

Article Susceptibility of Human Plasma N-glycome to Low-Calorie and Different Weight-Maintenance Diets

Helena Deriš¹, Petra Tominac¹, Frano Vučković¹, Arne Astrup², Ellen E. Blaak³, Gordan Lauc^{1,4} and Ivan Gudelj^{1,5,*}

- ¹ Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- ² Department of Nutrition, Exercise and Sports, University of Copenhagen, DK 2200 Copenhagen, Denmark
- ³ Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
- ⁴ Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- ⁵ Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- * Correspondence: ivan.gudelj@uniri.hr

Abstract: Aberrant plasma protein glycosylation is associated with a wide range of diseases, including diabetes, cardiovascular, and immunological disorders. To investigate plasma protein glycosylation alterations due to weight loss and successive weight-maintenance diets, 1850 glycomes from participants of the Diogenes study were analyzed using Ultra-High-Performance Liquid Chromatography (UHPLC). The Diogenes study is a large dietary intervention study in which participants were subjected to a low-calorie diet (LCD) followed by one of five different weight-maintenance diets in a period of 6 months. The most notable alterations of the plasma glycome were 8 weeks after the subjects engaged in the LCD; a significant increase in low-branched glycan structures, accompanied by a decrease in high-branched glycan structures. After the LCD period, there was also a significant rise in N-glycan structures with antennary fucose. Interestingly, we did not observe significant changes between different diets, and almost all effects we observed immediately after the LCD period were annulled during the weight-maintenance diets period.

Keywords: plasma N-glycans; weight loss; low-calorie diet; obesity

1. Introduction

According to the World Health Organization, in 2016 almost 40% of adults were overweight (BMI $\geq 25 \text{ kg/m}^2$) and around 13% of the world's adult population were obese (BMI $\geq 30 \text{ kg/m}^2$), and these numbers only seem to be increasing worldwide [1]. Being overweight or obese poses a serious threat to common health since it adversely affects nearly all physiological functions of the body. Global BMI Mortality Collaboration analyzed data from 10.6 million adults enrolled in 239 prospective studies from thirty-two countries worldwide and showed that mortality was lowest in the BMI range from 20.0 kg/m² to 25.0 kg/m². Both overweight and obesity are associated with increased all-cause mortality [2]. Having a higher BMI augments the risk of developing a variety of diseases, cardiovascular diseases [3,4], diabetes mellitus [5,6], and several types of cancer [7], as well as depression [8]. Thus, weight loss interventions and healthy weight maintenance are important for the prevention and treatment of overweight/obesity to abate the risk of developing BMI-related health complications.

Despite weight loss in overweight or obese individuals was shown to reduce the risk of all-cause mortality [9], risk of CVD complications [10], and incidence of type 2 diabetes [11] even in a 10-year follow-up [12], one study suggested that weight loss differently affects people with T2D and those differences were BMI-dependent [13]. The amount of weight loss, as well as the timing of weight loss in the course of the disease, may differentially affect the risk of CVD and mortality [13]. Thus, studies of the weight loss impact on cancer,

Citation: Deriš, H.; Tominac, P.; Vučković, F.; Astrup, A.; Blaak, E.E.; Lauc, G.; Gudelj, I. Susceptibility of Human Plasma N-glycome to Low-Calorie and Different Weight-Maintenance Diets. *Int. J. Mol. Sci.* 2022, *23*, 15772. https://doi.org/ 10.3390/ijms232415772

Academic Editor: Didier F. Pisani

Received: 17 October 2022 Accepted: 8 December 2022 Published: 12 December 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). T2D, and CVD morbidity and mortality may have inconclusive or contradictory results. The reason behind it might be due to common weight regain that follows the initial weight loss, which usually happens in the first year after T2D or CVD diagnosis [13]. Once the targeted weight loss is achieved, maintaining that weight is often even harder than the weight loss itself. Therefore, maintaining the preferable weight is also important as it was shown that major weight variability was associated with an increased risk of mortality and cardiovascular outcomes in overweight and obese patients with diabetes [14].

