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Abstract: Novel poly(dithiophosphate)s (PDTPs) were successfully synthesized under mild condi-
tions without any additive in the presence of THF or toluene diluents at 60 ◦C by a direct, catalyst-free
reaction between the abundant phosphorus pentasulfide (P4S10) and glycols such as ethylene glycol
(EG), 1,6-hexanediol (HD) and poly(ethylene glycol) (PEG). GPC, FTIR, 1H and 31P NMR analyses
proved the formation of macromolecules with dithiophosphate coupling groups having P=S and
P-SH pendant functionalities. Surprisingly, the ring-opening of THF by the P-SH group and its
pendant incorporation as a branching point occur during polymerization. This process is absent with
toluene, providing conditions to obtain linear chains. 31P NMR measurements indicate long-time
partial hydrolysis and esterification, resulting in the formation of a thiophosphoric acid moiety and
branching points. Copolymerization, i.e., using mixtures of EG or HD with PEG, results in polymers
with broadly varying viscoelastic properties. TGA shows the lower thermal stability of PDTPs than
that of PEG due to the relatively low thermal stability of the P-O-C moieties. The low Tgs of these
polymers, from −4 to −50 ◦C, and a lack of PEG crystallites were found by DSC. This polymeriza-
tion process and the resulting novel PDTPs enable various new routes for polymer synthesis and
application possibilities.

Keywords: poly(dithiophosphate); phosphorus pentasulfide; diols; THF incorporation; polythiophos-
phate; phosphorus-containing polymer; sulfur-containing polymer; catalyst-free; polycondensation;
viscoelastic polymer; tunable properties

1. Introduction

Macromolecules containing phosphorus and/or sulfur, either in the main chain or
pendant, have been intensively investigated worldwide in recent years. This is mainly due
to their broad application possibilities, ranging from flame retardancy and environment
protection to various high-value-added specialty fields, such as biomaterials, drug delivery,
sensors, optical, battery and other energy-related areas, etc. (see, e.g., [1–19] and the
references therein). Although the reaction of phosphorus pentasulfide (P4S10), a widely
available commercial material, with alcohols has been known for a long time [20] to result
in the formation of dialkyl dithiophosphates (DTPs), i.e., O,O-diesters of dithiophosphoric
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acid [21] (Scheme 1), surprisingly, systematic investigations on the utilization of this process
for polymer synthesis have not been reported yet, according to the best of our knowledge.
Low molecular weight compounds of this kind, especially zinc dialkyl dithiophosphate
salts [22–24], were recently applied to the preparation of tribological additives as lubricants.
Furthermore, the resulting dialkyl dithiophosphates can also be used for several other
purposes, e.g., flotation additive [25], wastewater treatment [26] or reagent in organic
reactions [27]. The DTPs possess a strong acidic group, and moreover, their anions are
highly efficient metal ion complexing agents due to the two sulfur atoms bound to the
phosphorus atom [28]. Thus, it can be presumed that the versatility of these functional
groups may enable broad application possibilities, especially when they are involved in
macromolecular structures.
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The synthesis of polymers with dialkyl dithiophosphate moieties can be achieved
by different strategies. One of the possibilities is the coupling of dialkyl dithiophos-
phate complexes of metal ions by using bridging ligands, e.g., 4,4′-bipyridine [29]. The
other strategy is the reaction of P4S10 with diols. This is analogous to the coupling of
poly(ethyleneimine) chains by using P4S10 [9]. However, a multibranched non-acidic poly-
mer was formed with thiophosphoric acid triamide groups in this case. Surprisingly, only
a single publication can be found in the literature on poly(dithiophosphate)s. The reactions
of diethyldithiophosphate and P4S10 with diols in bulk at high temperatures (110–140 and
120–180 ◦C, respectively) were studied by Pudovik et al. [30], who reported on the forma-
tion of cyclic dithiophosphate diester products. These authors also claimed the formation
of macromolecules, i.e., poly(dithiophosphate)s (PDTPs), but without detailed structural
investigations. However, most likely because of the applied high temperatures, this simple
method, that is, using the abundant reagents, i.e., diols and P4S10, has not become a known
polymerization technique, in contrast to the reaction of phosphoric acid with diols, which
were thoroughly investigated by Penczek and his coworkers [31,32].

