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Abstract: Most glioblastoma studies incorporate the layer of tumor molecular subtype based on the
four-subtype classification system proposed in 2010. Nevertheless, there is no universally recognized
and convenient tool for glioblastoma molecular subtyping, and each study applies a different set
of markers and/or approaches that cause inconsistencies in data comparability and reproducibility
between studies. Thus, this study aimed to create an applicable user-friendly tool for glioblastoma
classification, with high accuracy, while using a significantly smaller number of variables. The study
incorporated a TCGA microarray, sequencing datasets, and an independent cohort of 56 glioblastomas
(LUHS cohort). The models were constructed by applying the Agilent G4502 dataset, and they were
tested using the Affymetrix HG-U133a and Illumina Hiseq cohorts, as well as the LUHS cases. Two
classification models were constructed by applying a logistic regression classification algorithm,
based on the mRNA levels of twenty selected genes. The classifiers were translated to a RT-qPCR
assay and validated in an independent cohort of 56 glioblastomas. The classification accuracy of the
20-gene and 5-gene classifiers varied between 90.7–91% and 85.9–87.7%, respectively. With this work,
we propose a cost-efficient three-class (classical, mesenchymal, and proneural) tool for glioblastoma
molecular classification based on the mRNA analysis of only 5–20 genes, and we provide the basic
information for classification performance starting from the wet-lab stage. We hope that the proposed
classification tool will enable data comparability between different research groups.

Keywords: glioblastoma; molecular subtyping; classification tool; biomarkers; mesenchymal; proneural;
classical

1. Introduction

The molecular classification of glioblastoma has received increasing scientific attention
over the past 15 years [1,2]. Since glioblastoma is one of the most lethal (with a median
survival of 15 months) and incurable human diseases [3,4], different types of diagnostic,
prognostic, and therapeutic approaches have to be applied to comprehend these issues.
The inter- and intra-tumor heterogeneity of the molecular landscape became one of the
most interesting features of GBM that was analyzed by examining different types of
molecules. The main purpose was to classify tumors into more homogenous groups with
similar behavior with regard to similar response to therapy, comparable course of the
disease, probability of tumor relapse, comparable patient survival, etc. One of the first
GBM classification studies published in 2006 by Phillips et al. suggested the three-group
(proneural—PN, proliferative—Prolif, and mesenchymal—Mes) subtyping model, based
on the signature of 35 genes mRNA expression [5]. In 2010, a four-subtype classification
model, referred to as proneural—PN, classical—CL, mesenchymal—ME, and neural—NE,
which is tightly associated with genomic abnormalities, was proposed by Verhaak et al.
based on the mRNA expression of 840 genes [6]. During the past 10 years, dozens of
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schemes have been suggested for molecular classification of glioblastoma, introducing
3–5 subtypes [7–12]. Verhaak classification became the main system that has been widely
used to analyze differences in treatment efficiency and resistance, course of the disease,
overall patient survival, tumor impurities, immune microenvironment activation level,
etc. in relation to GBM subtypes [1,2,9–17]. Nevertheless, ambiguous data were published
regarding the interrelation of glioblastoma’s clinical and molecular (subtype) features. The
inability to accurately determine patient outcomes based on molecular subtypes was the
main issue discussed [9,15]. Despite the fact that the GBM subtyping only partially discloses
tumor behavior and patient outcome, evidently, different molecular profiles of different
GBM subtypes determined scientific interest. Moreover, the different molecular landscape
of glioblastomas indicates that tumors are acting through subtype-specific regulatory
pathways [18]. Thus, distinct and subtype-specific targets and therapies are needed for
disease cure [19]. In addition to the 2016 World Health Organization (WHO) updated
guidelines for GBM classification incorporating IDH mutation and MGMT methylation
status [3], the vast majority of GBM studies also analyzed data incorporating the Verhaak
proposed subtype. Even though the Verhaak four-group subtype system became the most
acceptable, researchers are still applying different methods and markers to assign subtypes
to a newly analyzed tumor or glioblastoma-derived cell line. Different assays are used, since
scientists are trying to simplify the subtyping process instead of analyzing the expression
of hundreds of transcripts.