Long-term weight maintenance is often hard to achieve; around 20% of people in the general population are successful at long-term weight maintenance [15], with long-term weight maintenance being defined as "intentionally loosing at least 10% of one's body weight and keeping it off at least one year" [16]. Long-term weight control is challenging because of the interactions between our biology, psychology, and the obesogenic environment [17]. The most common weight loss strategies have often been used for weight management as well, and rely primarily on maintaining behavioral changes that involve more internal forms of motivation, active self-regulation, and constraints including resources and environmental factors [18]. Very few people consistently maintain that kind of lifestyle throughout their adulthood. Instead, most people go through repeated cycles of ad libitum dieting and calorie restrictive dieting, the so-called yo-yo diet, with very welldocumented adverse effects [19–21]. For these reasons, more and more research into weight maintenance and related cardiometabolic health tend to investigate the individual impact of diet composition by studying different molecular processes such as post-translational modifications (PTMs). One of the most common PTMs is N-glycosylation. N-glycosylation is a co- and post-translational modification of proteins in which carbohydrate moieties are attached to an asparagine residue of a polypeptide backbone. It is considered one of the most diverse modifications as there are numerous possible N-glycan structures, despite glycan biosynthesis not being template-driven [22]. It is dependent on expression, activity, and turnover of many enzymes, as well as the availability of sugar donors, all of which results in a multitude of possible N-glycan structures that are found on different glycoproteins [23]. Plasma N-glycans are rather stable in healthy individuals over time [24,25], but they reflect physiological [26,27], pathological [28–32], or lifestyle [26] changes within a person, since glycosylation influences stability and physical properties of proteins. Protein glycosylation is involved in various biological processes such as receptor interaction, immune response, and protein secretion and transport [33]. Studying plasma proteins' glycosylation may offer a wealth of information, although sometimes it may be hard to tell whether certain N-glycan changes are the result of the protein-specific changes in glycan composition or alterations in abundances of individual proteins with characteristic glycans [33]. Overall levels of the sialyl Lewis X epitope of plasma proteins were found to be increased in chronic and acute inflammation [34], increased galactosylation, sialylation, and branching were associated with higher risk of type 2 diabetes [35] and insulin resistance [36]. Levels of plasma protein antennary fucosylation are being investigated as a potential biomarker for differentiation of maturity onset diabetes of the young (MODY) [37,38]. Decreased sialylation and galactosylation of IgG have been reported in type 2 diabetes and hypertension, while increased IgG core fucosylation has also been associated with hypertension. On the other hand, the occurrence of bisecting IgG glycan structures was decreased in hypertension and increased in T2D [39]. One study showed that an increase in the non-galactosylated and a decrease in digalactosylated plasma N-glycans as well as an increase in sialylation of biantennary structures are associated with increased body fat and blood pressure [26]. Moreover, when looking at immunoglobulin G N-glycans, a negative association between BMI and the level of neutral glycans with two terminal galactoses was found suggesting that BMI can be responsible for up to 3.2% of variation in this glycan feature [40]. Therefore, it comes as no surprise that protein N-glycosylation changes reflect changes in diet, weight, and BMI [41,42].

Given the importance of glycosylation and its susceptibility to reflect (patho)physiological changes in an individual, we conducted the analysis of 1850 total plasma proteins' N-glycomes from participants of the Diogenes study. The Diogenes study is a randomized, controlled dietary intervention study conducted in eight European centers: Maastricht (Netherlands), Copenhagen (Denmark), Cambridge (UK), Heraklion (Greece), Potsdam (Germany), Pamplona (Spain), Sofia (Bulgaria), and Prague (the Czech Republic). The study participants were subjected to an eight-week low-calorie diet (LCD) followed by one of five weight-maintenance diets (low protein (LP)/low glycemic index (LGI), low protein (LP)/high glycemic index (HGI), high protein (HP)/LGI, HP/HGI and control) in a period of six months when the participants were at risk of regaining the formerly lost weight.

2. Results

N-glycome composition of subjects' plasma samples was determined by UHPLC analysis of glycans labelled with 2-aminobenzamide as described in the Section 4. Statistical analysis was performed on 16 glycan-derived traits calculated from 39 directly measured glycan structures, corresponding to 39 glycan peaks obtained by UHPLC analysis (Figure S1).

The statistical analysis was first performed on the rank transformed glycan variables for each Diogenes research center independently (Figure S2). Subsequently, meta-analysis was performed for all centers of the Diogenes study for the first period, T1–T2 (Figure 1), and the second period of the study, T2–T3 (Figure 2).

Eleven out of sixteen derived glycan traits showed statistically significant variations in their levels in the first time period (Figure 3, Table 1) while in the second time period only six of them remained statistically significant (Figure 2, Table 2) after adjustment for multiple testing (adjusted p value < 0.05).

Table 1. Changes in plasma N-glycome composition in the first time period (T1–T2) after metaanalysis. Eleven out of sixteen derived glycan traits showed statistically significant changes in their levels after subjects spent 8 weeks on the low-calorie diet (adjusted *p*-value < 0.05). AF—total glycans with antennary fucose; LB—total low branching glycans; HB—total high branching glycans; S0—total neutral glycans; S1—total monosialylated glycans; S2—total disialylated glycans; S3—total trisialylated glycans; S4—total tetrasialylated glycans; G0—total agalactosylated glycans; G1—total monogalactosylated glycans; G2—total digalactosylated glycans; G3—total trigalactosylated glycans; G4—total tetragalactosylated glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans with core fucose.


Glycan	Effect	Standard Error	p Value	Adjusted <i>p</i> Value
AF total	0.34665	0.03467	1.54×10^{-23}	$4.93 imes 10^{-22}$
LB total	0.33330	0.03409	$1.41 imes 10^{-22}$	$2.26 imes10^{-21}$
G3 total	-0.39682	0.04733	$5.12 imes 10^{-17}$	$4.10 imes 10^{-16}$
HB total	-0.28782	0.03800	$3.63 imes10^{-14}$	$2.32 imes 10^{-13}$
S3 total	-0.29167	0.03965	$1.89 imes 10^{-13}$	$1.01 imes 10^{-12}$
HM total	-0.20367	0.03733	$4.86 imes10^{-8}$	$2.22 imes10^{-7}$
S4 total	0.21731	0.04171	$1.88 imes 10^{-7}$	$7.54 imes10^{-7}$
G4 total	0.20656	0.04120	$5.34 imes10^{-7}$	$1.90 imes10^{-6}$
G2 total	0.18442	0.04181	$1.03 imes 10^{-5}$	$3.29 imes 10^{-5}$
B total	0.11955	0.03034	$8.13 imes10^{-5}$	$2.36 imes10^{-4}$
CF total	0.11460	0.04003	0.00419	0.00959
G1 total	0.09387	0.04375	0.03190	0.05373
S0 total	0.08067	0.04394	0.06639	0.09657
S1 total	0.02901	0.03133	0.35451	0.45377
S2 total	0.01949	0.04570	0.66983	0.71448
G0 total	0.01454	0.03687	0.69331	0.71567