Herein, we present the synthesis and characterization of polymers obtained by the
reaction of P4S10 and various α,ω-diols, such as poly(ethylene glycol) with Mn = 400 g/mol
(PEG400), ethylene glycol (EG) and 1,6-hexanediol (HDO) under mild conditions. The prop-
erty tunability by using different diols simultaneously in the polymerization process, i.e., by
copolymerization, is also explored. These systematic investigations demonstrate the appli-
cability of this polymerization technique to obtain a unique class of novel macromolecular
structures with tailored properties.

2. Results and Discussion

Preliminary experiments indicated that phosphorus pentasulfide (P4S10) successfully
reacts with stoichiometric amounts of diols without the addition of any kind of catalyst, i.e.,
metals or metal compounds, in tetrahydrofuran (THF) at 60 ◦C, and this process results in
poly(dithiophosphate)s (PDTPs), as shown in Scheme 2. Subsequently, a systematic series
of experiments were designed to explore the reaction of P4S10 with various diols, such as
poly(ethylene glycol) (PEG400), ethylene glycol (EG), 1,6-hexanediol (HD) and the mixtures
of pairs of these diols by using stoichiometric amounts of the reactants, as presented in
Table 1. In order to decrease the viscosity of the reaction medium and to provide a solvent
for the reactants and product, THF was added to the reaction mixture. Visual observation
indicated that P4S10 is insoluble in the mixture of the diols and THF, and it appears as a
solid phase at the beginning of the reaction. However, this solid material disappears in
the course of the reaction, indicating the formation of a compound soluble in the liquid
phase. After the workup process (evaporation of the solvent and drying in vacuo, see
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Experimental), the dried products were obtained as colorless viscous liquids, with yields
higher than 95% in all cases.
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Table 1. The diol ratios in the syntheses of poly(dithiophosphate)s, the glass transition temperature
(Tg) values and the peak molecular weights (Mpeak) of the resulting polymers (reaction conditions: 1
g/mL reactant/THF ratio, 60 ◦C, 6 h).

Sample
Diol Ratios in the Feed (Mol%)

Tg (◦C) * Mpeak (g/mol) **
PEG400 EG HD

P1 100 0 0 −47 1700

P2 75 25 0 −44 1700

P3 50 50 0 −42 1600

P4 25 75 0 −34 2200

P5 0 100 0 −4 400

P6 75 0 25 −47 1400

P7 50 0 50 −46 1500

P8 25 0 75 −43 1600

P9 0 0 100 −45 1000
* Determined by differential scanning calorimetry (DSC). ** Determined by gel permeation chromatography
(GPC).

First, the reaction of P4S10 was investigated with PEG400 as the diol (P1 sample in
Table 1). Gel permeation chromatography (GPC) measurements showed that the main
fraction of the product consisted of macromolecules with a higher hydrodynamic radius,
i.e., higher molecular weight, than those of the PEG400 reagent (Figure 1). This indicates the
coupling of PEG400 molecules. FTIR measurements were also performed on the obtained
polymer P1 (Figure 2). A comparison of the IR absorption spectra of PEG400 and P1 implies
that the intensity of the broad peak at 3450 cm−1, belonging to the O-H stretching in
PEG400, decreased considerably in P1, indicating the reaction of the chain end –OH groups
of PEG400 during the polymerization. The absorption peaks in the spectrum of P1 at 797
and 667 cm−1 are also in accordance with the structure forming in the reaction displayed
in Scheme 2 because the latter peak belongs to the P=S stretching while the former can be
assumed to be the band of the S-H in-plane scissoring [33].
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The chemical structure of the product was also investigated by 1H NMR spectroscopy
(Figure 3A). The appearance of a broad signal at 5.78 ppm, belonging to the exchange-
able acidic protons (and water impurity), and that at 4.3 ppm, assigned to the -CH2-O-P
sequences, proves the occurrence of the reaction between PEG400 and P4S10.
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Interestingly, an unexpected side reaction occurs when using THF as a diluent during
the polymerization process between P4S10 and diols. The ring-opening of THF molecules
due to the nucleophilic attack of the P-SH group in the resulting polymers (Scheme 3,
Figure S1) leads to the incorporation of such pendant molecular units in the polymer.
The reaction between the poly(dithiophosphate) and THF is also proved by carrying
out the polymerization process between P4S10 and PEG400 in toluene. In this case, the
signals between 1.5 and 2.0 ppm in the 1H NMR spectrum of the sample are absent
(Figure S2). Because new -CH2-OH groups appear in the reaction between THF and PDTP,
this can lead to the formation of branching points, as depicted in Scheme 3. This is also
indicated by the appearance of signals at 4.09 and 4.19 ppm in the 1H NMR spectrum
(Figure 3A). From the integration of the peaks in the 1H NMR spectrum, it can be obtained
that the ratio of the incorporated THF:PEG400 units is roughly 1:6. This unexpected finding
indicates the unique opportunity of a broad range of post-polymerization modifications of
poly(dithiophosphate)s by ring-opening reactions similar to the one observed with THF in
this case.
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Scheme 3. Branching point formation via the ring-opening reaction between the
poly(dithiophosphate) and the tetrahydrofuran solvent molecule.