Despite the fact that many glioblastoma molecular classification models were sug-
gested since the Verhaak classification system was proposed [7,8,10–12,20–24], only two
glioblastoma classification tools (based on Verhaak four-groups classification) were pro-
posed in 2014 [20] and 2016 [21]. However, during the last several years, few studies
have demonstrated that specimens of the neural subtype are samples with a high content
of normal tissue, rather than a separate tumor subtype [11,12,25]. Therefore, no clearly
defined, accurate, three-group, user-friendly, open-access, and generally accepted tool
has been suggested up to this point. In the present work, we developed a three-group
classifier tool that enables the assigning of glioblastoma specimens or glioblastoma-derived
cell lines to the Verhaak’s proposed subtypes (PN, CL or ME) based on 5–20 gene mRNA
levels. In addition to TCGA data analysis, we performed a mRNA expression analysis of
20 selected genes in the cohort of 56 glioblastoma specimens to optimize and validate the
methodological part of the subtyping. The developed user-friendly glioblastoma classifica-
tion tool is available for every scientist, with no bioinformatic background, and enables
the classification of glioblastoma in a cost-effective way. The classifier tool is capable of
assessing the glioblastoma subtype using 5–20 specified genes’ mRNA data, depending on
the desired accuracy.

The GBM classification tool is designed based on machine learning and the data
visualization toolkit “Orange”. The subtyping model, data normalization, and the file
architecture instructions, as well as general usage instructions, are available to download at:
https://github.com/GiSteps/GBM-Molecular-Classifier (accessed on 1 December 2022).

2. Results
2.1. The Design of Classification-Relevant Markers Selection

Signature–gene selection for GBM subtyping was based on preselected signatures
proposed elsewhere [5,6,11,26]. After combining gene lists from four studies with proposed
subtyping signatures, a total of 77 unique genes were received. We then overlapped the list
between two gene expression array platforms: the Affymetrix HG-U133a and the Agilent
G4502 datasets. The expression data of 69 out of 77 primarily selected genes overlapped
in all datasets; therefore, 69 overlapping targets were selected for further analysis (see
Supplementary Table S1). Since the same specimens were used for mRNA-level analysis
using both microarray platforms, we performed correlation analysis on selected targets
to evaluate the mRNA-level reproducibility of each target. The targets having a Pearson
correlation coefficient lower than 0.65 were eliminated from further study. Fifty-four
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selected genes were used to rank the top 20 ones for GBM subtyping using a feature
selection model applying ANOVA, ReliefF, Gini decrease, gain ratio (GR), fast correlation-
based filter (FCBF), and minimum redundancy maximum relevance (mRMR) methods.
Next, the lists were overlapped, and 20 genes that scored the highest cumulative values
from feature selection methods were selected (see Figure 1A).
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Figure 1. (A) Twenty genes were selected for GBM subtype classifier development, which scored
the highest cumulative values regarding the feature selection methods. The values of each feature
measured by the different methods were normalized to the method values mean. Genes selected for
the five-gene classifiers are indicated by pink rectangles. (B) The comparison of 20-gene and five-gene
classifiers’ classification accuracy per tumor subtype.