LB T1-T2 Center Effect SE		95%-CI Weight	G1 T1–T2 Center	Effect SE		95%-Cl Weight
Maastricht, UM 0.33 0.0860 Copenhagen, RVAU 0.39 0.0767 Cambridge, NNR 0.52 0.1055 Heraklion, UoC 0.36 0.0887 Potsdam, POT 0.12 0.945 Pampliona, UNAV 0.33 0.0993	-#- -#- -#- -#-	0.33 [0.16; 0.50] 13.7% 0.39 [0.24; 0.54] 16.6% 0.52 [0.31; 0.73] 9.5% 0.36 [0.19; 0.54] 12.9% 0.12 [-0.06; 0.31] 11.6% 0.33 [0.13; 0.52] 10.6%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV	0.10 0.1026 0.09 0.1069 0.22 0.1428 0.13 0.1327 -0.06 0.1276 0.21 0.1373		0.10 [-0.10; 0.31] 18.2% 0.09 [-0.12; 0.30] 16.7% - 0.22 [-0.06; 0.50] 9.4% 0.13 [-0.13; 0.39] 10.9% -0.06 [-0.31; 0.19] 11.8% 0.21 [-0.06; 0.48] 10.2%
Sofia, NMTI 0.24 0.0941 Prague, CU 0.38 0.0869 Random effects model Haterogeneity: l ² = 30%, c ² = 0.0011		0.24 [0.06; 0.43] 11.7% 0.38 [0.21; 0.55] 13.4% 0.33 [0.27; 0.40] 100.0%	Sofia, NMTI Prague, CU Random effects mode Heterogeneity: / ² = 0%, 1	-0.01 0.1281 0.10 0.1306		-0.01 [-0.26; 0.25] 11.7% 0.10 [-0.15; 0.36] 11.2% 0.09 [0.01; 0.18] 100.0%
HB T1-T2	-0.6 -0.2 0 0.2 0.4 0.6		G2 T1-T2	- 0	-0.4 -0.2 0 0.2 0.4	
Center Effect SE Maastricht, UM -0.20 0.0889		95%-Cl Weight -0.20 [-0.38; -0.03] 12.0%	Center Maastricht, UM	0.18 0.1051	<u> </u>	95%-Cl Weight 0.18 [-0.02; 0.39] 15.8%
Copenhagen, RVAU -0.33 0.0714 Cambridge, HINR -0.51 0.1016 Heraklion, LuCc -0.33 0.0877 Potsdam, POT -0.06 0.0834 Pamplona, UNAV -0.27 0.0916 Sofia, NMTI -0.24 0.0817 Prague, CU -0.34 0.0717		$\begin{array}{cccc} -0.33 & [-0.47; -0.19] & 15.7\% \\ -0.51 & [-0.71; -0.31] & 10.0\% \\ -0.33 & [-0.51; -0.16] & 12.2\% \\ -0.06 & [-0.24; 0.12] & 11.3\% \\ -0.27 & [-0.45; -0.09] & 11.6\% \\ -0.24 & [-0.42; -0.06] & 11.5\% \\ -0.34 & [-0.48; -0.20] & 15.6\% \\ \end{array}$	Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pampiona, UNAV Sofia, NMTI Prague, CU	0.19 0.1072 0.22 0.1459 0.24 0.1428 0.20 0.1292 0.07 0.1301 0.16 0.1111 0.21 0.1007		$\begin{array}{c} 0.19 \begin{bmatrix} -0.02; 0.40 \end{bmatrix} & 15.2\% \\ -0.22 \begin{bmatrix} -0.07; 0.51 \end{bmatrix} & 8.2\% \\ 0.24 \begin{bmatrix} -0.04; 0.52 \end{bmatrix} & 8.6\% \\ 0.20 \begin{bmatrix} -0.05; 0.46 \end{bmatrix} & 10.5\% \\ 0.07 \begin{bmatrix} -0.19; 0.32 \end{bmatrix} & 10.3\% \\ 0.16 \begin{bmatrix} -0.05; 0.38 \end{bmatrix} & 14.2\% \\ 0.21 \end{bmatrix} \\ \begin{array}{c} 0.01; 0.41 \end{bmatrix} & 17.2\% \end{array}$
Random effects model Heterogeneity: $f^2 = 47\%$, $\tau^2 = 0.0041$	-0.6-0.4-0.2 0 0.2 0.4 0.6	-0.29 [-0.36; -0.21] 100.0%	Random effects mode Heterogeneity: $J^2 = 0\%$, τ	el t ² = 0	-0.4 -0.2 0 0.2 0.4	0.18 [0.10; 0.27] 100.0%
S0 T1-T2 Center Effect SE	-0.0-0.4-0.2 0 0.2 0.4 0.0	95%-CI Weight	G3 T1-T2 Center	Effect SE	-0.4 -0.2 0 0.2 0.4	95%-CI Weight
Maastricht, UM 0.07 0.1023	-1-	0.07 [-0.13; 0.27] 18.5%	Maastricht, UM	-0.31 0.0816	_===	-0.31 [-0.47; -0.15] 12.5%
