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Abstract: Background: Peyronie’s disease (PD) is a chronic inflammatory condition affecting adult
males, involving the tunica albuginea of the corpora cavernosa of the penis. PD is frequently
associated with penile pain, erectile dysfunction, and a secondary anxious–depressive state. The
etiology of PD has not yet been completely elucidated, but local injury is generally recognized to
be a triggering factor. It has also been widely proven that oxidative stress is an essential, decisive
component in all inflammatory processes, whether acute or chronic. Current conservative medical
treatment comprises oral substances, penile injections, and physical therapy. Aim: This article
intends to show how antioxidant therapy is able to interfere with the pathogenetic mechanisms of
the disease. Method: This article consists of a synthetic narrative review of the current scientific
literature on antioxidant therapy for this disease. Results: The good results of the antioxidant
treatment described above also prove that the doses used were adequate and the concentrations of
the substances employed did not exceed the threshold at which they might have interacted negatively
with the mechanisms of the redox regulation of tissue. Conclusions: We believe new, randomized,
controlled studies are needed to confirm the efficacy of treatment with antioxidants. However, we
consider the experiences of antioxidant treatment which can already be found in the literature useful
for the clinical practice of urologists in the treatment of this chronic inflammatory disease.

Keywords: Peyronie’s disease; oxidative stress; antioxidants

1. Introduction

Peyronie’s disease (PD) is a chronic inflammatory condition affecting adult males with
an autosomal dominant genetic predisposition [1–3]. The prevalence of PD seems to vary
by geographic area, and is between 11.0% and 13.0% in the USA, approximately 8.9% in
Canada, 0.5% in Australia, 7.1% in Italy, 3.2% in Germany, 3.64% in Brazil, 0.6% in Japan,
and 5.0% in China [4–12]. In an African epidemiological study, the prevalence of PD in
black individuals was found to be between 0.1% and 3.5% [13].

The disease affects the tunica albuginea of the corpora cavernosa of the penis, and
in its natural evolution can also involve the tissue of the corpora cavernosa and the inter-
cavernous septum. The disease’s hallmark is an excessive production of collagen, which
causes localized fibrosis and results in penile deformation. Most of the time, the clinical
consequence is a penile bend that can be more or less pronounced, and is sometimes
associated with penile shortening, penile torsion of various degrees, divots, hourglass
deformity, etc. The disease is frequently associated with penile pain, erectile dysfunction,
and a secondary anxious–depressive state. It has been found that PD patients are more
likely to have psychiatric disorders (anxiety disorder, depression, substance abuse, alcohol
abuse, self-injurious behavior, etc.) than men without PD [14,15]. It is therefore possible that
psychological distress can negatively affect the correct daily intake of drugs and facilitate
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the progression of the disease. In PD patients, a depressive state is present in 48% of cases;
it has also been found that psychological disorders can persist even after the successful
treatment of PD [14,16].

The etiology of PD has yet to be completely elucidated, although the triggering factor is
generally recognized to be local injury [17–19]. Initial injury (microtrauma or major trauma)
is followed by the deposition of fibrin (small hematoma). Instead of being reabsorbed
(as occurs in males who are not genetically susceptible to the disease), the hematoma
leads to the recruitment of inflammatory cells and proinflammatory cytokines, which
inevitably results in the formation of chronic inflammatory tissue that evolves towards
fibrosis [20,21]. The presence of the following associated risk factors makes the onset of
PD much more probable: erectile dysfunction, diabetes mellitus, high blood pressure,
autoimmune disorders, chronic prostatitis, etc. [22].

It is possible that older PD patients may have other associated risk factors (hyperten-
sion, erectile dysfunction, diabetes, hyperlipidemia, etc.), which further favor the progres-
sion of the disease.

PD has two distinct stages: In the first (active) inflammatory stage, the inflammatory
process causes the production of collagen, and the consequent remodeling of the tissue,
resulting in fibrosis of the affected area (penile plaque). The plaque may then evolve
towards calcification, which occurs in 20–25% of cases [23]. The first stage lasts for about
12–18 months [24,25]. The second stage consists of the stabilization of the disease. In-
flammation is no longer present, pain is absent, and deformity has ceased to progress.
Medical treatment is indicated in the disease’s first stage, while surgery is indicated in its
second stage [25–27]. Current conservative medical treatment comprises the following:
oral substances (vitamin E, colchicine, tamoxifen, potaba, phosphodiesterase-5 inhibitors,
antioxidants (such as carnitine, propolis, etc.)); penile injections (corticosteroids, verapamil,
pentoxifylline, clostridium histolyticum collagenase (CHC/Xiaflex), interferon, etc.); and
physical therapy (extracorporeal shock wave therapy (ESWT), iontophoresis, penile traction
devices and vacuum devices, etc.) [25,27–36].

This article, in addition to exposing the pathogenetic mechanisms of PD, consists of a
synthetic narrative review of the current scientific literature on the antioxidant therapy of
this disease. The aim of this article is to show how antioxidant therapy is able to interfere
with the pathogenetic mechanisms of the disease.