2.2. Classifier Development

Data from the Agilent G4502 platform were applied for classification model building.
The construction of the classifier incorporated only mesenchymal, classical and proneural
cases, since recently it was shown that TCGA samples of the neural subtype are samples
with a high content of normal tissue, rather than a separate subtype of tumor [12]. After
the case filtering described in the methods section and neural subtype elimination, a total
of 419 cases were used for model building (MES n = 151; CL n = 140; and PN n = 128).
We tested two classification algorithms: logistic regression with LASSO (L1) and support
vector machine (SVM) for classifier development to select the most suitable one. Both
algorithms revealed highly comparable results applying a 10-fold cross-validation design.
We reduced the number of genes to suggest the minimal number of genes that allows
tumor classification with an acceptable accuracy. We found that a minimum of five genes
is required to receive an overlap with the original classification of at least 85%. First, we
selected the first top five ranked genes according to the ANOVA scoring method (Anova
was revealed to be the most representative of all methods used, see Figure 1A). Next, we
tested the combination of five features to select the most accurate, and we found that
the panel of KLRC3, VAV3, EGFR, CSPG5, and FCGR2B (Figure 1A) revealed the highest
classification accuracy (>93%) that was comparable with the 20-gene classifier accuracy
(>95%) (see Table 1). The classification accuracy applying the five-gene model revealed
even slightly higher accuracy when recognizing the mesenchymal subtype (see Figure 1B).
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Both algorithms revealed similar results. Nevertheless, the final model is built on the
logistic regression classification algorithm, since it showed a more accurate classification
during the validation stage (Table 1).

Table 1. The comparison of different models’ performance during the construction of the classifiers
and testing stages.

Classifier Development

Dataset: Agilent G4502
Logistic regression SVM

20-gene
model

5 top ranked
genes model

5 selected
genes model

20-gene
model

5 top ranked
genes model

5 selected
genes model

Classification accuracy 0.948 0.877 0.937 0.948 0.877 0.932

Area under ROC curve (AUC) 0.995 0.888 0.995 0.994 0.888 0.994

Classifier testing

Dataset: Affymetrix HT

Classification accuracy 0.907 0.833 0.859 0.914 0.835 0.859

Area under ROC curve (AUC) 0.967 0.933 0.946 0.986 0.946 0.961

Dataset: Illumina HiSeq 2000

Classification accuracy 0.91 0.885 0.877 0.893 0.869 0.868

Area under ROC curve (AUC) 0.998 0.991 0.992 0.987 0.977 0.985

2.3. Validation and Testing of Classification Models

The classification models were tested on two public datasets generated by a gene
expression array (Affymetrix HT) and by RNA sequencing (Illumina HiSeq). The gene
expression microarray dataset consisted of 419 (MES n = 151; CL n = 140; PN n = 128)
samples, while the RNA sequencing dataset consisted of 122 (MES n = 47; CL n = 41; PN
n = 34) cases (neural subtype cases were removed from both datasets). We applied both
classification models (20-gene and 5-gene) for testing. As was suspected, the classification
accuracy of data generated by different array platforms or even methods was slightly lower,
but it was, nevertheless, sufficiently high to be used as a tool. The accuracy of the 20-gene
classifier of the Affymetrix HT dataset reached 90.7%, while the Illumina HiSeq dataset
revealed 91% of overall accuracy. Five five-gene classifiers revealed 85.9% classification
accuracy when testing the Affymetrix HT dataset and 87.7% accuracy when testing the
Illumina HiSeq cases (see Figure 2).