The presence of phosphorus in the polymer product was proved by 31P NMR spec-
troscopy. The desired product (Scheme 2) is formed in high conversion, as proved by
the 31P NMR signal at 88 ppm [34]. However, additional coproduct formation is also
observed. By comparing the 31P spectra recorded after 2 days (Figure 3B) and 2.5 months
(Figure 3C) of polymerization, considerable differences can be observed. The signals at
88 and 81 ppm, assigned to the (RO)2P(S)SH units, disappeared during the 2.5 months.
The signal at 96 ppm, which can be assigned to the (RO)2P(S)(SCH2-) structure, does not
change during the storage, and the signals at 67 and 64 ppm are also present in both spectra.
These two signals can be assigned to the phosphorus atom in (RO)2P(S)(OR) at 67 ppm
and in (RO)2P(S)OH at 64 ppm. The absence of any signals around 0 ppm indicates that
the product does not contain totally hydrolyzed phosphoric acid units; only thiolated
phosphorus centers exist in these polymers. These observations can be explained by as-
suming two reactions, the hydrolysis reaction of the phosphorus-SH moiety with traces of
water and the esterification with the unreacted terminal hydroxyl groups, resulting in the
formation of additional branching points (Scheme 4). These assumptions are in accordance
with previous investigations on the hydrolysis of zinc dialkyl dithiophosphates [35]. The
occurrence of esterification is also confirmed by the determination of the 1H NMR signal
areas of CH2OP and other CH2O protons, which increases with time, considering the
spectra recorded after two days and two and a half months after the polymerization.
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Figure 4. The differential scanning calorimetry (DSC) curves of PEG400 and the P1 PDTP sample. 

Scheme 4. The hydrolytic and esterification reactions of the poly(dithiophosphate), the latter also
leading to branching.

Differential scanning calorimetric measurements show that while a melting peak
appears at 2 ◦C on the curve of PEG400, indicating the crystallization of the PEG oligomers
at low temperature, melting is absent on the curve of the P1 polymeric product and only
a glass transition can be observed at −47 ◦C (Figure 4). This considerable difference
in the thermal behavior indicates the hindrance of the appropriate orientation of the
poly(ethylene glycol) segments required for crystallization due to the presence of the
coupling (di)thiophosphate units. Thermogravimetric analysis (TGA) curves (Figure 5)
also show the difference between P1 and PEG400 since P1 starts to degrade under an inert
atmosphere at ca. 100 ◦C lower temperature than PEG400, indicating the thermal lability
of the P-O-C bond. While the solid residue in the case of PEG400 is negligible at high
temperatures, it is 9.5% in the case of the P1 poly(dithiophosphate) sample due to the
formation of the resulting nonvolatile inorganic material.
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The acidic character of P1 in aqueous conditions was also studied. It was titrated with
NaOH solutions. The first step of the two-step titration curve indicates the presence of
strong acidic groups, with pKa = 3.5. This means that the P1 polymer behaves as a strong
acidic polyelectrolyte in water (Figure S3).