Copenhagen, RVAU 0.09 0.1065 Cambridge, HNR 0.20 0.1141 Heraklion, UoC 0.12 0.1344 Potsdam, POT -0.06 0.1251 Pamplona, UNAV 0.19 0.1430 Sofia, NMT -0.00 0.1271 Prague, CU 0.11 0.1331		$\begin{array}{ccccc} 0.09 & [-0.12; 0.29] & 17.0\% \\ 0.20 & [-0.08; 0.48] & 9.3\% \\ 0.12 & [-0.14; 0.38] & 10.7\% \\ -0.06 & [-0.31; 0.18] & 12.3\% \\ 0.19 & [-0.09; 0.47] & 9.4\% \\ -0.00 & [-0.25; 0.25] & 11.8\% \\ 0.11 & [-0.15; 0.37] & 10.9\% \end{array}$	Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	-0.47 0.0666 -0.62 0.0918 -0.49 0.0825 -0.13 0.0911 -0.37 0.0817 -0.29 0.0870 -0.48 0.0717	* * * * *	$\begin{array}{cccc} -0.47 & [-0.60], -0.34] & 14.3\% \\ -0.62 & [-0.80], -0.44] & 11.4\% \\ -0.49 & [-0.65], -0.32] & 12.4\% \\ -0.13 & [-0.31], 0.05] & 11.5\% \\ -0.37 & [-0.53], -0.21] & 12.5\% \\ -0.29 & [-0.46], -0.12] & 11.9\% \\ -0.48 & [-0.62], -0.34] & 13.6\% \end{array}$
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	-0.4 -0.2 0 0.2 0.4	0.08 [-0.01; 0.17] 100.0%	Random effects model Heterogeneity: $l^2 = 67\%$, t^2	2 = 0.0113	-0.5 0 0.5	-0.40 [-0.49; -0.30] 100.0%
S1 T1-T2 Center Effect SE	-0.4 -0.2 0 0.2 0.4	95%-CI Weight	G4 T1–T2 Center	Effect SE	-0.5 0 0.5	95%-CI Weight
Maastricht, UM -0.02 0.0933 Copenhagen, RVAU -0.01 0.0782		-0.02 [-0.20; 0.16] 11.3% -0.01 [-0.16; 0.14] 16.1%	Maastricht, UM Copenhagen, RVAU	0.33 0.1041 0.26 0.0992		0.33 [0.12; 0.53] 15.7% 0.26 [0.07; 0.46] 17.3%
Cambridge, HNR 0.11 0.1051 Heraklion, UoC 0.14 0.0860 Potsdam, POT -0.02 0.0920		0.11 [-0.09; 0.32] 8.9% 0.14 [-0.03; 0.31] 13.3% -0.02 [-0.20; 0.16] 11.6%	Cambridge, HNR Heraklion, UoC Potsdam, POT	0.19 0.1468 0.11 0.1111 0.26 0.1197		0.19 [-0.10; 0.48] 7.9% 0.11 [-0.11; 0.33] 13.8% 0.26 [0.03; 0.49] 11.8%
Pamplona, UNAV 0.00 0.0970 Sofia, NMTI -0.01 0.0858 Prague, CU 0.06 0.0805		0.00 [-0.19; 0.19] 10.4% -0.01 [-0.18; 0.15] 13.3% 0.06 [-0.10; 0.22] 15.1%	Pamplona, UNAV Sofia, NMTI Prague, CU	0.16 0.1383 -0.00 0.1344 0.23 0.1053		0.16 [-0.11; 0.43] 8.9% -0.00 [-0.27; 0.26] 9.4% 0.23 [0.02; 0.43] 15.3%
Random effects model Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$		0.03 [-0.03; 0.09] 100.0%	Random effects mode Heterogeneity: I ² = 0%, τ ²	4		0.21 [0.13; 0.29] 100.0%
	0.3-0.2-0.1 0 0.1 0.2 0.3	1	HM T1-T2		-0.4 -0.2 0 0.2 0.4	
Center Effect SE Maastricht, UM 0.06 0,1076	1.00	95%-Cl Weight	Center Maastricht, UM	Effect SE	w. 5. 1	95%-Cl Weight
Copenhagen, RVAU 0.02 0.1120 Cambridge, HNR -0.06 0.1520		0.02 [-0.19; 0.24] 16.6% -0.06 [-0.36; 0.24] 9.0%	Copenhagen, RVAU Cambridge, HNR	-0.22 0.0962 -0.11 0.1241		-0.22 [-0.40; -0.03] 15.0% -0.11 [-0.35; 0.13] 9.0%
Heraklion, UoC -0.02 0.1379 Potsdam, POT 0.14 0.1302 Pamplona, UNAV -0.10 0.1403		-0.02 [-0.29; 0.25] 11.0% 0.14 [-0.11; 0.40] 12.3% -0.10 [-0.38; 0.17] 10.6%	Heraklion, UoC Potsdam, POT Pamplona, UNAV	-0.14 0.1070 -0.20 0.1124 -0.22 0.1008		-0.14 [-0.35; 0.07] 12.2% -0.20 [-0.42; 0.02] 11.0% -0.22 [-0.42; -0.02] 13.7%
Sofia, NMTI 0.05 0.1326 Prague, CU -0.01 0.1412						
		0.05 [-0.21; 0.31] 11.9% -0.01 [-0.28; 0.27] 10.5%	Sofia, NMTI Prague, CU	-0.02 0.1095 -0.30 0.1092 -		-0.02 [-0.23; 0.20] 11.6% -0.30 [-0.52; -0.09] 11.7%
Random effects model Heterogeneity: $r^2 = 0\%$, $\tau^2 = 0$	-0.2 0 0.2			-0.30 0.1092 -	-0.4 -0.2 0 0.2 0.4	-0.02 [-0.23; 0.20] 11.6%
Random effects model	-0.2 0 0.2	-0.01 [-0.28; 0.27] 10.5%	Prague, CU Random effects model	-0.30 0.1092 -	-0.4 -0.2 0 0.2 0.4	-0.02 [-0.23; 0.20] 11.6% -0.30 [-0.52; -0.09] 11.7%