2. Role of Oxidative Stress in Peyronie’s Disease
2.1. Pathophysiological and Biochemical Mechanisms of Peyronie’s Disease

Oxidative stress has been widely proven to be an essential component in all inflamma-
tory processes, whether acute or chronic [37–41]. Extensive studies have shown that oxida-
tive stress plays a decisive role in Peyronie’s disease which, as we know, consists of chronic
inflammation involving the tunica albuginea of the penile corpora cavernosa [20,21,42–51].

Following a traumatic event, which need not necessarily be violent, the tunica albug-
inea normally reacts with tissue repair and healing. However, when trauma occurs in a
male who is genetically susceptible to PD, a series of events occurs which leads to the
formation of fibrotic plaque.

Delamination of the tunica albuginea as a result of the injury causes an effusion of
blood, with a local accumulation of fibrin that is not reabsorbed due to insufficient fibri-
nolysis. Fibrin accumulation is a powerful factor in the local recruitment of inflammatory
cells (macrophages, neutrophil granulocytes, T cells, mast cells, etc.), which immediately
produce proinflammatory cytokines (interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-
alpha)), and have chemotactic effects on fibroblasts [21].

Various cells that have been attracted to the site (fibroblasts, platelets, monocytes,
macrophages, neutrophil granulocytes, and T cells) begin to produce important fibrogenic
factors (transforming growth factor beta-1 (TGF-ß1), platelet-derived growth factor (PDGF),
and basic fibroblast growth factor (bFGF)) which induce an overproduction of collagen in
situ [21,52,53]. At the same time, macrophages and neutrophil granulocytes that are present in
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high concentrations at the inflammatory site, after being activated, commence to degranulate
and produce large amounts of lysosomal enzymes and reactive oxygen species (ROS).

2.2. Oxidative Stress in Peyronie’s Disease

The activation of these phagocytes occurs thanks to the enzyme nicotinamide adenine
dinucleotide phosphate (NADPH oxidase) present in their cytoplasm [45,54,55]. The ROS
released by the inflammatory cells are mainly superoxide anion (O2•-) and its metabolites of
hydrogen peroxide (H2O2), hydroxyl radical (HO•), hypochlorous acid (HOCl) and singlet
oxygen (1O2•) [54,55]. The local overproduction of ROS and proinflammatory cytokines
induces the activation of nuclear factor kappa-B (NF-kB), a protein which regulates DNA
transcription and, in particular, the gene expression of TGF-ß1, inducible nitric oxide
synthase (iNOS), bFGF, fibrin, collagen, etc. [42,56].

A redundancy of biological signals is therefore established, producing, as a conse-
quence, a local exacerbation of inflammation. The sources of production of the iNOS
enzyme are macrophages, monocytes, T cells, smooth muscle cells, fibroblasts and myofi-
broblasts [43,45,57].

The production of iNOS is also stimulated by the cytokines IL-1 and TNF-alpha [58].
The iNOS enzyme is therefore locally produced in excess (100 to 1000 times more concen-
trated than normal constitutive NOS), leading to a chemical reaction and the production of
high concentrations of nitric oxide radical (NO•-); i-NOS also bolsters the local synthesis of
collagen [43,59]. This substance and its metabolites (peroxynitrite (ONOO-), peroxynitrous
acid (HOONO), nitrogen dioxide radical (NO2•)) are also reactive species such as ROS and
are called reactive nitroxidative species (RNS).

These RNS, adding themselves to ROS, cause a further oxidation state, in this case
nitro-oxidation, which can cause lipid peroxidation, DNA fragmentation, the nitration of
proteins, and the alteration of vascular tone (vasoconstriction) [43,59]. All these biochemical
events can cause greater tissue and cellular damage at the site of injury. It is therefore
clear that a strong state of oxidation (oxidative and nitro-oxidative stress) created by
the plentiful, prolonged local production of ROS and RNS, is a decisive factor for the
progression and chronicization of inflammation [60,61]. The main biological mediators
(and their properties) present in Peyronie’s disease are listed in Table 1: nuclear factor-B,
i-NOS, TGF-ß1, PDGF, IL-1, bFGF, PAI-1, TNF-alpha, tissue inhibitors of metalloproteinases
(TIMPs) [5,20,25,39,42,43,45,48–50,52,56–59,62–88] (see Figure 1).

Table 1. List of major biological mediators (and their properties) involved in Peyronie’s disease.
Useful table for the choice of a possible “targeted antioxidant therapy”.

Name Acronym Activity Cellular Source Positive Regulators

Nuclear factor-B NF-kB
It controls the transcription of DNA. It
induces gene overexpression of TGF-ß1,
iNOS, bFGF, fibrin, collagen, etc.

All cell types ROS, TGF-beta-1,
IL-1, TNF-alpha

Inducible nitric oxide
synthase i-NOS

It induces local overproduction of nitric
oxide radical (NO •).
It enhances collagen synthesis.

Macrophages,
monocytes,

T-lymphocytes,
smooth muscle cells,

fibroblasts,
myofibroblasts

NF-kB,
IL-1,

TNF-alpha
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Table 1. Cont.