Copolymerization experiments were performed with the simultaneous addition of
PEG400 and ethylene glycol (Table 1). GPC measurements showed that there was no
considerable difference between the hydrodynamic volume (and the molecular weight) of
the formed copolymers P2–P4 (Figure 1). However, when only ethylene glycol was used
as a diol (P5), a significantly lower hydrodynamic volume was observed for this product,
indicating its lower molecular weight. From the comparison of the 1H NMR spectra of the
P1–P4 samples, it can be concluded that the ratio of the integrals of the CH2-O-P signals
(at 4.3 ppm) related to the CH2-O-C signals (at 3.5–3.9 ppm) increases with increasing EG
content in the feed (Figure S4). This indicates that higher EG content in the feed results in
lower P-P average distances in the polymer chains. This is indirect evidence of the ethylene
glycol incorporation in the polymer chain. In the case of the copolymers P2–P4, the 31P
NMR spectra also prove the partial hydrolysis and esterification side reactions (Figure S5).
DSC measurements show slightly increasing Tg with increasing EG unit content in these
copolymers. However, a considerable difference was only observed in the case of the
high EG-containing copolymers, P4 and P5 (Table 1). Similarly, a slight decrease in the
temperature of the first degradation step and an increase in the remaining solid residue
ratio was observed in the TGA curves with increasing EG content (Figure 5). The latter
observation is in accordance with the shortening of the average P-P distance, i.e., with the
increment of the P-content in a given mass of polymers, with increasing EG content in
the feed.

The mechanical properties of the copolymers were determined by oscillatory rheologi-
cal investigations. Based on the observed results shown in Figure 6, it can be concluded
that the P1 sample has higher loss moduli than PEG400 due to its poly((di)thiophosphate)
structure. The moduli data indicate that the mechanical properties of the obtained polymers
can be varied within wide limits by changing the PEG400:EG ratio in the feed. The P1, P2
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and P3 samples have nearly the same moduli values, and in accordance with their viscous
liquid form, these materials possess considerably lower storage than loss moduli, while
the storage modulus for the P2 sample cannot be detected over a wide frequency range,
suggesting a completely liquid behavior (Figure 6). While the storage modulus shows
frequency independence at low frequencies and nearly linear frequency dependence at
high frequencies on a log–log scale, the loss modulus depends linearly on the frequency in
the whole applied frequency range, with a slope of 1, typical for viscoelastic liquids. The
fact that the storage modulus point series do not intersect with the loss moduli indicates
that the relaxation times are shorter than the reciprocally applied high-frequency limit
(2 ms), in accordance with the moderate molecular weights and branching structures of
the obtained polymer chains. In the case of the physical network type copolymers P4 and
P5, only the former could be measured by the applied oscillation rheometry setup. The
P4 sample, which has high EG content, i.e., low average P-P distance, has much higher
moduli values than the copolymers with higher PEG400 content. Moreover, in the case of
the P4 sample, the storage and loss moduli are in the same order of magnitude and both
are nearly frequency-independent, indicating the appearance of much stronger secondary
intermacromolecular forces in this copolymer composition. The point series are similar
to the “imperfect network” case with crosslinks (in this case, the H-bonds) and dangling
chains [36].
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Copolymers were also synthesized with PEG400 and 1,6-hexanediol comonomers.
As displayed in Figure 1, the peaks of the GPC curves of the P6, P7 and P8 copolymers
have nearly the same elution volume as P1. Considerable molecular weight decrement
can be observed in the case of P9 (Figure 1), similar to P5. Based on the 31P NMR spectra
(Figure S6), the hydrolysis and esterification side reactions were also detected in the case of
the polymers with 1,6-hexanediol monomeric units. The 1H NMR spectra show the signals
of the -CH2- protons adjacent to the unreacted -OH groups (-CH2-OH) in the 3.4–3.85 ppm
region and to the reacted ones (-CH2-O-P) between 3.9 and 4.5 ppm (Figure 7). In the case of
P9, the conversion of the –OH groups (roughly 69%) can be determined by the comparison
of the integrated area of these two signal groups. This relatively low conversion value
means that there is a rather high number of unreacted –OH groups, which results in a
reasonably high concentration of intermolecular H-bonds, explaining the observed physical
network formation at room temperature. Similar physical network consistency can also be



