,
and lactation day 6 [42]

- ↑ in pregnancy vs. virgin and lactation
- miR-206→ G1-S cell cycle arrest, ↓ stemness markers (HC11) Ex vivo tissue, breast cancer cell lines

Oncogenic
↑migration, invasion, proliferation [44]
Tumour suppressive
↓ proliferation, drug resistance, metastasis, stemness
↑ apoptosis [27,42,43,81,82] 2

miR-486 Multiparous Holstein cows in high-quality lactation (n = 3),
low-quality lactation (n = 3), and pregnancy (n = 3) [139]

- ↓miR-486 in pregnancy vs. lactation Ex vivo tissue, breast cancer cell lines

Tumour suppressive
↓ invasion, migration, stemness, proliferation, EMT
↑ apoptosis, radiosensitivity, chemosensitivity, cell
cycle arrest [140–143]

Bovine mammary epithelial cells
- miR-486 a PTEN
- miR-486→ ↑ Akt, mTOR
- miR-486→ ↑ β-casein, lactose, triglyceride secretion

Pregnancy, lactation and involution

miR-103
30 healthy three-year-old Xinong Saanen dairy goats
mid-lactation (120 days after parturition) and dry lactation
(60 days before parturition) [144]

- ↑miR-103 mid-lactation vs. parturition/involution/pregnancy
- ↑miR-103 promotes milk fat droplet, triglyceride accumulation in in goat

mammary epithelial cells
Ex vivo tissue, breast cancer cell lines

Oncogenic
↑metastasis, EMT [145,146]

miR-152
Mammary gland from Han ewes (n = 3) Day −8, −6, −4,
−1 from parturition (involution), and 1 week
after parturition [147]

- ↑miR-152 in pregnancy/involution vs. lactation Ex vivo tissue, breast cancer cell lines, mouse
tumour models

Tumour suppressive
↓ proliferation, migration, invasion, cell survival,
EMT, stemness, methylation, chemotherapy
resistance, metastasis
↑ apoptosis, cell cycle arrest [148–157]

miR-218
Mammary gland from Han ewes (n = 3) Day −8, −6, −4,
−1 from parturition (involution), and 1 week
after parturition [147]

- ↑miR-218 in pregnancy/involution vs. lactation Ex vivo tissue, breast cancer cell lines

Oncogenic
↑metastasis, invasion, migration, EMT, methylation
[158–162]
Tumour suppressive
↓ proliferation, migration, chemoresistance, invasion
↑ apoptosis [163–168]

miR-223 FVB MMTV-∆16HER2 miR-223 knockout mice [169]
- inverse correlation between miR-223 and developmental stage, lowest day

after parturition Breast cancer cell lines, review

Oncogenic
↑ EMT, metastasis, drug resistance [170]
Tumour suppressive
↓ drug resistance, proliferation, migration, EMT
↑ apoptosis [169,171,172]

miR-31 TRE-miR-31 transgenic mice from
C57BL/6J background [173]

- miR-31 knockout ↑ alveolar differentiation, ↓ proliferation in TEB
- miR-31 knockout mice gave birth but were unable to nurse pups due to

undifferentiated ductal structures and failure to form alveoli in pregnancy
Breast cancer cell lines

Tumour suppressive
↓ invasion, migration, proliferation
↑ apoptosis, chemotherapy sensitivity [27,174–176] 2
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Table 1. Cont.

MiRNA Development Breast Cancer 1

Population
Characteristics Outcomes Population Characteristics Outcomes

Lactation

miR-148a
Three-year-old Xinong Saanen dairy goats non-pregnant,
early-lactation, peak-lactation, late-lactation
(15, 60, 150 days after parturition), and dry-lactation [177]

- ↑miR-148 in lactation
- ↑miR-148 ↑ triglyceride and cholesterol in goat mammary epithelial cells Breast cancer cell lines, mouse tumour models