Name Acronym Activity Cellular Source Positive Regulators

Transforming
growth factor beta-1 TGF-beta-1

Chemotactic action on neutrophils,
monocytes, lymphocytes, and fibroblasts.
It induces the production of collagen by
fibroblasts. It stimulates the proliferation of
fibroblasts and the transformation of
fibroblasts into myofibroblasts.
It induces collagen synthesis and deposition.
It induces the production of ROS.
It increases the synthesis of tissue inhibitors
of matrix metalloproteinase (TIMP-1).
It inhibits the production of matrix
metalloproteinases (MMPs) with collagenase
action (MMP-1, MMP-8, and MMP-13).
It induces the production of MMP-2 and
MMP-9 (with elastase activity).
It induces the activation of NF-kB.
It induces osteogenesis in PD plaque.
It inhibits production of plasminogen
activator inhibitor-1 (PAI-1).

Platelets,
macrophages,
neutrophils,

T-lymphocytes

NF-kB,
Reactive oxygen

species (ROS),
PAI-1

Platelet-derived
growth factor PDGF

Chemotactic action on fibroblasts.
It induces the production of TIMP-1 and
MMP-2 (with elastase activity).
It induces collagen synthesis and deposition.
It stimulates the proliferation of fibroblasts
and the transformation of fibroblasts into
myofibroblasts. It contributes to plaque
calcification and ossification. Furthermore, it
acts as an osteoblast recruiter.

Platelets and
macrophages

Local accumulation
of fibrin

Interleukin-1 IL-1

Chemotactic action on fibroblasts.
It induces collagen synthesis and deposition.
It stimulates bFGF and iNOS production.
It induces the activation of NF-kB.
It increases the production of MMPs.

Macrophages
and

fibroblasts

Thrombin in the
damaged site

Basic fibroblast
growth factor bFGF

Chemotactic action fibroblasts.
It stimulates the proliferation of fibroblasts.
It induces collagen synthesis and deposition.
It increases the synthesis of tissue inhibitors
of matrix metalloproteinase (TIMP-1).
It induces the production of MMP-2, MMP-9
(with elastase activity).
It determines the further deposition of fibrin
on site.

Fibroblasts,
myofibroblasts,
T-lymphocytes

Nuclear factor
kappa-B (NF-kB),

IL-1
PAI-1

Plasminogen activator
inhibitor-1 PAI-1

It inhibits fibrinolysis by determining the
persistence of fibrin in loco and triggering the
recruitment of inflammatory cells. It
stimulates the release of profibrogenic factors
(cytokines, etc.) and then it induces collagen
synthesis and deposition.
It hinders collagenolysis by inhibiting MMPs
with collagenase action.
It increases the synthesis of MMP-9 (with
elastase activity).

Platelets,
endothelial cells,

smooth muscle cells,
fibroblasts, monocytes,

macrophages

Thrombin in the
damaged site

TNF-alpha

Tumor necrosis
factor-alpha TNF-alpha

It induces the synthesis of PAI-1.
It stimulates the proliferation of fibroblasts.
At high concentrations it stimulates
collagenase synthesis in fibroblasts.
It stimulates iNOS production.
It induces the activation of NF-kB.
It increases the synthesis of MMP-9 (with
elastase activity).
It induces cellular apoptosis.

Monocytes,
macrophages,

T-lymphocytes
Fibrinogen and fibrin
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Table 1. Cont.

Name Acronym Activity Cellular Source Positive Regulators

Tissue inhibitors of
metalloproteinases TIMPs

They inhibit matrix metalloproteinases
(MMPs).
They regulate the connective tissue
metabolism.

Many cell types
(monocytes,

macrophages,
vascular smooth

muscle cells,
fibroblasts)

TGF-beta-1,
PDGF,
bFGF

Matrix
metalloproteinases

(MMPs)

MMP-1, MMP-2,
MMP-8, MMP-9,

MMP-10, MMP-12,
MMP-13, MMP-18

MMP-2, MMP-9, MMP-10, MMP-12 (with
elastase activity).
MMP-1, MM- 8, MMP-13, MMP-18 (with
collagenase action).
MMPs can regulate cytokine activity.

Fibroblasts,
myofibroblasts,

neutrophils,
macrophages,

endothelial cells,
vascular smooth

muscle cells

IL-1, bFGF, TNF-alpha,
PAI-1, PDGF,
TGF-beta-1
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Figure 1. Explanatory algorithm of the pathophysiology of Peyronie’s disease.

3. Experiences of Treatment with Antioxidants in PD Patients
3.1. The First Studies on the Use of Antioxidants in Patients with PD

The use of antioxidants in the treatment of PD dates back over 70 years: specifically,
vitamin E was the first antioxidant to be successfully used [89]. It was not chosen for its
antioxidant properties, however, but merely because it had already been used with good
results in other fibrotic disorders, such as Dupuytren’s contracture and primary fibrositis.
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At the time, it was postulated that fibrotic diseases, including PD, were due to a metabolic
disorder caused by vitamin E deficiency [89].

