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Abstract: Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in
sugar transportation. They are involved in the regulation of plant growth and development, hormone
crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been
explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid
sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30)
and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups
according to their phylogenetic relationships with Arabidopsis. The protein physiological properties,
chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein
interaction networks, and expression patterns of these 79 SWEETs were systematically investigated.
The results suggested that homologous SWEETs are differentiated in sweet potato and its two
diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid
accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive
comparison and furthers our understanding of the SWEET genes in the sweet potato and its two
diploid relatives, thereby supplying a theoretical foundation for their functional study and further
facilitating the molecular breeding of sweet potato.

Keywords: sweet potato; SWEET; tissue-specific expression; tuberous root development; hormone
treatment; abiotic stress

1. Introduction

Sugar Will Eventually be Exported Transporters (SWEETs) play key roles in sugar
transport across plasma and intracellular membranes in both prokaryotes and eukary-
otes [1]. Almost all SWEETs are present in the membrane structure, such as the plasma
membrane and Golgi membrane [2]. As membrane proteins, SWEETs have three trans-
membrane domains (3TMs) in bacteria but have seven transmembrane domains (7TMs) in
eukaryotes [3]. The 3TMs are encoded by a PQ-loop called the Mtn3 domain, which carries
conserved proline and glutamine motifs [4,5]. The 7TM helices are folded into two parallel
three-helix bundles connected by one central TM [1,6,7]. Since the 7TMs in SWEETs may
not be sufficient for creating a functional pore as other types of sugar transporters carrying
12TMs, two SWEETs usually form a functional pore that permits sugar substrate trans-
portation by oligomerization [1,3,7,8]. Accumulating evidence has revealed that SWEETs
could homo- or hetero-oligomerize. The co-expression of a mutated and non-functional
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AtSWEET1 with a functional AtSWEET1 was found to inhibit sugar transport activity [9].
The oligomerization of the mutated form of OsSWEET11 with functional OsSWEET11
was found to disrupt sugar transport activity [10]. AtSWEET11 and AtSWEET12 undergo
hetero-oligomerization to form a functional pore for sucrose transportation [11]. The hetero-
oligomerization of SUT1 and SUT2 was found to be involved in the negative regulation of
sucrose transportation [12].

In plants, the number of SWEETs varies among different species. The Arabidopsis, rice,
potato, and soybean genomes encode 17, 21, 35, and 52 SWEETs, respectively [9,13–15].
These are critical in organ formation due to their controlling sugar transport [9,16]. In
Arabidopsis, AtSWEET11, AtSWEET12, and AtWEET15 are important transporters for
seed filling [17,18]. AtSWEET11 and AtSWEET12 are highly expressed in leaf phloem
parenchyma cells, and the mutations of AtSWEET11 and AtSWEET12 result in defects in
phloem loading [19]. Under dark or fructose accumulation, AtSWEET17, as a facilitator,
was found to regulate the flow of fructose in vacuoles [16]. Mutations to StSWEET11 were
found to cause sucrose accumulation in leaves, leading to yield reductions in potato [20].
The overexpression of PbSWEET4 caused reductions in sugar and early senescence in leaves
in pears [21]. Moreover, SWEETs are also involved in the regulation of plant growth and
development and hormone response. AtSWEET8 is necessary for pollen growth [22]. Gm-
SWEET10a and GmSWEET10b directly affect seed qualities in soybean [23]. The AtSWEET13
and AtSWEET14 double-mutant line failed to transport exogenous GA [24]. The rice OsS-
WEET3a was found to be involved in transporting glucose and gibberellin (GA) to leaves
during early plant development [25]. The overexpression of OsSWEET5 inhibited auxin
concentration and signaling [26]. The triple mutants of ZmSWEET13a, ZmSWEET13b, and
ZmSWEET13c resulted in a stunted phenotype in maize [27]. Furthermore, SWEETs are
also involved in the regulation of biotic and abiotic stress responses. AtSWEET2 transports
sugar from the cytosol to the vacuole, causing sugar leakage and thereby limiting pathogen
growth [18]. The overexpression of IbSWEET10 enhanced Fusarium oxysporum resistance by
reducing the sugar content in the transgenic plants of the sweet potato [28]. AtSWEET16
was found to enhance the freezing tolerance of transgenic plants [29]. Cucumber CsSWEET2
was found to improve cold tolerance in Arabidopsis [30]. However, the biological functions
and regulatory mechanisms of SWEETs remain unclear in sweet potato.

The sweet potato (Ipomoea batatas (L.) Lam., 2n = B1B1B2B2B2B2 = 6x = 90), belonging to
the family Convolvulaceae, is an economically important root and tuber crop that is widely
used as an industrial and bioenergy resource worldwide [31]. It provides a rich source of
carbohydrates, dietary fiber, carotenoid, vitamins, and micronutrients. Due to its resilience
and adaptability, it plays an important role in food security for subsistence farmers in Africa
and Southeast Asia [31]. The formation and thickening of tuberous roots is one of the most
important processes determining the yield of sweet potato. However, its diploids cannot
form tuberous roots, and they exhibit slender stems and rattan characteristics [32–34]. In
recent years, genome assemblies of a hexaploid sweet potato, Taizhong 6 [35], and two
diploid species closely related to the hexaploid sweet potato, Ipomoea trifida NCNSP0306
(2n = 2x = 30) and Ipomoea triloba NCNSP0323 (2n = 2x = 30) [36], were released, making
it possible to identify and analyze important gene families involved in tuberous root
development at the whole-genome level in sweet potato.