Receiver operating characteristic (ROC) curve analysis revealed perfect test results and
the ability to discriminate between subtypes (testing subtype versus other two subtypes).
Comparable results between both classifiers using an expression array and sequencing
data were obtained (area under the curve—AUC > 0.9, Figure 2). The discrimination of
the PN subtype showed the best test parameters compared with MES and CL subtypes. To
visualize the distance between the cases of different subtypes, we applied multidimensional
scaling (MDS) analysis to the data (including the set of all 20 selected genes) and calculated
the Euclidean distance between centroids of the clusters. Analysis revealed PN subtype
specimens to be more distally located in relation to the MES and CL subtypes in both
datasets (see Figure 3).
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Figure 2. Receiver operating characteristic curves of the 20-gene classifier testing the Affymetrix HT
expression array cohort (A) and Illumina HiSeq RNA sequencing data cohort (B). ROC analysis of the
five-gene classifier testing the Affymetrix HT expression array and Illumina HiSeq RNA sequencing
data cohorts indicated in parts (C) and (D), respectively. The matrix at the bottom of each ROC plot
specifies the classification accuracy for each subtype.
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Figure 4. The heatmaps of selected glioblastoma classification genes panels. Blue, red, and green
indicators above each heatmap show predicted classical, mesenchymal, and proneural subtypes,
respectively. Each color discrepancy in the indicators means sample misclassification with reference
to the Verhaak subtype. Data in the heat map are ordered after hierarchical bi-clustering. Parts (A,B),
accordingly, represent data from Affymetrix HT and Illumina HiSeq cohorts applying a 20-gene
classifier and parts (C,D) applying a five-gene classification of the same cohorts, respectively.
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The gene selection approach allows one to select genes with significant expression
differences between molecular subtypes (p < 0.001, ANOVA). BCAS1, GPR17, ERBB3,
PDGFRA, SNAP91, DNM3, KLRC3, and PFN2 gene expressions were significantly increased
in PN compared to MES and CL cases. MET, FCGR2B, DAB2, and PTPRC levels were
significantly increased in MES cases compared with the other two subtypes, while EGFR,
SPRY2, VAV3, CDH4, NR2E1, and NES expressions were significantly increased in CL
cases. CHI3L1 and CSPG5 expression was significantly decreased in PN and MES subtypes,
respectively (see Figure 4). The pattern of the heat map was repeated between datasets,
and, for instance, the genes that were upregulated in the PN subtype in the Affymetrix HT
expression array cohort were similarly upregulated in the Illumina HiSeq dataset.

2.4. The Construction of the Gene Expression System Applying Ordinary qPCR for
Glioblastoma Subtyping

To deliver a functional glioblastoma molecular classification tool, we also developed
technical conditions for the analysis of selected genes’ expression by applying qPCR.
Since different target sequences selected for amplification of the same gene may result
in different gene expression measurements, we designed an expression analysis system
based on microarray probe sequences. We used microarray probe sequences to construct
qPCR primers that fully or partly covered the probe sequences. All the primers were
designed to anneal at 60 ◦C to enable expression examination of all genes in a single plate.
Primer sequences and qPCR conditions are provided in Table 2. Three endogenous controls
previously reported to be suitable for glioma expression research were applied for this
study. It should be noted that both the five-gene and 20-gene classification models are
designed by applying the indicated housekeeping genes.

Table 2. Primer sequences and qPCR conditions.

Gene Name Forward Primer 5′ –> 3′ Revers Primer 5′ –> 3′ Amplicon
Lenght, bp

Primer
Amount µM

Annealing
Temp., ◦C

20
-g

en
e

cl
as

si
fie

r

5-
ge

ne
cl

as
s. CSPG5 CTCTACCTGCTCAAGACGGA GCACTAGGATCATCATTTGGGT 133 0.33 62

EGFR GGACCAGACAACTGTATCCA AAGATTTATTAGGACCCGTAGGTG 172 0.67 60
FCGR2B CTGTGCTTTCTGAGTGGCTG TGACTGTGGTTTGCTTGTGG 189 0.29 62
KLRC3 ATATGACTGCCAAGGTTTACTG CTCTTCCCAAGTTCTTCTTTCC 246 0.29 60
VAV3 CTCAAACTACCAGAGAAACGGAC ATCTCCTTTCAGAAGTTCAACGG 176 0.33 60

BCAS1 AGACAAATGACATCAGACTCCA CTTCTGCTTGTTCATCTCGG 131 0.42 60
CDH4 CCGTCCCAGAATATGTTCAC GCCATAGTTGAGATTTCCTTCC 137 0.42 58