Many years later, in recent years of the second millennium, propolis began to be
used—likewise, not for its known antioxidant properties, but simply because a patient with
PD, who had been treated with propolis (hospital in Havana, Cuba) by gastroenterologists
because he was affected by Giardiasis, had noticed a significant improvement in his penile
curvature. The urologists of the same hospital where the patient was treated, having
observed the clinical evidence, began to treat PD patients with propolis (in oil form:
propoleum). All the studies published by these Cuban urologists, which include both
the exclusive use of propolis and treatment in association with laser therapy, showed
significant improvement in terms of both plaque volume reduction and improvement in
penile curvature [90–93].

Subsequently, in the early 2000s, carnitine was used to treat PD, specifically for its
antioxidant properties, both alone (orally) and together with penile injections of a calcium
channel blocker (Verapamil) [94,95]. Both studies achieved good results.

A number of studies then followed in which pentoxifylline was successfully used to
treat PD [29,96–98].

In other studies, a number of antioxidants (vitamin B3, propionyl-L-carnitine,
L-arginine) were used in association with other substances (verapamil, tadalafil) or penile
traction [46,99,100]. All of these studies achieved excellent results. Furthermore, these
studies introduced the concept of “combined” or “multimodal” antioxidant treatment to
the literature.

3.2. Multimodal Treatment with Antioxidants

Multimodal or combined treatment is a therapeutic practice which has already been
used in other fields of medicine, such as oncology (polychemotherapy) and the treatment
of infections (antibiotic combination therapy), for instance, in the treatment of tuberculosis
or even simply in the treatment of drug-resistant bacteria, e.g., for amoxicillin-resistant
germs, through the association of amoxicillin with clavulanic acid. The aim is to obtain a
better therapeutic result than is achievable by administering a single substance.

In our case, this is particularly advantageous, since many antioxidants also have anti-
inflammatory and antifibrotic properties that differ slightly (see Table 2A,B), and therefore
combining them makes it possible to reduce the dose of each antioxidant (and minimize the
possibility of adverse effects from an overdose) and to tackle PD and its various biochemical
mechanisms, interfering in different ways with the many “chemical messengers” involved.

For instance, bilberry is capable of inhibiting the production of bFGF, unlike other
antioxidant substances. Boswellia, superoxide dismutase and diclofenac cannot reduce the
synthesis of PAI-1 as other substances do. Pentoxifylline, silymarin, boswellia, coenzyme
Q10, carnitine, and Ginkgo biloba, unlike other antioxidant substances, are able to contrast
the vasoconstriction caused by high concentrations of nitroxide radicals (NO•-), and thanks
to their properties, they can cause vasodilation at the disease site [101,102], thus preventing
hypoxia and tissue damage and contrasting the outcomes of PD.

Coenzyme Q10 is capable of activating NF-E2-related factor-2 (Nrf2) which suppresses
TGF-β1 (fibrogenic factor) expression [103,104].

Thus, it appears that multimodal antioxidant therapy can be used as a therapeutic
strategy to maximize the end effects of treatment.

It must be specified that propolis is a product made by bees containing many sub-
stances that have useful properties for PD treatment: polyphenols (including flavonoids
and resveratrol), cinnamic acid, caffeic acid, fatty acids, certain vitamins (E, C, B1, B2, and
B6), and chemical elements (zinc, iron, calcium, sodium, potassium, magnesium, man-
ganese, copper, iodine, nickel, titanium, cobalt, and silicon). The most important flavonoids
contained in propolis are the following: galangin, quercetin, apigenin, acacetin, catechin,
chrysin, luteolin, kaempferol, pinocembrin, myricetin, naringenin, and rutin [105]. The
geographical area and climate from which propolis comes can influence its composition,
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since the plants from which bees extract resins (which they then process) can be differ-
ent [105]. To get around this problem, the pharmaceutical industry, in preparing propolis
as a product, selects raw materials based on their characteristic properties.

Table 2A,B list the antioxidants we use in our multimodal treatment: vitamin E,
vitamin C, propolis, bilberry, silymarin, Ginkgo biloba, carnitine, coenzyme Q10, boswellia,
pentoxifylline, superoxide dismutase, hyaluronic acid, diclofenac.

Table 2A,B also report the biochemical properties and mechanisms of action of the
listed antioxidant substances [101,102,106–167].

Table 2. (A). Biochemical properties and molecular mechanisms of the substances used in the
multimodal antioxidant therapy of Peyronie’s disease. Panel for effective understanding of “tar-
geted antioxidant therapy” (Part 1). (B). Biochemical properties and molecular mechanisms of the
substances used in the multimodal antioxidant therapy of Peyronie’s disease. Panel for effective
understanding of “targeted antioxidant therapy” (Part 2).

(A)

Substance Biochemical Property Molecular Mechanism References

Vitamin E

Antioxidant
Anti-inflammatory

Antifibrotic
Antiplatelet aggregation

• It inhibits the production of reactive oxygen species (by
inflammatory cells).