In this study, SWEET family genes were identified from I. batatas, Ipomoea trifida, and
Ipomoea triloba. We systematically investigated the protein physicochemical properties, chro-
mosome localization, phylogenetic relationships, gene structure, cis-elements of promoters,
and the protein interaction network of SWEETs in sweet potato. In addition, the tissue
specificity and expression pattern analyses for tuberous root development in different
varieties, and hormone responses (in leaves) of SWEETs were carried out using qRT-PCR
and RNA-seq. The results play an important guiding role in the further study of their
functions and the molecular breeding of the sweet potato.
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2. Results
2.1. Identification and Characterization of SWEETs in the Sweet Potato and Two Diploid Relatives

The plant morphology of the cultivated hexaploid sweet potato is different from that
of its diploid relatives, especially since the diploid relatives cannot form tuberous roots
(Figure 1). To comprehensively identify all SWEETs in the sweet potato and its two diploid
relatives, we employed three typical strategies (i.e., blastp search, hmmersearch, and the
CD-search database). A total of 79 SWEETs were identified in I. batatas (27), I. trifida (27), and
I. triloba (25), which were named “Ib”, “Itf ”, and “Itb”, respectively. The physicochemical
properties were analyzed using the sequence of IbSWEETs (Table 1). The genomic length
of the 27 IbSWEETs ranged from 1052 bp (IbSWEET8.1) to 5747 bp (IbSWEET15.7), and
the CDS length varied from 823 bp (IbSWEET9.1) to 1557 bp (IbSWEET2.3). The amino
acid lengths of IbSWEETs ranged from 153 aa (IbSWEET15.7) to 321 aa (IbSWEET15.1),
with the molecular weight (MW) varying from 17.64 kDa (IbSWEET15.7) to 35.41 kDa
(IbSWEET15.1). The isoelectric point (pI) of IbSWEET15.6 (5.81) was the lowest among
all the IbSWEETs, indicating that it is an acidic protein. The pI of the other SWEETs was
distributed from 7.61 (IbSWEET15.1) to 9.98 (IbSWEET8.3), suggesting that they are basic
proteins. All the IbSWEETs contained Ser, Thr, and Tyr phosphorylation sites. All the
IbSWEETs were stable with an aliphatic index of more than 100, except for IbSWEET3.1,
which obtained an aliphatic index of 98.25. The grand average of the hydropathicity
(GRAVY) value of all the IbSWEET proteins varied from 0.281 (IbSWEET3.1) to 1.070
(IbSWEET2.3), indicating that they are hydrophobic. The subcellular localization prediction
assay showed that most of IbSWEETs were located in the cell membrane, except three
IbSWEETs: IbSWEET15.6 and IbSWEET15.7, which were located in the cell membrane
and chloroplasts, and IbSWEET1.1, which was located in the cell membrane and Golgi
apparatus. Most of the IbSWEETs have seven transmembrane helical segments (TMHs);
several (i.e., IbSWEET6.3, -8.1, -8.3, -9.2, -9.3, -15.2, -15.3, -15.4, and -15.7) have six TMHs;
a few (i.e., IbSWEET2.3, -3.1, -6.2, and -10.5) have five TMHs, and IbSWEET15.6 has four
TMHs. The three-dimensional structural models showed that there are three conserved
α-helices in both N-terminal and C-terminal of all IbSWEETs (Figure S1).

Table 1. Characterization of IbSWEETs in sweet potato.

Gene ID Gene Name PI MW/kDa
Genomic

Length/bp
CDS

Length/bp
Phosphorylation Site Protein

Size/aa
Aliphatic

Index
GRAVY TMHs Subcellular Locations

Arabidopsis
Homologous

Ser Thr Tyr

g42355 IbSWEET1.1 9.55 27.63 1949 1158 17 12 6 254 120.47 0.819 7 Cell membrane Golgi
apparatus SWEET1

g45970 IbSWEET2.1 9.18 30.50 2865 1303 30 11 12 273 114.58 0.788 7 Cell membrane SWEET2
g37512 IbSWEET2.2 8.97 26.17 2620 1086 23 12 14 235 125.19 1.003 7 Cell membrane SWEET2
g37574 IbSWEET2.3 9.44 19.99 4204 1557 17 11 9 179 125.70 1.070 5 Cell membrane SWEET2
g20639 IbSWEET3.1 8.83 24.44 1825 829 20 12 10 217 98.25 0.281 5 Cell membrane SWEET3
g39263 IbSWEET6.1 8.46 30.93 2934 1046 19 17 12 278 126.19 0.871 7 Cell membrane SWEET6
g39260 IbSWEET6.2 9.15 25.53 2101 868 19 16 11 233 105.41 0.481 5 Cell membrane SWEET6
g39262 IbSWEET6.3 9.30 25.79 2900 983 22 15 11 237 112.32 0.523 6 Cell membrane SWEET6
g5800 IbSWEET8.1 9.83 22.47 1052 966 15 10 7 206 117.86 0.639 6 Cell membrane SWEET8
g346 IbSWEET8.2 9.47 25.72 1977 1065 17 11 10 235 120.68 0.681 7 Cell membrane SWEET8

g51687 IbSWEET8.3 9.98 26.48 2536 1055 16 14 7 239 108.20 0.592 6 Cell membrane SWEET8
g41769 IbSWEET9.1 9.16 27.26 1912 823 12 7 14 241 119.71 0.747 7 Cell membrane SWEET9
g49942 IbSWEET9.2 9.48 30.39 5035 1049 15 14 17 267 114.68 0.696 6 Cell membrane SWEET9
g33162 IbSWEET9.3 8.72 30.49 2028 1395 16 22 13 275 122.15 0.691 6 Cell membrane SWEET9
g6315 IbSWEET10.1 8.83 31.13 2310 1122 16 16 14 278 117.73 0.700 7 Cell membrane SWEET10

g33248 IbSWEET10.2 9.34 34.07 3208 1235 17 18 11 305 114.72 0.549 7 Cell membrane SWEET10
g55355 IbSWEET10.3 9.20 34.65 1851 1231 18 11 13 314 122.26 0.689 7 Cell membrane SWEET10
g38390 IbSWEET10.4 9.19 34.25 2664 1264 21 17 11 304 117.57 0.607 7 Cell membrane SWEET10
g14486 IbSWEET10.5 9.48 30.78 3130 1123 18 15 9 272 106.76 0.521 5 Cell membrane SWEET10
g14649 IbSWEET10.6 9.39 32.65 3831 1188 17 17 11 288 116.39 0.678 7 Cell membrane SWEET10
g4174 IbSWEET15.1 7.61 35.41 2008 1238 19 19 11 321 114.70 0.568 7 Cell membrane SWEET15

g39828 IbSWEET15.2 8.19 33.64 2933 1057 19 16 12 302 115.79 0.541 6 Cell membrane SWEET15
g13599 IbSWEET15.3 9.46 24.64 1780 896 16 10 8 221 127.87 0.802 6 Cell membrane SWEET15
g13600 IbSWEET15.4 9.30 24.86 1917 920 19 12 8 222 124.19 0.821 6 Cell membrane SWEET15
g13601 IbSWEET15.5 7.74 32.80 1767 1103 24 9 11 292 120.17 0.664 7 Cell membrane SWEET15

g61464 IbSWEET15.6 5.81 31.87 1594 1026 29 13 9 278 119.10 0.729 4 Cell membrane
Chloroplast SWEET15

g61461 IbSWEET15.7 9.47 17.64 5747 988 14 9 7 153 127.97 0.907 6 Cell membrane
Chloroplast SWEET15

CDS, coding sequence; MW, molecular weight; pI, isoelectric point; Ser, serine; Thr, threonine; Tyr, tyrosine; TMHs,
transmembra-ne helices.
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Figure 1. Plant morphology of in vitro grown (a) and field-grown plants. Scale bars, 2 cm. (b) of I. 
batatas, I. trifida, and I.triloba. Scale bars, 5 cm. 