CHI3L1 GTCTCAAACAGGCTTTGTGG GTAGATGATGTGGGTACAGAGG 153 0.42 60
DAB2 CAGTTGAGAATGGGAGTGAGG GTGGGAAAGAAGTTGAGATTGG 240 0.33 54
DNM3 TCCTCAAGGTCTGAGAACCA GTCCTTCTTCCCATCTATGTCC 159 0.42 60
ERBB3 ATGCTGAGAACCAATACCAGAC CAAACTTCCCATCGTAGACCT 255 0.42 60
GPR17 AGCAGCTAGAGGATGTCCA TGGAGTCAGAGCCTGAGAG 87 0.29 60
MET CACTGCTTTAATAGGACACTTCTG AGGTGGATATAGATGTTAAGAGGAC 147 0.42 60
NES GTTGGAACAGAGGTTGGAGG AAAGCTGAGGGAAGTCTTGG 173 0.42 60

NR2E1 TCAAGTGGGCTAAGAGTGTG ACCGTTCATGCCAGATACAG 160 0.29 60
PDGFRA ACAACCTCTACACCACACTG ATGATCTCGTAGACTTCACTGG 180 0.29 60

PFN2 GTTTCTTTACCAACGGTTTGAC CATGACTATAACCAATGCTCTACC 169 0.42 60
PTPRC TAAGACAACAGTGGAGAAAGGAC CAAATGCCAAGAGTTTAAGCCA 96 0.42 60

SNAP91 CCCAGTCAGCACTTCTAAACC CAGCCAAAGAATCCTCTCCC 154 0.42 60
SPRY2 GGAAGTTGGTCTAAAGCAGAGG CACATCTGAACTCCGTGATCG 137 0.29 60

En
do

ge
no

us
co

nt
r. ACTB AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG 184 0.083 60

GAPDH TCAAGATCATCAGCAATGCCT CATGAGTCCTTCCACGATACC 94 0.42 60
YWHAZ CCGTTACTTGGCTGAGGTTG TGCTTGTTGTGACTGATCGAC 67 0.42 62

Gene expression measurements were performed in 56 human glioblastoma specimens.
The dataset was named the LUHS (Lithuanian University of Health Sciences) cohort. The
molecular and demographical characteristics of patients are shown in Table 3. Patients’
median age was 57.7 years (range 31–80 years) in the LUHS cohort, 59.43 years (range
19–89 years) in the Affymetrix HG cohort, and 60.5 years (range 21–89 years) in the Illumina
Hiseq cohort. The median overall survival time after diagnosis was 13.96 months (range
1.51 to 65.41 months), 10.42 months (range 1.21 to 127.56 months), and 9.4 months (range
1.21 to 47.6 months), respectively, in the LUHS, Affymetrix HG, and Illumina Hiseq cohorts.



Int. J. Mol. Sci. 2022, 23, 15875 8 of 14

Table 3. Summary of patient molecular and demographical characteristics.

Features LUHS Cohort
n = 56

Affymetrix HG-U133a
n = 419

Illumina HiSeq 2000
n = 122

Gender
Female 29 (51.8%) 166 (39.6%) 47 (38.5%)
Male 27 (48.2%) 253 (60.4%) 75 (61.5%)

Age (years) mean 58.66 mean 58.2 mean 60
≤60 30 (53.6%) 216 (51.6%) 53 (53.4%)
>60 26 (46.4%) 203 (48.4%) 69 (56.6%)

Survival (months) mean 17.78 mean 14.51 mean 11.3
≤12 20 (35.7%) 242 (57.7%) 72 (59%)
>12 36 (64.3%) 177 (42.3%) 50 (41%)

IDH1 mutation Unexplored n = 107 Unexplored n = 13
Wild-type 50 (89.3%) 286 (91.6%) 101 (92.7%)

Mutant 6 (10.7%) 26 (8.4%) 8 (7.3%)
MGMT methylation Unexplored n = 146 Unexplored n = 34