Oncogenic
Inhibition led to ↓ proliferation [178]
Tumour suppressive
↓ proliferation, metastasis, chemoresistance, stemness
↑ apoptosis [27,179–184] 2

miR-17-5p
Three-year-old Xinong Saanen dairy goats non-pregnant,
early-lactation, peak-lactation, late-lactation
(15, 60, 150 days after parturition), and dry-lactation [177]

- ↑miR-17-5p in lactation
- ↑miR-17-5p ↑ triglyceride and cholesterol in goat mammary epithelial cells

Ex vivo tissue, breast cancer cell lines, mouse
tumour models

Tumour suppressive
↓ cell proliferation
↑ apoptosis [185,186]
Oncogenic
↑migration, invasion, proliferation, cell growth,
angiogenesis, metastasis [58,187,188] 2

miR-181b
Three-year-old Xinong Saanen dairy goats non-pregnant,
early-lactation, peak-lactation, late-lactation
(15, 60, 150 days after parturition), and dry-lactation [189]

- ↑miR-181b in dry-lactation compared to non-pregnant, lowest during
peak lactation

- ↑miR-181b ↓ triglyceride and cholesterol
Breast cancer cell lines, review

Tumour suppressive
↓ cell proliferation, migration, invasion
↑ apoptosis [190]
Oncogenic
↑migration, proliferation, chemoresistance, cell cycle,
EMT [58] 2

miR-25
Three-year-old Xinong Saanen dairy goats non-pregnant,
early-lactation, peak-lactation, late-lactation
(15, 60, 120 days after parturition), and dry-lactation [191]

- ↑miR-25 in non-pregnant, ↓ during lactation
- ↑miR-25, ↓ triglyceride, lipid-droplets

Ex vivo tissue, breast cancer cell lines, tumour
mouse models

Oncogenic
↓ apoptosis
↑migration, invasion, proliferation, chemoresistance,
EMT, tumour volume [192–197]

Involution

miR-424(322)/503 miR-424(322) and miR-503 knockout mice [73]

- ↑miR-424(303)/503 in involution
- miR-424(322)/503 knockout presented reduced acini destruction and

apoptosis in involution
- miR-424(322)/503 a BCL-2, IGF1R

Ex vivo tissue, breast cancer cell lines, tumour
mouse models

Tumour suppressive
↓migration, drug resistance, invasion, tumorigenesis,
EMT, stemness, invasion, tumour growth
↑ apoptosis, cell cycle arrest [27,74,75,198–205] 2

Virgin adult, pregnancy, lactation and involution

miR-126
Mouse (strain not specified) at virgin, pregnancy day 5,
lactation day 0, lactation day 5, lactation day 10, involution
day 10 [206]

- ↑miR-126 in all lactation days vs. virgin, pregnancy, involution
- ↓miR-126 ↑ lipid metabolism
- estradiol and progesterone reduced miR-126-3p expression

Ex vivo tissue, breast cancer cell lines, tumour
mouse models

Tumour suppressive
↓metastasis, angiogenesis, cell growth, proliferation,
EMT markers, migration, drug resistance
↑ cell cycle arrest [207–219]

miR-126-3p
Female BALB/C mice mammary tissue from virgin,
pregnancy, lactation, and involution at 3 time points within
each (n = 1/time point) [220]

- ↓miR-126-5p in lactation and pregnancy vs. virgin and involution
- miR-126-5p a Pgr Breast cancer cell lines

Tumour suppressive
↓ invasion, migration [210,221]

miR-142-3p
Female BALB/c mice mammary tissue from virgin
4, 5, 7 weeks, pregnancy 5, 13, 18 days, lactation
3, 7, 13 days, involution 2, 5, 10 days [69]

- ↓miR-142-3p in lactation and pregnancy vs. virgin and involution
- ↑miR-142-3p in involution vs. lactation
- ↓miR-142-3p in involution vs. virgin
- miR-126-5p a Prlr→ ↓ Akt/mTOR, MAPK, STAT5