• It inhibits the production of reactive nitroxidative species.
• It inhibits the activation of NF-kappa-B.
• It reduces pro-inflammatory cytokine and PAI-1 production.
• It inhibits COX-2 activity.
• It inhibits proliferation of human fibroblasts.
• It inhibits platelet aggregation.

[106–111]

Vitamin C

Antioxidant
Anti-inflammatory

Antifibrotic
Regenerative action on

Vitamin E

• It scavenges reactive oxygen species and reactive
nitroxidative species.

• It is a potent scavenger of superoxide anion, hydroxyl radical,
singlet oxygen, and lipid hydroperoxides.

• It reduces pro-inflammatory cytokine and PAI-1 production.
• It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1.
• It regenerates vitamin E in its normal and non-oxidized form.

[112–115]

Propolis

Antioxidant
Anti-inflammatory

Antifibrotic
Antiplatelet aggregation

• It scavenges reactive oxygen species and reactive
nitroxidative species.

• It hinders neutrophil migration to the site.
• It scavenges superoxide anion, hydroxyl radical, singlet oxygen,

hypochlorous, lipid hydroperoxides and peroxynitrite.
• It inhibits COX-1 and COX-2 activity.
• It reduces production of: inducible-NOS, NF-kappa-B, and some

cytokines (IL-1, IL-6, IL-8, TNF-α, TGF-β1).
• It reduces production of PDGF, PAI-1 and fibronectin.
• It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1

and PDGF.
• It inhibits myofibroblastic differentiation of fibroblasts.
• It inhibits MMP-2 and MMP-9 (with elastase activity).
• It inhibits platelet aggregation.

[105,116–125]

Bilberry
Antioxidant

Anti-inflammatory
Antifibrotic

• It scavenges reactive oxygen species and reactive
nitroxidative species.

• It scavenges superoxide anion, hydroxyl radical, singlet oxygen,
hypochlorous, lipid peroxyl radicals, and peroxynitrite.

• It inhibits COX-2 activity.
• It reduces production of: i-NOS, NF-kappa-B, and some cytokines

(IL-1, IL-6, IL-8, TNF-α, TGF-β1).
• It reduces production of PDGF, bFGF and PAI-1.
• It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1,

PDGF, and bFGF.
• It inhibits MMP-2 and MMP-9 (with elastase activity).

[126–128]
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Table 2. Cont.

(A)

Substance Biochemical Property Molecular Mechanism References

Silymarin

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation

• It scavenges reactive oxygen species and reactive
nitroxidative species.

• It scavenges superoxide anion, hydroxyl radical, singlet oxygen,
hypochlorous, lipid peroxyl radicals and peroxynitrite.

• It inhibits COX-2 activity.
• It reduces production of: i-NOS, NF-kappa-B, some cytokines (IL-1,

IL-6, IL-8, TNF-α, TGF-β1), and PAI-1.
• It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1.
• It inhibits platelet aggregation.
• It determines vasodilation through an endothelial mechanism via

the nitric oxide pathway.

[129–132]

Ginkgo biloba

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation

• It scavenges reactive oxygen species and reactive
nitroxidative species.

• It reduces production of: i-NOS, NF-kappa-B, IL-1, IL-6, IL-10,
TNF-α, TGF-β1, and PAI-1

• It hinders inflammation, inhibiting: NF-kappa-B and
pro-inflammatory cytokine production, and COX-2 activity

• It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1
• It determines vasodilation through an endothelial mechanism, via

the nitric oxide pathway.
• It inhibits platelet aggregation

[133–136]

(B)

Substance Biochemical Property Molecular Mechanism References

Carnitine

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation

It scavenges reactive oxygen species and reactive nitroxidative species.
It reduces production of: i-NOS, NF-kappa-B, IL-1, IL-6, IL-8, TNF-α,
TGF-β1 and PAI-1.
It hinders inflammation, inhibiting: NF-kappa-B and pro-inflammatory
cytokine production, and COX-2 activity.
It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1.
It inhibits fibroblast proliferation and the osteoblastic differentiation
of fibroblasts.
It inhibits myofibroblastic differentiation of fibroblasts by
inhibiting TGF-β1.
It determines vasodilation through an endothelial mechanism, via the
nitric oxide pathway.
It inhibits collagen-induced platelet aggregation.

[137–142]

CoenzymeQ10

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation
Regenerative action on

Vitamin E and Vitamin C

It scavenges reactive oxygen species and reactive nitroxidative species.
It protects cell membranes from lipoperoxidation determined by
reactive species.
It reduces production of: i-NOS, NF-kappa-B, IL-1, IL-6, IL-10, TNF-α,
TGF-β1 and PAI-1.
It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1.
It activates NF-E2-related factor-2 (Nrf2) which suppresses the
TGF-β1 expression.
It inhibits MMP-2 and MMP-9 (with elastase activity).
It inhibits platelet aggregation.
It determines vasodilation through an endothelial mechanism via the
nitric oxide pathway.
It regenerates Vitamin E in its normal and nonoxidized form.

[143–148]
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Table 2. Cont.