Bandom effects model Heterogeneity: P = 0%, C = 0 S3 T1−T2 Center Effect SE Maastricht, UM -0.21 0.0902 -0.25 0.0740		-0.01 [-0.28] 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-Cl Weight -0.21 [-0.39; -0.04] 12.1% -0.35 [-0.49] -0.20] 15.3%	Prague, CU Random effects model Heterogeneity: I ² = 2%, t ² B T1-T2 Center Maastricht, UM Copenhagen, RVAU	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.11 0.0757	-0.4 -0.2 0 0.2 0.4	-0.02 [-0.23; 0.20] 11.6% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-C1 Weight 0.14 [0.00; 0.28] 15.7% 0.11 [-0.03; 0.26] 14.3%
Random effects model Heterogeneity: /* = 0%, ** = 0 S3 T1-T2 Center Effect SE Mastricht, UM Corpentagor, RVAU -0.25 0.0740 Corpentagor, RVAU -0.35 0.0740 HTME Heterogeneity: -0.49 0.1049		-0.01 [-0.28] 0.27] 10.5% 0.02 [-0.07] 0.11] 100.0% 95%-Cl Weight -0.21 [-0.38] -0.04] 12.1% -0.35 [-0.49] -0.20] 15.3% -0.49 [-0.68] -0.21] 12.2%	Prague, CU Random effects model Heterogeneity: I ² = 2%, ₹ B T1–T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.11 0.0757 0.25 0.0822 0.20 0.0873		-0.02 [-0.23; 0.20] 11.5% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-Cl Weight 0.14 [0.00; 0.28] 15.7% 0.11 [-0.03; 0.26] 14.3% -0.25 [0.09; 0.41] 12.3% 0.20 [0.03; 0.37] 11.0%
Bandom effects model Heterogeneity: f² = 0%, t² = 0 S3 T1 - T2 Center Effect SE Masstricht, UM -0.21 0.0902 Comprise Copenhagen, RVAU -0.35 0.740 Comprise Copenhagen, RVAU -0.35 0.700 Copenhagen, RVAU -0.35 Copenhagen, RVAU -0.26 0.905 Persdam, POT -0.07 -0.26 0.0931 Sofia, MTI -0.26 0.0932	-#- -#- -#- -#-	-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.35 [-0.49; -0.20] 16.3% -0.39 [-0.56; -0.21] 12.2% -0.39 [-0.56; -0.21] 12.2% -0.39 [-0.56] 12.1% -0.28 [-0.44; -0.09] 12.1%	Prague, CU Random effects model Heterogeneity: $r^2 = 2\%, \vec{x}$ B T1-T2 Conter Maastricht, UM Coponhagen, RVAU Cambridge, NNR Heraklion, UGC Potsdam, POT Pampiona, UNAV Sofia, MNT	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.15 0.0823 -0.06 0.0940 0.090 0.0728		-0.02 [-0.23; 0.20] 11.6% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-Cl Weight 0.14 [0.00; 0.28] 15.7% 0.11 [-0.03; 0.26] 14.2% -0.25 [0.09; 0.41] 12.3% 0.20 [0.03; 0.37] 11.0% -0.06 [-0.25; 0.21] 8.6% 0.09 [-0.05; 0.21] 8.5%
Random effects model Heterogeneity: f = 0%, f = 0 S3 T1-T2 Center Effect SE Aaastricht, UM -0.21 Oppontagen, RVAU -0.35 Order Corports Copontagen, RVAU -0.21 Outpot Oppot -0.39 Oppot Paraptica, UNAV -0.21 Prague, CU -0.38 Prague, CU -0.36 0.0749 Random effects model		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-Cl Weight -0.21 [-0.39; -0.04] 12.1% -0.35 [-0.49; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.48; -0.09] 11.1% -0.28 [-0.44; -0.09] 11.1% -0.28 [-0.44; -0.09] 11.1%	Prague, CU Random effects model Heterogeneity: ℓ [*] = 2%, ₹ B T1-T2 Center Maastricht, UM Coponhagen, RVAU Cambridge, HNR Heraklion, UGC Potsdam, POT Pamplona, UNAV	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.11 0.0757 0.25 0.0822 0.20 0.0873 -0.06 0.0940 0.09 0.0728 -0.01 0.0940 0.19 0.0863		-0.02 [-0.23; 0.20] 11.6% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-Cl Weight 0.14 [0.00; 0.28] 15.7% 0.11 [-0.03; 0.26] 14.2% 0.25 [0.09; 0.41] 12.3% 0.20 [0.03; 0.37] 11.0% -0.06 [-0.25; 0.12] 8.6% 0.09 [-0.05; 0.21] 8.5% 0.09 [-0.05; 0.21] 8.5% 0.09 [-0.05; 0.21] 8.5% 0.09 [-0.05; 0.21] 8.5%