  

Figure 1. Plant morphology of in vitro grown (a) and field-grown plants. Scale bars, 2 cm. (b) of I.
batatas, I. trifida, and I.triloba. Scale bars, 5 cm.

The SWEETs were distributed across 11, 10, and 11 chromosomes of I. batatas, I. trifida,
and I. triloba, respectively (Figure 2). In I. batatas, five IbSWEETs were detected on LG4
and LG10; three on LG11; two on LG1, LG2, LG8, LG9, LG13, and LG15; and one on LG5
and LG12, whereas no genes were detected on LG3, LG6, LG7, or LG14 (Figure 2a). In I.
trifida and I. triloba, the distribution of SWEETs on Chr01 (3), Chr04 (2), Chr11 (2), Chr12
(2), Chr13 (2), and Chr06 (1) was similar, but their distribution on other chromosomes
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was different (Figure 2b,c). The results indicated a variation and loss of SWEETs during
evolution, causing the difference between the distribution and disproportion of SWEETs on
the chromosomes in sweet potato and its two diploid relatives.
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Figure 2. Chromosomal localization and distribution of SWEETs in I. batatas (a), I. trifida (b), and I. 
triloba (c). The bars represent chromosomes. The chromosome numbers are displayed on the left 
side, and the gene names are displayed on the right side. Each gene location is shown on the line. 
Detailed chromosomal location information is listed in Table S1. 

Figure 2. Chromosomal localization and distribution of SWEETs in I. batatas (a), I. trifida (b), and I.
triloba (c). The bars represent chromosomes. The chromosome numbers are displayed on the left side,
and the gene names are displayed on the right side. Each gene location is shown on the line. Detailed
chromosomal location information is listed in Table S1.
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2.2. Phylogenetic Relationship of SWEETs in the Sweet Potato and Its Two Diploid Relatives

To study the evolutionary relationship of SWEETs in I. batatas, I. trifida, I. triloba, and
Arabidopsis, we constructed a phylogenetic tree for 96 SWEETs of these four species (i.e.,
27 in I. batatas, 27 in I. trifida, 25 in I. triloba, and 17 in Arabidopsis) (Figure 3). All the
SWEETs were unevenly distributed on each branch of the phylogenetic tree. Interestingly,
the SWEETs in I. trifida, I. triloba, and Arabidopsis were divided into four subgroups (Groups
I to IV), but in I. batatas, they were divided into three subgroups (Groups I to III) according
to the evolutionary distance (Figure 3). The specific distribution of the SWEETs was
as follows (total: I.batatas, I. trifida, I. triloba, and Arabidopsis): Group I (22:6, 5, 6, 5),
Group II (23:5, 8, 7, 3), Group III (43:16, 10, 10, 7), and Group IV (8:0, 4, 2, 2) (Figure 3;
Table S1). We named IbSWEETs, ItfSWEETs, and ItbSWEETs based on their homology with
homologs in Arabidopsis, and only AtSWEET1/2/3/5/6/7/8/9/10/15/16 from Arabidopsis
had homologous proteins in I. batatas, I. trifida, and I. triloba. These results indicate that
the number and type of SWEETs distributed in each subgroup in the sweet potato differed
from those of its two diploid relatives and Arabidopsis.
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Figure 3. Phylogenetic analysis of the SWEET proteins from seven plant species (i.e., I. batatas, I. trifida,
I. triloba, Arabidopsis thaliana, Oryza sativa L., and Zea mays). A total of 142 SWEETs were divided into
four subgroups (GroupI to Group IV) according to the evolutionary distance. The green triangle,
yellow circles, blue circles, red squares, purple triangle, and blue star represent the 27 IbSWEETs in I.
batatas, 27 ItfSWEETs in I. trifida, 25 ItbSWEETs in I. triloba, 17 AtSWEETs in Arabidopsis thaliana, 21
OsSWEETs in Oryza sativa L., and 24 ZmSWEETs in Zea mays, respectively.
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Furthermore, a total of 142 SWEET proteins from six plant species (i.e., 27 in I.batatas,
27 in I. trifida, 25 in I.triloba, 17 in Arabidopsis, 21 in rice, and 24 in maize) were used for the
phylogenetic analysis. They were divided into four subgroups (Groups I to IV) (Figure 3),
which indicated that the evolutionary relationship of the SWEETs was relatively conserved
in the plant.