Unmeth 28 (50%) 137 (50.2%) 46 (52.3%)
Meth 28 (50%) 136 (49.8%) 42 (47.7%)

2.5. Subtype Analysis in LUHS Cohort

Gene expression data were obtained as CT values and were normalized to the geo-
metric mean of three endogenous control genes’ (ACTB, GAPDH, and YWHAZ) CT values
(∆CT). Data of each analyzed gene were normalized (centered) based on the cohort average
and x-x− (where x = data value; x− = mean of a dataset) was included. Then LUHS cohort
was tested by applying both 20-gene and five-gene classification models. The calculated
molecular subtype matched in 52 specimens out of 56 (92.86%) when comparing the 20-gene
and five-gene models’ outputs. The highest match was in the PN group, where 18 out of 19
(94.7%) specimens were identically assigned. MES and CL groups demonstrated a slightly
lower match—17 out of 20 (85%) were identically assigned in both cases (Figure 5A).
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Next, we performed a subtype proportion comparison after classifying the LUHS
cohort by both models. A Z-score test was used to compare subtype proportions between
cohorts. Analysis revealed no difference between LUHS cohort subtypes, calculated apply-
ing 20-gene or five-gene models, compared with the Affymetrix HG and Illumina HiSeq
datasets classified according to the Verhaak system (p > 0.05). The proportions of each
cohort are shown in Figure 5B.

We visualized the LUHS cohort gene expression profile in a heat map to elucidate
if the same genes that were up- or down-regulated in the TCGA dataset subtypes were
similarly aberrant in the LUHS dataset (Figure 6A). The analysis demonstrated that the
same genes that were significantly upregulated, for instance in the PN subtype in the
TCGA cohorts (BCAS1, GPR17, ERBB3, PDGFRA, SNAP91, DNM3, KLRC3, and PFN2),
were also upregulated in PN samples of the LUHS cohort that was classified by applying
the 20-gene classifier (see Figure 6B). Similar data were obtained by comparing MES and
CL-specific genes (Figures 4 and 6). It is worth mentioning that the expression levels of all
screened-out genes (applying the design described above) were significantly deregulated
between subtypes (Figure 6B).
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Survival analysis did not reveal a significant difference between subtypes in any
analyzed cohort (p > 0.05) (Figure 7). The log-rank test of the TCGA dataset (Affymetrics
HT) showed a tendency towards better survival prognosis for PN patients (χ2 = 3.601, df = 2,
p = 0.165), as well as PN, MES and CL survival means of 669, 484, and 503 days, respectively
(Figure 7A). Neither the Illumina HiSeq cohort classified according to the original Verhaak
system, nor the LUHS cohort classified using the 20-gene classifier, revealed such a tendency
(Illumina HiSeq: χ2 = 0.404, df = 2, p = 0.817; LUHS cohort 20-gene classified: χ2 = 0.84;
df = 2, p = 0.657) (Figure 7B,C). The shortest mean survival estimates were in the MES
subtype patients in all cohorts.
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3. Discussion