$\label{eq:response} \begin{array}{llllllllllllllllllllllllllllllllllll$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.35 [-0.49; -0.20] 16.3% -0.39 [-0.56; -0.21] 12.2% -0.39 [-0.56; -0.21] 12.2% -0.39 [-0.56] 12.1% -0.28 [-0.44; -0.09] 12.1%	Prague, CU Random effects model Heterogeneity: $l^{2} = 2^{4}$, s^{2} B T 1–T2 Center Maastricht, UM Corpontagon, RVAJ Corpontagon, RVAJ	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.25 0.0822 0.20 0.0873 -0.06 0.0940 0.09 0.0728 -0.01 0.0900 0.19 0.0863		-0.02 [-0.23; 0.20] 11.9% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-CI Weight 0.14 [-0.00; 0.28] 15.7% -0.25 [-0.09; 0.41] 12.3% -0.25 [-0.09; 0.41] 12.3% -0.06 [-0.25; 0.12] 9.6% -0.09 [-0.05; 0.23] 15.3% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.01] 10.0%
$\label{eq:starting} \begin{array}{llllllllllllllllllllllllllllllllllll$	* * * * *	-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-Cl Weight -0.21 [-0.39; -0.04] 12.1% -0.35 [-0.49; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.68; -0.28] 9.3% -0.49 [-0.48; -0.09] 11.1% -0.28 [-0.44; -0.09] 11.1% -0.28 [-0.44; -0.09] 11.1%	Prague, CU Random effects model Heterogeneity: $l^{2} = 2\%, q^{2}$ B T1-T2 Center Massirichi, UM Copenhagen, RVAU Cambridge, HNR Herekion, UGC Potsdam, POT Pamplona, UNAV Sofa, MMT Prague, CU Random effects mode	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.11 0.0757 0.25 0.0823 -0.06 0.0940 0.09 0.0728 -0.01 0.0900 0.19 0.0863 M Composition of the second se		-0.02 [-0.23; 0.20] 11.9% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-CI Weight 0.14 [-0.00; 0.28] 15.7% -0.25 [-0.09; 0.41] 12.3% -0.25 [-0.09; 0.41] 12.3% -0.06 [-0.25; 0.12] 9.6% -0.09 [-0.05; 0.23] 15.3% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.17] 10.4% -0.01 [-0.19; 0.01] 10.0%
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneity}, f = 0\%, f = 0\\ \mbox{S3 T1-T2} \\ \mbox{Conter} \\ \mbox{S3 T1-T2} \\ \mbox{Conter} \\ \mbox{Random effects} \\ Random$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.55 [-0.49; -0.28] 6.9% -0.49 [-0.68]; -0.28] 6.9% -0.49 [-0.68]; -0.28] 6.9% -0.40 [-0.56]; -0.28] 11.2% -0.40 [-0.56]; -0.21] 11.5% -0.40 [-0.56]; -0.21] 11.5% -0.40 [-0.57]; -0.21] 10.0% 95%-CI Weight -0.33 [0.13; 0.54] [5.0%	Prague, CU Random effects model Heterogeneity: $f^* = 25_{\rm H}, z^2$ B T1-T2 Center Maastricht, UM Copenhagon, RVAU Cambridge, HNR Heraklon, LGC Polsdam, PQT Panglona, UNAV Sofia, MMT Prague, CU Random effects mode Heterogeneity: $\hat{r}^* = 31_{\rm H}, z^2$ CF T1-T2 Center Maastricht, UM Copenhagon, RVAU	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.11 0.0757 0.25 0.0823 -0.06 0.0940 0.019 0.0853 -0.06 0.0940 -0 0.0953 -0 0.0007 -0 Effect SE 0.13 0.0938 -0 0.0978		-0.02 [-0.23; 0.20] 11.5% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.22; -0.13] 100.0% 95%-CI Weight 0.14 [-0.00; 0.26] 15.7% 0.11 [-0.02; 0.26] 14.2% 0.25 [-0.09; 0.41] 12.3% 0.20 [-0.03; 0.37] 11.0% -0.06 [-0.25; 0.12] 8.6% 0.09 [-0.05; 0.23] 15.3% -0.01 [-0.19; 0.17] 10.4% 0.19 [-0.02; 0.36] 11.3% -0.12 [0.06; 0.18] 100.0% .4 95%-CI Weight 0.13 [-0.05; 0.32] 18.2% 0.13 [-0.05; 0.32] 18.2%