2.3. Conserved Motif and Exon–Intron Structure Analysis of SWEETs in the Sweet Potato and Two
Diploid Relatives

Furthermore, sequence motifs in the 27 IbSWEETs, 27 ItfSWEETs, and 25 ItbSWEETs
were analyzed using the MEME website, and the five most conserved motifs were identified
(Figure 4a and Figure S2). Most of the SWEETs contained these five conserved motifs,
except for a few SWEETs that were differentiated in the number and species of motifs in
I.batatas, I.trifida, and I.triloba, such as IbSWEET15.2 (containing motifs 2–5), ItfSWEET15.2
(containing motifs 1–5), and ItbSWEET15.2 (containing motifs 1–5) (Figure 4a). The PQ-
loop acts as a key structure for the helix of the SWEETs [9]—the first PQ-loop contains
motifs 1 and 4 and the second PQ-loop contains motifs 2, 3, and 5; additionally, all the
SWEETs contain two PQ-loops (Figure 4b). Moreover, only ItfSWEET9.1 and ItbSWEET9.1
contain an SANT domain, which is involved in the regulation of flower development [37]
(Figure 4b).
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tory element (found in IbSWEET3.1, -6.2, -8.1, -9.3, -10.1, -10.4, and -15.1); the CAT-box, 
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Figure 4. Conserved motifs and exon–intron structure analysis of the SWEET family in I. batatas, I.
trifida, and, I. triloba. (a) The phylogenetic tree shows that SWEETs are distributed in four subgroups
on the left, and the five conserved motifs are shown in different colors. The red circle represents
the IbSWEETs. (b). Conserved domain structures of SWEETs. The blue box represents the PQ-loop
domain. The red box represents the SANT domain. (c) Exon–intron structures of SWEETs. The green
boxes, yellow boxes, and black lines represent the UTRs, exons, and introns, respectively.
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To better understand the structural diversity among SWEETs, the exon–intron struc-
tures were analyzed (Figure 4c). The number of exons in the SWEETs ranged from two to
eight. In more detail, the SWEETs of Group I contained two to six exons; the SWEETs of
Group II contained five or six exons; the SWEETs of Group III contained four to six exons;
and the SWEETs of Group IV contained five to eight exons (Figure 4c). The exon–intron
structures of some homologous SWEETs were different in I. batatas compared to those in I.
trifida and I. triloba, such as IbSWEET8.1 (containing two exons), ItfSWEET8.1 (containing
six exons), and ItbSWEET8.1 (containing six exons) in Group I, IbSWEET9.2 (containing
five exons) and ItbSWEET9.2 (containing six exons) in Group III, and ItfSWEET16.1 (con-
taining six exons), and ItbSWEET16.1 (containing eight exons) in Group IV (Figure 4c).
These results indicated that the SWEET family may have undergone a lineage-specific
differentiation event in the sweet potato genome.

2.4. Cis-Element Analysis in the Promoter of IbSWEETs in Sweet Potato

Promoter cis-elements in plants initiate the gene functions related to plant develop-
ment, hormone regulation, and stress response. Therefore, we performed a cis-element
analysis using the 1500 bp promoter region of IbSWEETs. According to the predicted func-
tions, we divided the elements into five categories: core elements, development regulation
elements, hormone-responsive elements, abiotic/biotic stress-responsive elements, and
light-responsive elements (Figure 5). A large number of core elements were identified in
the 27 IbSWEETs (CAAT-box and TATA-box) (Figure 5). Most of the IbSWEETs contained
several development elements, such as the O2-site, which was a zein metabolism regulatory
element (found in IbSWEET3.1, -6.2, -8.1, -9.3, -10.1, -10.4, and -15.1); the CAT-box, which
was associated with meristem formation (found in IbSWEET2.2, -2.3, -6.2, -8.2, -8.3, -9.2,
-10.2, and -15.3); and the GCN4 motif, which was involved in controlling seed-specific
expression (found in IbSWEET3.1 and IbSWEET6.1) (Figure 5). However, no development-
related elements were found in the 1500 bp promoter region of IbSWEET15.2, IbSWEET15.6,
and IbSWEET15.7. Moreover, light-responsive elements such as the G-box, BOX4, and
AE-box were abundant in the promoters of IbSWEETs (Figure 5).

Additionally, some abiotic elements, such as the drought-responsive elements DRE-
core, MYB, and MYC; the salt-responsive elements LTR, MBS, and W-box; the light-
responsive elements ERE and LTR; and biotic elements, such as WRE3, W-box, and the
WUN motif, were identified in most IbSWEETs (Figure 5). All the IbSWEETs possessed
several hormone elements, including ABRE for ABA-responsive elements, TGA-element for
IAA-responsive elements, TATC-box for GA-responsive elements, the CGTCA and TGACG
motifs for MeJA-responsive elements, and the TCA motif for SA-responsive elements (Fig-
ure 5). These results suggest that IbSWEETs are involved in the regulation of plant growth
and development, hormone crosstalk, and abiotic stress adaption in the sweet potato.
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2.5. Protein Interaction Network of IbSWEETs in the Sweet Potato

To explore the potential regulatory network of IbSWEETs, we constructed an IbSWEET
interaction network based on Arabidopsis orthologous proteins (Figure 6). Protein interac-
tion predictions indicated that some IbSWEETs (IbSWEET1, 6, 8, 9, and 10) could interact
with other IbSWEETs to form heterodimers. In addition, SWEETs can interact with pollen
development-related protein DEX1 [38], circadian rhythm-related protein FKF1 [39,40], and
pathogen responsive-related protein RIN4 and RPM1 [41,42]. IbSWEET2, IbSWEET3, and
IbSWEET9 can interact with translation regulation-related protein PUM23 [43]. IbSWEET15
can interact with plant senescence regulatory-related protein SAG12 [44]. These results
indicate that IbSWEETs are involved in the regulation of plant growth and development
and biotic stress adaption in the sweet potato.
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2.6. Expression Analysis of SWEETs in the Sweet Potato and Two Diploid Relatives
2.6.1. Expression Analysis in Various Tissues

To investigate the potential biological function of IbSWEETs in plant growth and
development, the expression levels in six representative tissues (i.e., bud, petiole, leaf, stem,
pencil root, and tuberous root) of I. batatas were analyzed using real-time quantitative PCR
(qRT-PCR) (Figure 7). Nonetheless, different subgroups showed diversified expression
patterns in six tissues. IbSWEETs in Group II showed higher expression levels in all the
tissues as compared to the other subgroups. Among all the IbSWEETs, six IbSWEETs
(i.e., IbSWEET1.1, −2.1, −2.2, −2.3, −9.2, and −10.2) were highly expressed in all the
tissues, especially IbSWEET10.2, which was highly expressed by more than 1000-fold in all
the tissues. Interestingly, all the IbSWEETs showed high expression levels in the petiole.
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Moreover, some IbSWEETs showed tissue-specific expression—e.g., IbSWEET1.1, -2.1, -2.2,
-2.3, and −15.1 were highly expressed in buds; IbSWEET2.1, -2.2, -2.3, -10.2, and -15.1 were
highly expressed in leaves; IbSWEET10.3 was highly expressed in stems and pencil roots;
and IbSWEET8.3 and IbSWEET15.6 were highly expressed in tuberous roots (Figure 7a).
These results indicate that IbSWEETs might play different roles in sugar transport and
development in the various tissues of the sweet potato.
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Figure 7. Gene expression patterns of SWEETs in different tissues of I. batatas, I. trifida, and I. triloba.
(a) Expression analysis in the bud, petiole, leaf, stem, pencil root, and tuberous root of I. batatas.
qRT-PCR determined the values from three biological replicates consisting of pools of three plants,
and the results were analyzed using the comparative CT method. The expression of IbSWEET8.1 in
the buds was considered as “1”. The fold change is shown in the boxes. Different lowercase letters
indicate a significant difference in each IbSWEET at p < 0.05 based on the Student’s t-test. (b) Gene
expression patterns of ItfSWEETs in the flower bud, flower, leaf, stem, root 1, and root 2 of I. trifida as
determined by RNA-seq. The log2(FPKM) value is shown in the boxes. (c) Gene expression patterns
of ItbSWEETs in the flower bud, flower, leaf, stem, root 1, and root 2 of I. triloba as determined by
RNA-seq. The log2(FPKM) value is shown in the boxes.