Most glioblastoma studies incorporate a layer of tumor molecular subtyping based
on the classification system instituted by Verhaak et al., 2010 [6]. Originally, Verhaak
et al. classified glioblastomas into four subtypes based on the expression of 840 genes [6].
However, the large number of genes used in the original classifier encourages scientists
to optimize the number of features to save expenses and time and to make the molecular
classification more applicable. Even though the Verhaak subtyping system has become the
most acceptable model, researchers are still applying different methods and markers to
assign subtypes to the newly analyzed glioblastoma cohort. Several glioblastoma molecular
classification models have been suggested since the Verhaak four-group subtype system
was proposed [7,8,10–12,20–24]. Nevertheless, most of them provide lists of informative
subtyping molecules rather than the classification tool or algorithm itself [7,8,10–12,23,24].
Some of the provided glioblastoma classification schemes reclassify tumors in novel sub-
types/groups/clusters. However, such a reclassification is incomparable among the studies
that were previously published [7,8,24]. During the past decade, two GBM classification
tools, based on the Verhaak four-group classification, were proposed in 2014 [20] and
2016 [21], which use 121 and 48 molecules for GBM classification, respectively. Relatively
large numbers of genes do not make these tools highly attractive, since the analysis of
at least 48 targets still needs high throughput approach. Moreover, recently, few studies
have demonstrated that specimens of the neural subtype are samples with high content of
normal tissue rather than separate glioblastoma subtypes [11,12,25], indicating the need
for a standardized three-group glioblastoma molecular classification tool. Thus, with this
work, we suggest a simple and cost-efficient three-class glioblastoma molecular classifi-
cation tool based on mRNA analysis of five to 20 genes. We hope that this model will
encourage researchers and physicians to use the suggested glioblastoma subtyping model
more frequently in the future.
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The overall accuracy of the proposed glioblastoma subtyping models (five-gene and
20-gene) varied between ~86% and 91%. The original Verhaak classifier was developed by
applying silhouette width filtering when selecting only the “core samples”, which then
were used for model construction [6]. Thus, achieving absolute classification accuracy is
not a feasible task, even when incorporating all 840 features for the classification. Current
classification models are comparable with Crisman et al.’s published four-subtype 48-gene
model, where accuracy varied between 81.48% and 91.88%, depending on the dataset
used [21]. Madurga et al. reduced the classification genes list to 20 genes that showed
89–90% classification accuracy [12]. Pal et al. defined a four-group glioblastoma molecular
classifier based on 121 isoform-level gene signatures and received 92% accuracy [20]. Taking
this all together, the proposed classification models show similar classification accuracy
to those published previously. Nevertheless, the numbers of the features (genes) are
considerably smaller. As might be expected, the five-gene model revealed slightly lower
classification accuracy values (85.9–87.7%), as compared to the 20-gene model (90.7–91%).
Nevertheless, considering that the five-gene model requires four times fewer resources
and time, the five-gene model is an excellent choice to classify glioblastoma cohorts in a
cost-effective way. Differently from the previously proposed models, current tools provide
not only qualitative information about the calculated molecular subtype, but they also
provide qualitative information—the probability of the predicted subtype.

The current study, in addition to a list of the genes and the classification model, also
provides a user-friendly tool with all instructions for glioblastoma cohort subtype iden-
tification. Moreover, the current study provides technical information on optimized and
validated qPCR conditions that enable data reproducibility and comparability between the
researchers if they follow the described protocol. Different target sequences selected for
amplification of the same gene may result in different expression levels. Thus, here we
are providing designed and tested primers and optimized qPCR conditions to maximize
the reproducibility of the data. Thus, we hope that the proposed glioblastoma classifica-
tion model with basic information for target analysis in a wet-lab stage will encourage
researchers and physicians to use the suggested system more frequently in the future.

4. Materials and Methods
4.1. TCGA Gene Expression Data Processing

The Cancer Genome Atlas (TCGA) coordination center data [27] were used for devel-
oping the classifier. Gene expression data of GBM patients with known IDH status, survival
data, and Verhaak subtype were collected from the UCSC Xena [28] and the GlioVis [29]
data portals. We used level 3 interpreted data of gene expression estimates given in log
space, which were mapped onto the human genome coordinates using the UCSC Xena
HUGO probeMap [28]. The analysis encompassed three public datasets generated by three
gene expression array platforms: the Affymetrix HT Human Genome U133a microarray
platform (n = 539), the Agilent 244K custom gene expression G4502A microarray platform
(n = 585), and the RNA sequencing platform Illumina HiSeq 2000 RNA Sequencing (n = 172).
The cases for the analysis were selected on the basis of four criteria: the subtype of a sample
according to Verhaak was specified; the sample type was a primary tumor (recurrent or
secondary tumors were eliminated); the case had information about all targets selected for
the analysis; and the tumor was not treated prior to resection. After data filtering, based
on the above-listed criteria, 505 cases from the Affymetrix HG-U133a, 505 cases from the
Agilent G4502, and 162 cases from the Illumina HiSeq datasets were selected for further
steps, respectively. Cases that were assigned to the neural subtype were removed from
the datasets. The final gene expression microarray dataset consisted of 419 cases, and
the RNA sequencing dataset consisted of 122 cases. Because the development of models
incorporated different datasets, the data were normalized by applying a standard score:
z = (x− u)/σ.
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4.2. Patient Samples