Ex vivo tissue, breast cancer cell lines, tumour
mouse models

Tumour suppressive
↓ invasion, migration, proliferation, chemoresistance,
cell size, cell volume, EMT, metastasis
↑ apoptosis, cell cycle arrest [222–224] [70–72,225–229]
Oncogenic
↑metastasis [230]

miR-15b
Mice 2 mammary gland from mature virgin (8 weeks),
pregnancy day 5, lactation day 0, lactation day 5, lactation
day 10 [231]

- miR-15b virgin > pregnancy day 5 > lactation day 0 = lactation
day 5 = involution day 10 > lactation day 10

- estradiol and progesterone together reduce miR-15b levels (MCF-10A cells)
- ↑miR-15b, ↓ lipid metabolism

Ex vivo tissue, breast cancer cell lines

Oncogenic
↓ apoptosis
↑migration, invasion, cell size, cell volume,
proliferation [232–234]
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Table 1. Cont.

MiRNA Development Breast Cancer 1

Population
Characteristics Outcomes Population Characteristics Outcomes

miR-205 miR-205-lacZ and miR-205fl/fl mice from C57BL6/129s
mixed background [47]

- ↑miR-205 in mammary basal and stem cells (high expression at TEB caps) of
across all development stages, highest during lactation

- no miR-205 expression in alveolar structures
- miR-205 knockout reduced basal cell population and reduced collagen

deposition regulating YAP and Wnt

Breast cancer cell lines, tumour mouse models

Tumour suppressive
↓ proliferation, migration, invasion, EMT,
angiogenesis, radio/chemotherapy resistance
↑ apoptosis [27,48,81,114,235–239] 2

SCID/beige mice transplanted with miR-205fl/fl

mammary cells
- ↓miR-205, ↓mammary ductal structures

miR-206 MMTV-Cre Brca1Co/Co mice [42]
- miR-206 in virgin > involution = mid-pregnancy > lactation
- ↓ Brca1→ ↑miR-206 Ex vivo tissue, breast cancer cell lines

Oncogenic
↑migration, invasion, proliferation [44]
Tumour suppressive
↓ proliferation, drug resistance, metastasis, stemness
↑ apoptosis [27,42,43,81,82] 2

MMTV miR-206 mice of FVB/NJ background [240] - MMTV miR-206 glands ↓ ductal and end bud structures

miR-221
Mice 3 mammary gland from mature virgin (8 weeks),
pregnancy day 5, lactation day 0, lactation day 5, lactation
day 10, involution day 10 [241]

- miR-221 in virgin > pregnancy day 5 > involution day 10 > lactation
day 0 = lactation day 5 > lactation day 10

- miR-221 reduces lipid metabolism (MCF-10A cells)
- estradiol and progesterone together reduce miR-221 levels (MCF-10A cells)

Review

Oncogenic
↓ apoptosis
↑ drug resistance, EMT, proliferation, metastasis,
invasion [58,114,242] 2

miR-30b MMTV-LTR miR-30b transgenic mice of
FVB/N background [243]

- miR-30b in virgin > puberty, pregnancy day 18 > pregnancy day 12, lactation
day 3 = lactation day 10 > involution day 3

- no impact of miR-30b overexpression in virgin and gestating mice
- miR-30b ↓mammary acini in lactation, fewer lipid droplets, but irregularly

shaped→ impaired growth in pups (non-lethal)
- ↑miR-30b→ delay in involution day 3 and 6 post-weaning

Ex vivo tissue, breast cancer cell lines, review

Tumour suppressive

↑ chemotherapy sensitivity, cell cycle arrest [27] 2

Oncogenic
↑ proliferation, migration, invasion [244]

1 Expanded table with population details can be found in Supplementary Table S1. 2 Review paper(s) included largely indicate oncogenic/tumour suppressive phenotype. 3 Type
not specified.
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6. Conclusions and Future Directions