In addition, we used RNA-seq data of six tissues (i.e., flower bud, flower, leaf, stem,
root1, and root2) to study the expression patterns of SWEETs in I. trifida and I. triloba [43]
(Figure 7b,c). In I. trifida, ItfSWEET1.1, -2.1, -7.1, - 9.1, -10.1, -10.3, -10.5, -15.1, and -16.3 were
highly expressed in flowerbuds; ItfSWEET1.1, -1.4, -9.1, -10.2, -10.3, and -15.2 were highly
expressed in flowers; ItfSWEET7.4, -10.2, -10.4, -15.2, and -16.2 were highly expressed in
leaves; and ItfSWEET1.5, -1.6, -2.1, -9.2, -15.1, and -16.1 were highly expressed in stems
(Figure 7b). Almost all the ItfSWEETs had a low expression on levels in root1 and root2,
except ItfSWEET1.6 (16.08-fold in root1). In I. triloba, ItbSWEET1.1, -2.1, -2.2, -6.1, -9.1, and
-15.1 were highly expressed in flowerbuds; ItbSWEET3.1, -5.1, -10.1, -10.2, -10.3, -10.4, -10.5,
and -15.3 were highly expressed in flowers; ItbSWEET1.2, -1.4, -2.1, -6.3, -9.2, -15.2, and -16.2
were highly expressed in leaves; ItbSWEET2.2 and ItbSWEET16.1 were highly expressed in
stems; and ItbSWEET1.3, -8.1, and -16.1 were highly expressed in roots (Figure 7c). These
results showed that SWEETs exhibit different expression patterns and play important roles
in the growth and development of the sweet potato and the two diploids.
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2.6.2. Expression Analysis in Different Developmental Stages

We further performed qRT-PCR to evaluate the expression levels of IbSWEETs in
different developmental stages of sweet potato roots (i.e., at 3 d, 10 d, 20 d, 30 d, 40 d, 50
d, 60 d, 70 d, 80 d, and 90 d) (Figure 8). Notably, most IbSWEETs peaked at 20 d and 50
d, which were the initial development and the rapid expansion stage of tuberous roots,
respectively. These results indicate that IbSWEETs are of vital importance to the growth
and development of tuberous roots in the sweet potato.
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Figure 8. Gene expression patterns of IbSWEETs in different root developmental stages (i.e., at 3 d,
10 d, 20 d, 30 d, 40 d, 50 d, 60 d, 70 d, 80 d, and 90 d) as determined by qRT-PCR. The values were
determined by qRT-PCR from three biological replicates consisting of pools of three plants, and the
results (i.e., at 3 d, 10 d, 20 d, 30 d, 40 d, 50 d, 60 d, 70 d, 80 d, and 90 d) were analyzed using the
comparative CT method. The expression of 3 d was considered as “1”. The fold changes are shown in
the boxes. Different lowercase letters indicate a significant difference of each IbSWEET at p < 0.05
based on Student’s t-test.

2.6.3. Expression Analysis in Different Varieties

We analyzed the expression levels of IbSWEETs in sweet potato varieties with different
flesh colors (white flesh: Jiyuan3 and Shangshu19; yellow flesh: Longshu9 and Yanshu32;
purple flesh: Luozi5 and Qin12-20-11) (Figure 9). Interestingly, the expression levels of
most IbSWEETs in the yellow-fleshed varieties were higher than those in the white- and
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purple-fleshed varieties. This data indicates that IbSWEETs may be involved in carotenoid
accumulation in sweet potato tuberous roots.
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Figure 9. Gene expression patterns of IbSWEETs in different sweet potato varieties with different flesh
colors. The values were determined by qRT-PCR from three biological replicates consisting of pools
of three plants, and the results were analyzed using the comparative CT method. The expression
of IbSWEET6.2 in Qin-12-20-11 was considered as “1”. The fold changes are shown in the boxes.
Different lowercase letters indicate a significant difference of each IbSWEET at p < 0.05 based on
Student’s t-test. Scale bars, 1 cm.

2.6.4. Expression Analysis of Hormone Response

To investigate the potential biological functions of IbSWEETs in the hormone signal
transduction and crosstalk of plants, we investigated the expressions of SWEETs under
various hormonal treatments in order to explore the relationships between SWEETs and
hormones. We performed qRT-PCR to evaluate the expression levels of IbSWEETs in
response to hormones, including ABA, GA, IAA, MeJA, and SA (Figure 10). Under ABA
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treatment, IbSWEET6.3 (10.30-fold), IbSWEET10.4 (3.76-fold), and IbSWEET15.7 (4.59-fold)
were highly induced (Figure 10a). Under GA treatment, all of the IbSWEETs were strongly
induced at 0.5 or 1 h (Figure 10b). Under IAA treatment, most of the IbSWEETs were
repressed, except IbSWEET9.2, -10.5, and -15.2 (Figure 10c). Under MeJA, most of the
IbSWEETs were induced after 24 h. IbSWEET2.1, -2.2, and -2.3 were induced by MeJA at all
of the time points (Figure 10d). Under SA treatment, most of the IbSWEETs were sharply
repressed at 0.5 h but induced at other time points (Figure 10e). These results indicate that
IbSWEETs are differentially expressed in response to various types of hormone induction
and that they participate in the crosstalk between various hormones.
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Figure 10. Gene expression patterns of IbSWEETs in response to different phytohormones ((a) ABA,
(b) GA, (c) IAA, (d) MeJA, and (e) SA) of I. batatas. The values were determined by qRT-PCR from
three biological replicates consisting of pools of three plants, and the results were analyzed using the
comparative CT method. The expression of 0 h in each treatment was considered as “1”. The fold
changes are shown in the boxes. Different lowercase letters indicate a significant difference of each
IbSWEET at p < 0.05 based on Student’s t-test.
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In addition, we analyzed the expression patterns of ItfSWEETs and ItbSWEETs using
the RNA-seq data of I.trifida and I.triloba under ABA, GA, and IAA treatments. In I. trifida,
ItfSWEET1.4, -1.6, -2.1, -7.1, -7.2, -7.4, -10.3, -10.5, 15.1, -15.2, and -16.1 were induced by ABA.
ItfSWEET1.1, -1.3, -7.2, -7.3, -9.1, -10.4, -10.5, and -16.1 were induced by GA3. ItfSWEET1.3,
-3.1, and -15.1 were induced by IAA. ItfSWEET16.1 was induced by all the hormones,
but ItfSWEET9.2 and ItfSWEET10.2 were repressed by all the hormones (Figure 11). In
I.triloba, the ItbSWEETs showed expression patterns that differed from the homologous
gene in I. trifida. ItbSWEET2.2, -5.1, -6.1, and -15.3 were induced by ABA. ItbSWEET1.1, -1.2,
-3.1, -6.1, -8.1, -10.3, -15.1, and -15.3 were induced by GA3. ItbSWEET1.1, -2.1, -8.1, -10.5,
-15.1, and -15.3 were induced by IAA. ItbSWEET15.3 was induced by all the treatments,
but ItbSWEET1.2, -9.2, -10.2, and -16.1 were repressed under all the hormone treatments
(Figure 11). These results indicate that SWEETs are involved in different hormonal pathways
in the sweet potato and its two diploid relatives.
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shown in the boxes.