Int. J. Mol. Sci. 2022, 23, 15963 9 of 13

found in the case of the P8 copolymer. However, a higher increment in the PEG400 addition
in the feed, similar to the EG-containing copolymers P2–P5, results in polymers as viscous
liquids at room temperature. The oscillatory rheology response of these copolymers (P6
and P7) shows that the moduli are in the same region and the frequency response is similar
to that of the P1–P3 samples. On the DSC curves, a glass transition can be observed at
around −45 ◦C, independent of the composition (Table 1).
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3. Materials and Methods
3.1. Materials

P4S10, poly(ethylene glycol) (Mn = 400 g/mol) (PEG400) and 1,6-hexanediol (HDO)
were purchased from Merck (Sigma Aldrich, Darmstadt, Germany), while ethylene glycol
(EG) was purchased from Molar Chemicals Ltd. (Halásztelek, Hungary) and tetrahydrofu-
ran from VWR (Debrecen, Hungary). All the chemicals were used as received.

3.2. Polymer Syntheses

P4S10 (200–400 mg), a selected diol or mixture of diols and tetrahydrofuran were
measured into a vial in stoichiometric amounts (i.e., 1 mole P4S10 to 4 mole diol). The molar
ratio of the different diols was systematically varied (Table 1). The reaction mixtures were
diluted with tetrahydrofuran to obtain 1 g/mL reactant/THF ratios and stirred at 60 ◦C for
6 h. Afterwards, the mixture was diluted with ca. 3 mL tetrahydrofuran and filtered using
a 0.45 µm syringe filter, followed by the removal of the solvent under reduced pressure.
The dried products were obtained after vacuum drying at 60 ◦C until constant weight. The
reaction in toluene was carried out the same way.

3.3. Characterization Methods
1H and 31P NMR spectra were recorded on a Varian 300 MHz spectrometer at 30 ◦C

in CDCl3.
The gel permeation chromatography (GPC) system was equipped with Waters Styragel

HR1 and HR4 columns, a Waters 515 HPLC pump, a Waters 717 autosampler, a Jetstream
column thermostat and an Agilent 1260 Infinity refractive index detector. Tetrahydrofuran
was used as an eluent, with a 0.3 mL/min flow rate at 35 ◦C. Calibration was made with
the polystyrene standards of narrow molecular weight distribution (from PSS Polymer
Standards Services GmbH, Mainz, Germany).

Alkalimetric titration curves were recorded using a VWR MD8000L pH meter. For the
titrations, 20–40 mg of the polymer was dissolved in 50 mL of distilled water. The titrant, a
0.013 M NaOH solution, was added by a syringe pump at a 10 mL/h rate.
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Differential scanning calorimetry (DSC) measurements were performed on Mettler
Toledo DSC821e equipment in the −80 to +100 ◦C temperature range, with a 10 ◦C/min
heating rate in pierced 40 µL alumina crucibles under a nitrogen atmosphere with an
80 mL/min flow rate. The second heating curves were evaluated, and the inflection points
of the glass transitions were regarded as glass transition temperatures.

TGA curves were recorded on a Setaram LabsysEvo (Lyon, France) TG-DSC system in
a flowing (90 mL/min) nitrogen atmosphere in the 25 to 700 ◦C temperature range with a
heating rate of 10 ◦C/min.

Oscillatory rheology measurements, applicable for determining the mechanical behav-
ior of samples with a liquid consistency, were performed on an Anton Paar Physica MCR
301 rheometer at 25 ◦C with a cone-plate geometry probe (diameter: 25 mm; cone angle: 1◦;
sample gap: 0.054 mm) applying 1% strain in the 0.5–500 1/s angular frequency range.