$\label{eq:response} \begin{array}{llllllllllllllllllllllllllllllllllll$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.39; -0.04] 12.1% -0.39 [-0.46; -0.20] 15.3% -0.39 [-0.56; -0.21] 12.5% -0.39 [-0.56; -0.21] 12.2% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.37; -0.21] 100.0% 95%-CI Weight -0.29 [-0.37; -0.21] 10.0%	Prague, CU Random effects model Heterogeneity: /* = 2%, -7 B T1-T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, NNR Hotzdam, NOT Pargue, CU Random effects mode Heterogeneity: /* = 31%, -7 CF T1-T2 Center Maastricht, UM Copenhagen, RVAU Copenhagen, RVAU Copenha	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.15 0.0737 0.15 0.0737 0.15 0.0737 0.15 0.0873 0.00073 0.09 0.0728 -0.00 0.0483 0.19 0.0883 0.13 0.0077 -0 Effect SE 0.13 0.0978 0.13 0.0978 0.13 0.0978 0.13 0.0978 0.14 0.0978 0.14 0.0978 0.14 0.0978 0.15 0.0078 0.15 0.0078		-0.02 [-0.23; 0.20] 11.9% -0.30 [-0.52; 0.20] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-CI Weight 0.14 [0.00; 0.28] 15.7% 0.11 [-0.03; 0.26] 14.9% 0.25 [0.09; 0.41] 12.3% 0.26 [0.03; 0.41] 12.3% 0.20 [0.03; 0.37] 11.0% -0.06 [-0.28; 0.18] 100.0% 4 95%-CI Weight 0.13 [0.05; 0.38] 18.2% 4 95%-CI Weight 0.14 [0.07; 0.38] 18.2% 0.27 [0.05; 0.38] 10.0% 0.27 [0.05; 0.38] 10.2% 0.27 [0.05; 0.38] 10.2% 0.28 [0.05; 0.38] 10.2% 0.27 [0.05; 0.38] 10.2% 0.28 [0.05; 0.38] 10.2%
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneity}, f = 0\%, f = 0\\ \mbox{S3}\ T1 - T2\\ \mbox{Center} & \mbox{Effect} & \mbox{S4}\ T1 - T2\\ \mbox{Center} & \mbox{Effect} & \mbox{S4}\ S4 & \mbox{0.7}\ 0.33 & 0.$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.35 [-0.49; -0.20] 15.3% -0.49 [-0.28; -0.20] 19.5% -0.49 [-0.28; -0.20] 19.5% -0.40 [-0.28; -0.20] 19.5% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 11.5% -0.29 [-0.37; -0.21] 10.0% 95%-CI Weight -0.33 [0.13; 0.54] 16.0% 285 [-0.50] 7.3% 0.21 [-0.30; 0.41] 17.3% 0.22 [-0.00; 0.50] 7.3% 0.21 [-0.30; 0.41] 11.5% 0.21 [-0.00; 0.50] 7.3% 0.21 [-0.00; 0.50] 7.3%	Prague, CU Random effects model Heterogeneity: $f^* = 2\%_n$, \vec{c} B T1—T2 Center Maastricht, UM Coponhagon, RVAU Cambridge, NNR Hotsdam, POT Panglona, UNAV Sofia, NMT Prague, CU Random effects mode Heterogeneity: $f^* = 31\%_n$: CF T1—T2 Center Maastricht, UM Coponhagon, RVAU Cambridge, NNR Heterogeneity: $f^* = 31\%_n$: CF T1—T2 Center	-0.30 0.1092 - =0 Effect SE 0.14 0.0717 0.25 0.0027 0.25 0.0027 0.25 0.0027 0.26 0.0027 0.26 0.0027 0.26 0.0027 0.26 0.0027 0.26 0.0027 0.19 0.0853 4 0.00 0.072 0.19 0.0853 4 0.00 0.072 0.19 0.0853 4 0.00 0.072 0.10 0.003 0.19 0.0853 4 0.00 0.072 0.10 0.003 0.19 0.0853 4 0.00 0.072 0.10 0.003 0.19 0.0853 4 0.00 0.072 0.10 0.003 0.19 0.0853 4 0.00 0.072 0.10 0.003 0.19 0.0853 0.10 0.072 0.10 0.003 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.1		-0.02 [-0.23; 0.20] 11.1%; -0.30 [-0.52; -0.09] 11.7%; -0.20 [-0.28; -0.13] 100.0%; 40.00 [-0.28] 15.7%; 0.11 [-0.03; 0.28] 14.5%; 0.25 [0.03; 0.41] 12.3%; 0.26 [0.03; 0.41] 12.3%; 0.26 [0.03; 0.41] 12.3%; 0.20 [0.03; 0.37] 11.0%; 0.06 [-0.25; 0.12] 9.6%; 0.05 [-0.25; 0.12] 9.6%; 0.05 [-0.25; 0.12] 9.6%; 0.05 [-0.25; 0.12] 9.6%; 0.012 [0.06; 0.18] 100.0%; 4 95%-CI Weight 0.13 [-0.06; 0.33] 18.8%; 0.33 [-0.66; 0.33] 18.2%; 0.13 [-0.66; 0.33] 18.2%; 0.14 [-0.05; 0.26] 12.5%; 0.06 [-0.28; 0.61] 12.2%; 0.16 [-0.08; 0.40] 10.9%; 0.00 [-0.24; 0.24] 10.5%; 0.06 [-0.04; 0.42] 10.5%; 0.06 [-0.04] 0.42] 10.5%; 0.06 [-0.04; 0.42] 10.5%;