2.6.5. Expression Analysis under Abiotic Stresses

To explore the possible roles of IbSWEETs in an abiotic stress response, we analyzed
the expression patterns of IbSWEETs using the RNA-seq data of a drought-tolerant variety
(Xu55-2) under drought stress, and the RNA-seq data of a salt-sensitive variety (Lizixiang)
and a salt-tolerant line (ND98) under salt stress [45,46]. IbSWEET2.1, -10.4, -15.1, and -15.7
were induced by both PEG and NaCl treatments in Xu55-2 and ND98 (Figure 12).
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Figure 12. Gene expression patterns of IbSWEETs under drought and salt stresses as determined by
RNA-seq. (a) Expression analysis of IbSWEETs under PEG treatment in a drought-tolerant variety,
i.e., Xu55-2. (b) Expression analysis of IbSWEETs under NaCl treatment in a salt-sensitive variety, i.e.,
Lizixiang, and a salt-tolerant line, i.e., ND98. The log2(FPKM) value is shown in the boxes.

In addition, we also analyzed the expression patterns of SWEETs using the RNA-seq
data of I. trifida and I. triloba under drought and salt treatments [36]. ItfSWEET2.1, -7.4,
-10.3, -10.5, -15.1, -15.2, and -16.2 and ItbSWEET2.2, -5.1, -10.2, -10.4, -15.1, and -15.3 were
induced by both drought and salt treatments (Figure S3). Taken together, these results
indicate that SWEETs are differentially expressed in response to various abiotic stresses in
the sweet potato and its two diploid relatives.

3. Discussion

Sugar transporters are major players in the distribution of photo-assimilates to various
heterotrophic sink organs. SWEETs act as key sugar transporters and play a role in crop
yield and quality formation, especially in tuberous-root crops [1–8]. However, the functions
and transcriptional regulatory mechanisms of SWEETs remain largely unknown in sweet
potato. Tuberous roots are the main tissues harvested from sweet potato, but sweet potato’s
probable progenitor diploids I.trifida and I. triloba cannot form tuberous roots. Due to the
complex genetic background of cultivated sweet potato, recent studies on its gene families
have mainly focused on I.trifida and I. triloba [36,47–49]. In this study, we systematically
identified SWEETs and compared their characteristics between cultivated hexaploidy sweet
potato and its two diploid relatives based on their genome sequences. A genome-wide
study of SWEETs is necessary to gain a better understanding of their functions and the
molecular breeding of sweet potato.
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3.1. Evolution of the SWEET Gene Family in the Sweet Potato and Its Two Diploid Relatives

In this study, a total of 79 SWEETs were identified in sweet potato and its two diploid
relatives. The number of SWEETs identified in I. batatas (27) was the same as that in I. trifida
(27), but there were two fewer in I. triloba (25) (Figure 2; Table S1). Genomic alignment
revealed the differentiation and evolution of chromosomes [50]. The chromosome local-
ization and distribution of the SWEETs in each chromosome differed between I. batatas, I.
trifida, and I. triloba; 11 chromosomes contained SWEET genes in I.batatas and I. triloba, but
10 chromosomes contained SWEET genes in I.trifida (Figure 2). Based on the phylogenetic
relationship, the SWEETs were divided into four subgroups (Group I to IV). There were no
IbSWEETs in Group III (Figure 3). Moreover, the number and type of SWEETs distributed
in each subgroup of the sweet potato and its two diploid relatives were different from
those in Arabidopsis and other plants (Figure 3). These results reveal that the SWEET gene
family might have undergone a lineage-specific differentiation event in the terrestrial plant
genome.

Five conserved motifs were identified in all 79 SWEETs, and all the SWEETs were
found to contain a PQ-loop, indicating that these motifs are evolutionarily conserved
among the sweet potato and its two diploid relatives. In Arabidopsis, four SANT-domain
proteins (SANT1-4) were found to form a complex with HDA6 to regulate flowering [37].
Only ItfSWEET9.1 and ItbSWEET9.1, which were highly expressed in the flower and flower
bud, were found to contain a SANT domain (Figure 4b). Introns usually act as buffer zones
or mutation-resistant fragments that reduce adverse mutations and insertions. Moreover,
introns also play essential roles in mRNA export, transcriptional coupling, alternative
splicing, gene expression regulation, and other biological processes [50,51]. Here, the exon–
intron distributions of some homologous SWEETs were different in I. batatas compared
with those in I. trifida and I. triloba (Figure 4c). For example, in Group I, IbSWEET8.1
contained one intron, but its homologous genes, ItfSWEET8.1 and ItbSWEET8.1, contained
five introns. In Group III, IbSWEET15.1, ItfSWEET15.1, and ItbSWEET15.1 contained six,
four, and six exons, respectively. In the sweet potato and the two diploids, these differences
in the exon–intron structure may result in the different functions carried out by SWEETs in
plant development [52–54].