Since 2006, there have been major strides in understanding the diverse and necessary
role of miRNAs as regulators in all biological processes, including mammary gland de-
velopment. There are clear parallels between processes regulated by miRNAs involved
in mammary gland development and breast cancer, with 32 miRNAs so far identified to
contribute to both. MiRNAs that stray from their role in development and homeostasis
contribute to the development, severity, and prognosis in breast cancer. Processes found
to be present in development and aberrant in cancer include EMT, invasion, migration,
proliferation, epigenetic regulation, apoptosis, and characteristics such as stemness. By ex-
amining miRNAs in development, the mechanisms behind breast cancer incidence, severity,
and metastasis can be explained or predicted. From the embryo, miRNAs can be examined
for their role in EMT and stemness. During puberty and pregnancy, miRNAs involved
in invasion, proliferation, and migration can be investigated. Similarly, the processes of
invasion, proliferation, and differentiation can be examined in pregnancy. After lactation,
miRNAs involved in the massive apoptosis of the lactation structures can give clues to
regulators of apoptosis in breast cancer. Dysregulation of miRNAs in any of these processes
can lead to incidence or increased risk of breast cancer. Furthermore, examining miRNAs
modified during developmental stages may help to identify and improve the understand-
ing of the function of miRNAs dysregulated in breast cancer. In fact, miRNAs found in
development contributing to processes known to be dysregulated in breast cancer can be
further investigated.

While studying effect of individual or paired miRNAs in vitro or in vivo is most
common, the synergistic effects of miRNA are under explored in breast cancer. During
development or homeostasis, miRNAs work in concert to coordinate cellular activity.
During mammary gland development, distinct temporal miRNA expression patterns are
found during each stage. Further study is required to determine the importance of miRNA
synergy during development and their role in breast cancer.

Over a lifetime, miRNAs, genes, and proteins act in concert to regulate development
and homeostasis. Understanding these functions are important to better understand
how malignancies can arise from their dysregulation. This is especially true for breast
cancer, a heterogenous disease which requires consideration of its diverse phenotypes in
developing treatments. Since miRNAs can alter mammary gland morphology and breast
cancer characteristics, they have immense potential to be nutritional or drug targets for the
prevention or treatment of breast cancer.

7. Methods
7.1. Mammary Gland Development miRNA Search Strategy

To find miRNAs involved in mammary gland development, PubMed was searched for
all original research articles for mammary gland development including animal and human
studies. The following search terms were used: “((mammary development) OR (mammary
gland development) OR (breast development)) AND (miRNA OR microRNA) NOT (breast
cancer)[Title] NOT (tumor[Title]) NOT (carcinoma[Title])”. Articles were screened using
the Population, Interventions, Comparisons, Outcomes, and Study Designs (PICOS) [245]
elements, as outlined in Table 2. Eligibility criteria included primary animal and human
studies comparing miRNA expression in 2 or more developmental stages or elucidation of
miRNA function in ≥1 developmental stage. Studies examining cell lines, serum, blood,
or milk miRNAs were excluded. Data extracted included strain/type/age of animal or
human, miRNAs investigated, and the effect of the miRNA on developmental structures
or stages.

7.2. Breast Cancer miRNA Search Strategy

MiRNAs identified in Section 7.1. (identified as x) were searched in PubMed using
the search query “miR-x” AND “breast cancer”. The PICOS search strategy is outlined in
Table 3. Articles were excluded if only using computational inference.
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Table 2. Mammary gland development PICOS search strategy as applied in this review.

PICOS Component Search Strategy/Terms

Population ((mammary development) OR (mammary gland development) OR (breast development))
Intervention (miRNA OR microRNA)
Comparisons Mammary gland stages
Outcomes Changes in miRNA expression, miRNA functional analysis in mammary gland
Study design Primary research in animal models, human studies

Table 3. Breast cancer PICOS search strategy as applied in this review.

PICOS Component Search Strategy/Terms

Population Breast cancer cell lines, xenografts, mouse models, biopsies
Intervention miR-x

Comparisons
Normal/healthy/non-cancerous mammary cells/tissue vs. cancerous
OR Non-metastatic cells/tissue vs. metastatic
OR Treatment resistant cells/tissue vs. non-treatment resistant

Outcomes Breast cancer occurrence, severity, metastatic potential, treatment resistance
Study design Primary research and reviews on miRNAs in breast cancer cell lines, murine models, human studies
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