A total of 56 human glioblastoma specimens diagnosed according to the guidelines of
WHO, classification 2016, 4th edition (update 3), were used for gene expression analysis.
The surgical resections of GBM tumors were performed at the Department of Neurosurgery,
Hospital of Lithuanian University of Health Sciences, from September 2017 to June 2021.
Tumorous tissues of glioblastoma patients were collected, stored, and analyzed follow-
ing written informed consent after approval by the Kaunas region Ethics Committee for
Biomedical Research (permission code: P2-9/2003). The study was performed following
the Lithuanian regulations, alongside the principles of the Helsinki and Taipei Declarations.
All tissue samples after surgical resection were snap-frozen and stored in liquid nitrogen.
Clinical data (gender and age at the time of resection,) as well as survival data, were
collected for each patient. The overall patient survival rates were calculated from the date
of tumor resection to the date of patient death or database closure (15 May 2022). None of
the patients had received chemotherapy or radiotherapy prior to surgery. The demographic
and molecular characteristics of patients are shown in Table 3.

4.3. RNA Isolation and qRT-PCR

GBM tumor specimens were homogenized by applying cryogenic grinding with
liquid nitrogen, and total RNA from pulverized tissue was extracted using the TRIzol
reagent (Invitrogen, Vilnius, Lithuania, cat. #: 15596026). In total, 2 µg of total RNA was
used for cDNA synthesis by applying the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Bleiswijk, The Netherlands, cat. #: 4374966). Selected targets’
mRNA expression was investigated by applying quantitative RT-PCR SYBR Green I assay,
in three replicates, on a 7500 Fast Real-time PCR detection system (Applied Biosystems,
Foster City, CA, USA). The PCR reaction consisted of 3 µL (15 ng when calculating from
RNA used for cDNA synthesis) of cDNA, 6 µL of 2x Power SYBR™ Green PCR Master
Mix (Applied Biosystems, Bleiswijk, The Netherlands, cat. #: 4368702), 0.29–0.67 µM of
primer, and nuclease-free water. For detailed information on primer sequences, amplicons,
primer amounts per reaction, as well as PCR cycling conditions, see Table 2. Relative
quantification method—∆CT (when normalized to reference genes) was used for data
normalization. Data were normalized according to the geometric mean of the CT estimate
of three reference genes (ACTB, GAPDH, and YWHAZ). The final values were used as
2−∆CT (fold change) calculations.

4.4. Data Analysis

Differences across two independent groups were analyzed by applying a t-test. A
chi-square test was used for categorical data analysis. Survival analysis was performed
by applying the Kaplan–Meier curve method, and a log-rank test was used to compare
the difference in survival curves across groups. To show the reliability of the survival
estimate, the confidence interval (CI), with a 95% confidence level, was presented. The level
of significance was p < 0.05. Data visualization, target selection, model construction, and
testing were performed using the machine learning and data visualization toolkit “Orange”
(ver.3.32, University of Ljubljana, Ljubljana, Slovenia). IBM SPSS Statistics (V27.0.1.0, New
York, NY, USA) and GraphPad Prism (V6.01, GraphPad Software, Inc., San Diego, CA,
USA) software were used for statistical analysis and data visualization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232415875/s1.
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