3.2. Different Functions of SWEETs in Tuberous Root Development in Sweet Potato

In plants, SWEETs have been reported to be involved in root development and as-
similate accumulation. The atsweet11 and atsweet12 double mutants exhibited delayed
root development and severe modifications to the chemical composition of the xylem cell
wall [19]. The knockout of OsSWEET11 significantly decreased the sucrose concentration
in mutant embryo sacs and led to defective grain filling [27,55]. For the sweet potato, the
formation and development of tuberous roots is critical to the roots’ yield and quality.
Storage-root formation has been considered to be a process of assimilate accumulation [56].
As major transporters governing long-distance transport and sugar accumulation in sink
cells, SWEETs may play vital roles in tuberous root development in the sweet potato [12,57].
In this study, most IbSWEETs peaked during the initial development stage (20 d) and the
rapid expansion stage (50 d) of the tuberous roots, respectively (Figure 8). These results
indicate that IbSWEETs may participate in tuberous root formation by regulating assimilate
accumulation in sweet potato.

The flesh color of the tuberous root is one of the most important quality characteristics
of the sweet potato. Most of the IbSWEETs were highly expressed in the yellow-fleshed va-
rieties, which are rich in carotenoids (Figure 9). Carotenoids are derived from two isoprene
isomers, isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate
(DMAPP). IPP and DMAPP come from the Calvin–Benson cycle by fixed carbon [58,59].
Additionally, SWEETs’ transport of sucrose is a key step for fixed-carbon transport in the
phloem; thus, they may provide a sufficient precursor substance for carotenoid production
in the sweet potato [11,60,61]. These data indicate that IbSWEETs may be involved in
carotenoid accumulation in sweet potato tuberous roots by transporting photo-assimilates.
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However, further study is required to underlie the regulatory mechanisms of SWEETs on
tuberous root development and carotenoids accumulation.

3.3. Different Functions of SWEETs in Hormone Crosstalk in the Sweet Potato and Its Two
Diploid Relatives

SWEETs have been reported to participate in the regulation of multiple hormones. The
interaction between SWEETs and CWINV (cell wall invertase), which encodes an enzyme
that catalyzes the hydrolysis of sucrose into glucose and fructose, may lead to the loss
of apical dominance and the appearance of multiple shoots under cytokinins [62]. The
atsweet13 and atsweet14 double mutant line showed function loss in transporting exogenous
GA [24–26]. OsSWEET13a was found to be involved in the transport of GA to young leaves
during the early developmental stage [24]. The overexpression of OsSWEET5 inhibited
auxin concentration, signaling, and translocation in rice [25]. In this study, each IbSWEET
gene could be induced by at least two hormones. IbSWEET2.1, which contained an ABA-
responsive element (i.e., ABRE, and an SA-responsive element, or the TCA motif), was
induced by ABA, GA, and MeJA but repressed by IAA and SA. However, ItbSWEET2.1
was induced by IAA, and there was no significant change in ItfSWEET2.1 under IAA
treatment. IbSWEET8.1, which contained a TCA motif, was induced by GA, MeJA, and SA
but repressed by ABA and IAA treatments (Figure 10). However, ItbSWEET8.1 was induced
by IAA. IbSWEET15.5, which contained a GA-responsive element (i.e., the TATC-box, and
JA-responsive elements, or a TGACG motif, an ABRE, and a TCA motif), was significantly
induced by GA and SA. IbSWEET15.3, which contained a TGACG motif and an ABRE
was repressed under ABA treatment, but ItbSWEET15.3 was induced by ABA, GA, and
IAA. ItbSWEET16.1 was repressed under ABA treatment, but ItfSWEET16.1 was induced
by ABA (Figure 11). These results indicate that SWEETs are involved in the crosstalk of
multiple hormones and that homologous SWEET genes participate in different hormone
pathways in sweet potato and its two diploid relatives (Tables S2 and S3). However, the
roles of SWEETs in the regulation of hormone crosstalk still need further investigation.

3.4. Different Functions of SWEETs in Abiotic Stress Response in the Sweet Potato and Its Two
Diploid Relatives

SWEETs have been reported to participate in the abiotic stress response in plants.
In grapes, VvSWEET11 and VvSWEET15 were found to be significantly induced by heat
treatment [63]. In Arabidopsis, AtSWEET15 was highly expressed under cold and salinity
treatments [64]. Here, SWEETs were differentially expressed in response to various abiotic
stresses in the sweet potato and its two diploid relatives. In the sweet potato, IbSWEET2.1,
-10.4, -15.1, and -15.7 were induced by both PEG and NaCl treatments in Xu55-2 and
ND98 (Figure 12). Moreover, the diploids I. trifida and I. triloba could be used to discover
functional genes, particularly genes conferring resistance or tolerance to biotic and abiotic
stress, which were possibly lost in the cultivated sweet potato during its domestication [57].
In the two diploid relatives, ItfSWEET2.1, -7.4, -10.3, -10.5, -15.1, -15.2, and -16.2 and
ItbSWEET2.2, -5.1, -10.2, -10.4, -15.1, and -15.3 were induced by both drought and salt
treatments (Figure S3). These SWEETs may serve as candidate genes for use in improving
abiotic stress tolerance in sweet potato.

4. Materials and Methods
4.1. Identification of SWEETs

The whole-genome sequences of I. batatas, I. trifida, and I. triloba were downloaded
from the Ipomoea Genome Hub (https://ipomoea-genome.org/, accessed on 26 July 2022)
and the Sweetpotato Genomics Resource (http://sweetpotato.plantbiology.msu.edu/, ac-
cessed on 26 July 2022). To accurately identify all the SWEET family members, three
different screening methods were combined. First, the BLAST algorithm was used to
identify the predicted SWEETs using all the AtSWEETs from the Arabidopsis genome
database (https://www.arabidopsis.org/, accessed on 27 July 2022) as queries (BLASTP,
E value ≤ 1 × 10−5). Next, the HMMER 3.0 software was used to identify potential

https://ipomoea-genome.org/
http://sweetpotato.plantbiology.msu.edu/
https://www.arabidopsis.org/
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SWEETs through the Hidden Markov Model profiles (hmmsearch, E value ≤ 1 × 10−5)
of the PQ-loop domain (pfam04193), which were extracted from the Pfam databases
(http://pfam.xfam.org/, accessed on 27 July 2022). Finally, all the putative SWEETs were
ensured using SMART (http://smart.embl-heidelberg.de/, accessed on 27 July 2022) and
CD-search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 27 July
2022).