(B)

Substance Biochemical Property Molecular Mechanism References

Boswellia

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation

It scavenges reactive oxygen species and reactive nitroxidative species.
It protects cell membranes from lipoperoxidation determined by
reactive species.
It reduces production of: i-NOS, IL-1, IL-6, TNF-α, and TGF-β1.
It hinders inflammation, inhibiting: NF-kappa-B and pro-inflammatory
cytokine production, and COX-2 activity.
It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1.
It determines vasodilation through an endothelial mechanism via the
nitric oxide pathway.
It inhibits platelet aggregation.

[149–151]

Pentoxifylline

Antioxidant
Anti-inflammatory

Antifibrotic
Vasorelaxant

Antiplatelet aggregation

It scavenges reactive oxygen species and reactive nitroxidative species.
It reduces production of: TNF-α, i-NOS, IL-1, IL-6, IL-8, IL-10, TGF-ß1,
PDGF, and PAI-1.
It hinders inflammation, inhibiting: NF-kappa-B and pro-inflammatory
cytokine production.
It inhibits fibrosis (deposition of collagen) by inhibiting TGF-β1
and PDGF.
It determines vasodilation through a nonselective PDE inhibition
(preventing the degradation reaction of cyclic AMP).
It inhibits platelet aggregation.

[101,102,152–157]

Superoxide
dismutase

Antioxidant
Anti-inflammatory

Antifibrotic

It defends the human body against tissue damage mediated by reactive
oxygen species (ROS).
It eliminates superoxide anion (O2•-).
It inhibits neutrophil-induced inflammation.
It hinders fibrosis (collagen deposition) by downregulating TGF-ß1.

[158,159]

Hyaluronic acid

Antioxidant
Anti-inflammatory

Antifibrotic
Antiplatelet aggregation

It scavenges ROS, superoxide anion, and hydroxyl radicals.
It inhibits lipid peroxidation.
It hinders inflammation reducing production of: TNF-α, IL-6, IL-1,
and PAI-1.
It inhibits fibroblast proliferation.
It inhibits platelet aggregation.

[160–164]

Diclofenac Anti-inflammatory
Antioxidant

Like other nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac
inhibits synthesis of prostaglandins by inhibiting COX-1 and COX-2
activity.
It inhibits NF-kappa-B gene expression.
It inhibits TNF-induced NF-kappa-B activation.
It exerts powerful dose-dependent free-radical-scavenging activity.
It strongly protects against lipid peroxidation and the damage of
peroxyl radicals.

[165–167]

3.3. Brief Narrative Review of Peyronie’s Disease Treatment with Antioxidants

Although a number of guidelines contain no recommendation for the use of antioxi-
dants in the treatment of PD, they have been used in several therapeutic experiences, either
alone or in combination with other substances [168,169].

We searched the PubMed database for articles on the topic “antioxidant treatment
in Peyronie’s disease” and found 21 articles on this topic. We considered the following
articles eligible: randomized and/or controlled clinical trials; case reports containing more
than one case report. After screening the 21 articles, we excluded 4 of them: 2 articles
because they reported a single clinical case, and 2 clinical studies because they did not have
a control group.

We shall, of course, cite only a selection of the scientific literature on the topic, including
randomized studies and a number of controlled studies, as well as three case report studies
in which the complete regression of plaque was achieved [29,30,98,170–176]. Other minor
studies cited in the References section of this article are not described here for reasons of
space, despite the fact that most of them are controlled trials and despite their positive
results [90–97,177–179] (Figure 2).
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A randomized, double-blind, placebo-controlled study by Riedl (2005) used Superoxide
dismutase to treat PD patients. Superoxide dismutase was used as topical gel once a day for
eight weeks, reaching the following statistically significant results: pain reduction in 52.6%
of treated cases, compared to 20% in the control group; plaque volume reduction in 47% of
treated cases, compared to the control group where, on the contrary, plaque volume grew
in 8% of cases; reduction in the degree of penile curvature (between 5 and 30 degrees) in
23% of treated cases, compared to the control group in which, instead, curvature increased
in 10% of cases [170].

In a randomized controlled study by Favilla et al. (2014), the authors treated PD patients
for 12 weeks with oral antioxidants (vitamin E, para-aminobenzoic acid, propolis, blueberry an-
thocyanins, soy isoflavones, muira puama, damiana, persea americana) associated with weekly
verapamil injections. The control group only received weekly verapamil injections [171]. After
treatment, there were no statistically significant differences for some endpoints (e.g., reduction
in plaque size = −29% (group receiving oral antioxidants + verapamil injections) and −38%
(group receiving only verapamil injections); improvement in penile curvature = −11.9 degrees
(group receiving oral antioxidants + verapamil injections) and −10.8 degrees (group receiving
only verapamil injections)).

Regarding the other endpoints, in the group receiving oral antioxidants + verapamil
injections, there were statistically significantly better results compared to the control group
(only verapamil injections) in terms of: penile pain reduction, orgasmic function, intercourse
satisfaction, and overall satisfaction. In conclusion, the study showed that combined
therapy made it possible to obtain better results [171].