4. Conclusions

An unexplored process, namely, the reaction between phosphorus pentasulfide (P4S10)
and diols such as ethylene glycol (EG), 1,6-hexanediol (HD) and poly(ethylene glycol)
(PEG), was investigated for the synthesis of a novel class of functional phosphorus- and
sulfur-containing polymers, poly(dithiophosphate)s (PDTPs) (see Scheme 2), under mild
conditions, that is, without any catalyst in the presence of THF or toluene diluents at a
low temperature, i.e., at 60 ◦C, in contrast to the only reported case at 120–180 ◦C [30]. It
was found that this simple process successfully results in PDTPs with higher than 95%
yields. The structure of the resulting polymers was revealed by FTIR, 1H and 31P NMR
spectroscopies and GPC measurements. Interestingly, the formation of branching points
was detected in the case using THF as a diluent, which is attributed to the ring-opening of
this molecule by the pendant sulfide group in the polymer chain. In contrast, this process is
absent when toluene is used. By reacting P4S10 with mixtures of PEG and EG or HD, PDTP
copolymers were obtained. The prepared PDTPs possess low glass transition temperatures
(Tgs) in the range of −4 to −50 ◦C, indicating the formation of elastic chains. It is important
to note that there is no crystalline fraction of PEG in the PDTPs. This can be attributed to
the prevention of the necessary orientation and packing of the PEG chains in PDTPs. It has
to be noted that this behavior might be useful in such areas as ion-conducting membranes
for batteries. The thermogravimetric analyses show that the investigated PDTPs have lower
thermal stability than PEG, which is attributed to the lower stability of the P-O-C bonds than
the C-O-C ether bonds in PEG. Testing the mechanical properties of the investigated PDTPs
by oscillatory rheology measurements has indicated that the moduli of these polymers
can be varied in a broad range, depending on the composition, i.e., on the ratio of the
applied diol comonomers. In sum, it can be concluded that the reaction of P4S10 with
diols under mild conditions enables the synthesis of a variety of PDTPs with interesting
properties. These findings are expected to open new routes for polymer synthesis and
various application possibilities, such as lithium or hydrogen ion-conducting polymer
electrolytes for batteries and fuel cells, flame retardants, pH-responsive polymers, etc.,
with the involvement of the novel poly(dithiophosphate)s.
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Abbreviations

DSC differential scanning calorimetry
DTP dialkyl dithiophosphate
EG ethylene glycol
FTIR Fourier-transform infrared spectroscopy
GPC gel permeation chromatography
HD 1,6-hexanediol
Mn number average molecular weight
Mpeak peak molecular weight
NaOH sodium hydroxide
NMR nuclear magnetic resonance spectroscopy
P4S10 phosphorus pentasulfide
PDTP poly(dithiophosphate)
PEG poly(ethylene glycol)
PEG400 poly(ethylene glycol) with 400 g/mol number average molecular weight
Tg glass transition temperature
TGA thermogravimetric analysis
THF tetrahydrofuran

References
1. Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets:

Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [CrossRef]
2. Liu, Y.; Zhang, P. Review of Phosphorus-Based Polymers for Mineral Scale and Corrosion Control in Oilfield. Polymers

2022, 14, 2673. [CrossRef] [PubMed]
3. Todorova, Z.; Tumurbaatar, O.; Todorova, J.; Ugrinova, I.; Koseva, N. Phosphorus-containing star-shaped polymer conjugates for

biomedical applications. Eur. Polym. J. 2021, 142, 110151. [CrossRef]
4. Zhang, Y.; Chen, X.; Xu, J.; Zhang, Q.; Gao, L.; Wang, Z.; Qu, L.; Wang, K.; Li, Y.; Cai, Z.; et al. Cross-Linked Polyphosphazene

Nanospheres Boosting Long-Lived Organic Room-Temperature Phosphorescence. J. Am. Chem. Soc. 2022, 144, 6107–6117.
[CrossRef] [PubMed]

5. Allcock, H.R. Metallocene and other transition metal derivatives of phosphazene oligomers and polymers: A retrospective
summary. Polymer 2022, 249, 124761. [CrossRef]

6. Mu, X.; Li, X.; Liao, C.; Yu, H.; Jin, Y.; Yu, B.; Han, L.; Chen, L.; Kan, Y.; Song, L.; et al. Phosphorus-fixed stable interfacial
nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203006. [CrossRef]

7. Kracíková, L.; Ziółkowska, N.; Androvič, L.; Klimánková, I.; Červený, D.; Vít, M.; Pompach, P.; Konefał, R.; Janoušková, O.;
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