4.2. Chromosomal Distribution of SWEETs

The IbSWEETs, ItfSWEETs, and ItbSWEETs were separately mapped to the I. batatas,
I. trifida, and I. triloba chromosomes, respectively, based on the chromosomal locations
provided in the Ipomoea Genome Hub (https://ipomoea-genome.org/, accessed on 2
August 2022) and Sweetpotato Genomics Resource (http://sweetpotato.plantbiology.msu.
edu/, accessed on 2 August 2022). The visualization was generated using the TBtools
software (v.1.098696) (South China Agricultural University, Guangzhou, China) [65].

4.3. Protein Properties Prediction of SWEETs

The MW, theoretical pI, unstable index, and hydrophilic of the SWEETs were calculated
using ExPASy (https://www.expasy.org/, accessed on 4 August 2022). The phosphoryla-
tion sites of the SWEETs were predicted using GPS 5.0 [66]. The subcellular localization
of the SWEETs was predicted using Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/
plant-multi/, accessed on 4 August 2022). The TMHs of the SWEETs were predicted using
TMHMM-2.0 (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0, accessed on
4 August 2022). The 3D structural model of the SWEETs was built using SWISS-MODEL
(https://swissmodel.expasy.org/, accessed on 4 August 2022) [67]

4.4. Phylogenetic Analysis of SWEETs

Multiple sequence alignment of the deduced amino acid sequences of the SWEETs
from I. batatas, I. trifida, I. triloba, Arabidopsis, Zea mays, and Oryza sativa were aligned with
Clustal X, and the alignment was imported into MEGA11 to create a phylogenetic tree
using the neighbor-joining method with 1000 bootstrap replicates (www.megasoftware.net,
accessed on 3 December 2022) [68]. Then, the phylogenetic tree was constructed using iTOL
(http://itol.embl.de/, accessed on 3 December 2022).

4.5. Domain Identification and Conserved Motif Analysis of SWEETs

The conserved motifs of the SWEETs were analyzed using MEME software (https:
//meme-suite.org/meme/, accessed on 5 August 2022). The MEME parameters were
set to search for a maximum of 15 motifs with a motif width comprised between 5 and
50 residues [69].

4.6. Exon–Intron Structures and Promoter Analysis of SWEETs

The exon–intron structures of the SWEETs were obtained from GSDS 2.0 (http://gsds.
gao-lab.org/, accessed on 6 August 2022) and were visualized using the TBtools software.
The cis-elements in the approximately 1500 bp promoter region of the SWEETs were pre-
dicted using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 6 August 2022) [70].

4.7. Protein Interaction Network of SWEETs

The protein interaction networks of the SWEETs were predicted using STRING (https:
//cn.string-db.org/, accessed on 7 August 2022) based on Arabidopsis homologous proteins.
The network map was built using Cytoscape software [71].

4.8. qRT-PCR Analysis of SWEETs

The salt-tolerant sweet potato (I. batatas) line ND98 was used for qRT-PCR analysis in
this study [45]. In vitro grown ND98 plants were cultured on Murashige and Skoog (MS)
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medium at 27 ± 1 ◦C under a photoperiod consisting of 13 h of cool-white fluorescent light
at 54 µmol m−2 s−1 and 11 h of darkness. The sweet potato plants were cultivated in a field
in the campus of China Agricultural University, Beijing, China.

For expression analysis in various tissues, the total RNA was extracted from the buds,
leaves, petioles, stems, pencil roots, and tuberous root tissues of 3-month-old field-grown
ND98 plants; the different development stage of the tuberous root tissues of Y25 (3 d,
10 d, 20 d, 30 d, 40 d, 50 d, 60 d, 70 d, 80 d, and 90 d) and the tuberous root tissues of
different field-grown plants at 90 d (Jiyuan3, Shangshu19, Longshu9, Yanshu32, Luozi5,
and Qin12-20-11) were analyzed using the TRIzol method (Invitrogen). For the expression
analysis of the hormone treatment, the leaves were sampled at 0, 0.5, 1, 3, 6, 12, 24, and
48 h after being treated with 100 µM ABA, 100 µM GA, 100 µM IAA, 100 µM MeJA, and
100 µM SA, respectively. Three independent biological replicates were taken, each with
three plants. qRT-PCR was conducted using the SYBR detection protocol (TaKaRa, Kyoto,
Japan) on a 7500 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). The
reaction mixture was composed of first-strand cDNA, a primer mix, and an SYBR Green
M Mix (TaKaRa; code RR420A) with a final volume of 20 µL. A sweet potato actin gene
(GenBank AY905538) was used as an internal control. The relative gene expression levels
were quantified using the comparative CT method [72]. The specific primers used for the
qRT-PCR analysis are listed in Table S4. The heat maps of the gene expression profiles were
constructed using the TBtools software (v.1.098696) [65].

4.9. Transcriptome Analysis

The RNA-seq data of ItfSWEETs and ItbSWEETs in I. trifida and I. triloba were down-
loaded from the Sweetpotato Genomics Resource (http://sweetpotato.plantbiology.msu.
edu/, accessed on 10 August 2022). The RNA-seq data of IbSWEETs in I. batatas were
obtained from the NCBI SRA repository under the accession number SRP092215 [45,46].
The expression levels of the SWEETs were calculated as fragments per kilobase of exon
per million fragments mapped (FPKM). The heat maps were constructed using the Tbtools
software (v.1.098696) [65].

5. Conclusions

In this study, we identified and characterized 27, 27, and 25 SWEETs in cultivated
hexaploidy sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives, I. trifida
(2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, based on genome and transcriptome
data. The protein physicochemical properties, chromosome localization, phylogenetic
relationships, gene structures, promoter cis-elements, and protein interaction networks of
these 79 SWEETs were systematically investigated. Moreover, the tissue specificity and
expression patterns of the SWEETs in tuberous root development, hormone responses, and
abiotic stress responses were analyzed using qRT-PCR and RNA-seq. The results indicated
that there was a differentiation in the functions of homologous SWEETs in the sweet potato
and its two diploid relatives, and each SWEET gene played different vital roles in the plants’
growth and development, carotenoid accumulation, hormone crosstalk, and abiotic stress
response. This study provides valuable insights into the structure and function of SWEET
genes in the sweet potato and its two diploid relatives.
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