In a randomized controlled study by Alizadeh et al. (2014), the authors treated patients
with PD for six months, dividing them into three treatment groups:

• First group: only oral therapy with pentoxifylline;
• Second group: only intralesional injections with verapamil (every other week,

12 total injections);
• Third group: oral pentoxifylline + intralesional injections with verapamil (every other

week, 12 total injections) [98].
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The results were as follows: improvement in penile curvature: first group = 26.7%,
second group = 36.7%, third group = 36.7%; plaque size reduction: first group = 30%,
second group = 33%, third group = 33%; improvement in erectile dysfunction:
first group = 46.7%, second group = 66.7%, third group = 86.7%; penile pain reduction:
first group = 73.3%, second group = 76.7%, third group = 80%. Even in this study, the
results show that combined therapy enables better results [98].

In their retrospective control group study, Gallo et al. (2019) treated PD patients for
6 months, dividing them into three groups: first group: oral therapy with arginine and
pentoxifylline; second group: oral therapy with arginine and pentoxifylline + intralesional
injections with verapamil (every other week, 12 total injections); third group: oral therapy
with arginine and pentoxifylline + intralesional injections with verapamil (every other
week, 12 total injections) + penile traction therapy with a penile extender, applied daily for
about 2–8 h [172]. The therapeutic results for the various endpoints, compared with the
baseline data, were as follows:

– Reduction in curvature by at least 10 degrees: first group = 0%; second group = 17.8%;
third group = 50%.

– Improvement in the International Index of Erectile Function (IIEF) score (normal score > 25):
first group = from 17.7 to 18.5 (increase + 0.8); second group = from 20.4 to 21.6 (increase + 1.2);
third group = from 20 to 22.4 (increase + 2.2).

– Change in stretched penile length: first group = from 10.5 to 10.4 cm (reduction −0.1 cm);
second group = from 10.7 to 10.6 cm (reduction −0.1 cm); third group = from 10.3 to 11.0 cm
(increase + 0.7 cm).

– Penile pain: first group = resolution of pain in 100% of cases; second group = resolution
of pain in 100% of cases; third group = resolution of pain in 100% of cases [172].

The authors conclude that oral therapy alone can simply block disease progression,
association between oral therapy and verapamil injections enables only slight improvement,
and the combination of oral therapy, verapamil injections, and penile traction therapy is
the only conservative approach leading to optimal results.

In our 2016 retrospective control group study (Paulis et al., 2016), we treated
206 patients with PD using the following combined therapy: group A: 112 patients, pen-
toxifylline (perilesional injections) twice a month for 6 months + oral pentoxifylline +
oral propolis + oral blueberry + oral vitamin E + diclofenac gel for 6 months); group B:
94 patients undertaking the same therapy as group A but with no pentoxifylline injections;
group C: 101 patients with PD and no treatment [30].

After treatment, a better response was observed in group A, where the combined ther-
apy was bolstered by the association with pentoxifylline injections: a reduction in plaque
volume in 100% of cases compared to the 79.7% obtained in group B; a mean reduction
in plaque volume in 46.9% of cases compared to 24.8% of group B; an improvement in
curvature in 96.8% of cases compared to 56.4% of group B; a mean reduction in the angle
of the curve = −10.1 degrees compared to −4.8 degrees in group B; recovery of normal
penile rigidity in patients with ED was obtained in 56% of cases compared to 23.5% of
group B [30].

In 2013, we published a controlled study (Paulis et al., 2013) which, in contrast with
other articles in the literature, proved that oral vitamin E, associated with other substances
(oral propolis + oral blueberry + verapamil injections) + topical diclofenac (multimodal
therapy) for 6 months, was statistically effective in curing PD. In particular, vitamin E
was shown to improve the therapeutic result: increasing the reduction in the volume of
plaque after treatment (from 35.8% to 50.2%); increasing the percentage of patients who
achieved an improvement in their penile curvature after treatment (from 48.4% to 96.6%);
and increasing the degree of reduction in the curve (from 6.7 degrees to 12.2 degrees) [173].

Finally, we cite three case report articles of ours in which, overall, thanks to multimodal
antioxidant treatment, we obtained the complete regression of plaque in eight patients
suffering from PD [174–176].
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In all patients, we used most of the antioxidants mentioned above (vitamin E, vitamin
C, propolis, bilberry, silymarin, Ginkgo biloba, coenzyme Q10, boswellia, superoxide
dismutase, diclofenac and pentoxifylline). In two cases, the combined oral and topical
therapy was not associated with pentoxifylline injection therapy because the patients did
not give their consent.

Treatment duration varied from 28 months to 53 months, most likely depending on
plaque volume, since the patient who was cured in 28 months initially had plaque which
was measured by ultrasound to be 122 mm3, while the patient whose treatment took
53 months had an initial plaque volume measuring 733 mm3 and received no penile
injections because of his refusal to undergo injection therapy.

The time period required for treatment was necessarily long due to the nature of
the disease, i.e., its being a chronic (not an acute) inflammation, which therefore requires
adequate treatment time. All patients, in any case, were informed before starting treatment
that treatment would have to be long, due to the intrinsic characteristics of PD.

In all cases, at the end of treatment, patients experienced the complete regression of
both their baseline penile pain and the penile curvature caused by the disease.

4. Discussion

Oxidative stress evidently plays a leading role in Peyronie’s disease, a disease where
there is an evident redox imbalance caused by the production of reactive species, following
trauma to the penis in a genetically predisposed male.

It is also evident that oxidative stress plays a very large role not only in the onset, but
especially in the progression of PD, resulting in local tissue damage and the formation of
fibrotic plaque and its possible calcification [20,21,23].

From the literature, it is therefore clear that the most important physiopathogenic
events are the following: penile injury (including minor trauma), formation of blood
collection in the corpus cavernosum, recruitment of inflammatory cells, release of ROS
and cytokines, activation of transcription factor NF-kB, the production of iNOS and the
subsequent overproduction of radical NO, and the overproduction and local deposition
of collagen (plaque formation) (Figure 1). All the antioxidants we use in the treatment of
PD, as indicated in Table 2A,B, can interfere with the disease’s basic pathophysiological
mechanisms, and this explains the good therapeutic outcomes in the literature.

The good results of the antioxidant treatment described above also prove that the
doses used were adequate and the concentrations of the substances employed did not
exceed the threshold beyond which they might have instead interacted negatively with
the mechanisms of redox regulation of the tissues (see “antioxidant paradox”) [180,181]. It
is very likely that larger doses would have rendered the treatment ineffective or—worse
still—favored disease progression.

Several antioxidant substances, some of which we use to treat PD, have been suc-
cessfully used in other PD-related diseases. Silymarin, when given in a dose of 140 mg
thrice daily for 3 months as an adjuvant for glycemic control, lipid profile, and insulin resis-
tance, proved to have a beneficial efficacy [182]. Additionally, Daflon 500 mg (micronized
a purified flavonoid fraction of Rutaceae aurantiae, consisting of 90% diosmin and 10%
hesperidin) given twice daily for 45 days is helpful in reducing glucose level and the risk of
cardiovascular disease [183].

In our clinical practice, in particular in the treatment of PD, we never doubted that our
antioxidant doses were adequate and not excessive, especially since in our first experiences,
we used at most three or four substances (vitamin E, propolis, blueberry, diclofenac) [173,177].
Over the following years, we gradually introduced other antioxidant substances in our
combined PD therapy, with the aim of obtaining even more positive results; we always
used low doses, even for these additional substances. Since in the past few years the results
of our treatments have proved ever more effective and with no appreciable side effects,
we are convinced we are not causing any damage to the redox system. On the contrary,
the excellent results achieved in our most recent studies confirm that the most effective
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treatment for PD is a multimodal treatment, in which the various substances combine,
with their different individual properties, in contrasting the multiple physiopathogenic
mechanisms at play, with the aim of achieving better therapeutic results than those which
could be obtained using a single or a very small number of substances [184].

We believe that many current articles on the conservative treatment of PD are lacking, and
unable to accurately evaluate the volume of plaque before and after the treatment. The plaque
volume must be evaluated only with a very sensitive ultrasound system and a three-dimensional
evaluation with the formula of the ellipsoid (volume = 0.524 × length × width × thickness).
The change in plaque volume is an important endpoint that should always be evaluated,
together with the other parameters, for a correct evaluation of the therapeutic result. We
propose that all future studies concerning the conservative treatment of PD include this
very important parameter.

5. Conclusions

Oxidative stress represents the fundamental chemical environment for the onset and
progression of Peyronie’s disease, and—more broadly—for chronic inflammatory states, de-
generative diseases, and malignant neoplasms. We think the good clinical results obtained
using antioxidant therapy confirm the important role played by oxidative stress in PD. We
also believe that the experiences of antioxidant treatments already present in the literature
represent an important aid to the clinical practice of urologists for the treatment of this
chronic inflammatory disease which, incidentally, is not rare, as its prevalence, especially
in the Western world, is similar to that of diabetes mellitus (=10.5% worldwide) [185].

Treating PD with antioxidants directly interferes with the most important mechanisms
of inflammation, thus treating the disease directly and not just its symptoms. We therefore
hold that PD is a disease which can be cured, in contrast to the affirmation of authors who
consider it an incurable condition [186]. We advocate this position in view of the fact that
in the field of andrology, the prevailing background belief is that the gold standard of PD is
surgery—basically, “treating the curve” and not “treating the disease”—whereas we and
other authors support the latter [187].

We recommend that only patients with active (unstabilized) PD be treated with medical
therapy. In the case of large penile plaques, we recommend adding periodic perilesional
injections with pentoxifylline to the oral antioxidant substances.

In any case, we believe further studies are needed to both improve the understanding
of the pathophysiology of Peyronie’s disease and to implement new randomized controlled
trials to confirm the efficacy of treatment with antioxidants. We also propose multi-center
studies involving the combined use of antioxidants in order to demonstrate more clearly
that PD can be cured.
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