$\label{eq:response} \begin{array}{llllllllllllllllllllllllllllllllllll$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-Cl Weight -0.21 [-0.32; -0.04] 12.1% -0.35 [-0.48; -0.09] 15.3% -0.49 [-0.68; -0.21] 12.2% -0.39 [-0.55; -0.21] 112.5% -0.36 [-0.55; -0.21] 115.1% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.37; -0.21] 100.0% 95%-Cl Weight -0.33 [0.13; 0.54] 16.0% 0.28 [0.08; 0.47] 17.2% 0.29 [-0.08; 0.54] 15.0% 0.29 [-0.08; 0.54] 15.0% 0.29 [-0.08; 0.54] 15.0% 0.27 [-0.08; 0.51] 11.8% 0.27 [-0.08; 0.51] 11.8%	Prague, CU Random effects model Heteregenety, $l^* = 2%$, c^2 B T1-T2 Center Maasticht, UM Copenhagen, RVAU Cambridge, HNR Heraklon, UoC Potsdam, POT Panglona, UNAV Sofia, NMT Heregeneity, $l^* = 31%$, · CFT1-T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, NNR Heterogeneity, $l^* = 31%$, ·	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.14 0.0757 0.25 0.0823 0.20 0.0873 -0.06 0.040 0.09 0.0728 -0.06 0.040 0.09 0.0728 -0.06 0.040 0.13 0.0983 0.13 0.0978 0.27 0.1200 0.14 0.1222 0.06 0.1416 0.15 0.1228 0.15 0.1228 -0.15 0.128 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15 0.15 -0.15		-0.02 [-0.23; 0.20] 11.5% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.52; -0.09] 11.7% -0.20 [-0.52; -0.13] 100.0% 95%-CI Weight 0.14 [0.00; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.16 [-0.28; 0.17] 10.4% 0.09 [-0.05; 0.23] 15.3% -0.01 [-0.19; 0.17] 10.4% 0.19 [-0.05; 0.38] 110.0% 4 95%-CI Weight 0.13 [-0.05; 0.22] 18.3% 0.03 [-0.05; 0.22] 18.3% 0.04 [-0.06; 0.18] 100.0% 4
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneity}, f = 0\%, f = 0\\ \mbox{S3}T1-T2\\ \mbox{S3}T1-T2\\ \mbox{Conter} & \mbox{Effect} & SE\\ \mbox{Massricht}, UM & -0.21 0.09916\\ \mbox{Contention}, WR & -0.49 0.1040\\ \mbox{Herokion}, WR & -0.49 0.1040\\ \mbox{Herokion}, WR & -0.49 0.1040\\ \mbox{Herokion}, WR & -0.20 0.0985\\ \mbox{Potsbar, WR} & -0.20 0.0985\\ \mbox{Prapue}, OC & -0.30 0.085\\ \mbox{Prapue}, OC & -0.30 0.048\\ \mbox{Heterogeneity}, f = 48\%, f = 0.0048\\ \mbox{S4} T1-T2\\ \mbox{Centor} & \mbox{Effect} & \mbox{S4}\\ \mbox{Copontagen, RVAU} & 0.33 0.1014\\ \mbox{Copontagen, RVAU} & 0.22 0.1082\\ \mbox{Sais, HWR} & 0.21 0.1837\\ \mbox{Sais, HWR} & 0.22 0.1082\\ \mbox{Sais, WWW} & 0.22 0.1082\\ $		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.35 [-0.49; -0.20] 15.9% -0.49 [-0.28; -0.20] 19.5% -0.49 [-0.28; -0.20] 19.5% -0.49 [-0.28; -0.20] 19.5% -0.40 [-0.28; -0.20] 11.1% -0.28 [-0.44; -0.00] 11.1% -0.29 [-0.37; -0.21] 10.0% 95%-CI Weight -0.33 [0.13; 0.54] 16.0% 0.28 [-0.06; 0.50] 7.3% 0.29 [-0.06; 0.50] 7.3% 0.21 [-0.38; -0.20] 11.18% -0.39 [-0.13; 0.54] 16.0% 0.21 [-0.39; -0.11] 11.2% 0.21 [-0.08; 0.50] 7.3% 0.22 [-0.21; 0.3] 11.4% 0.21 [-0.08; 0.50] 7.3% 0.22 [-0.21; 0.3] 11.8% 0.22 [-0.21; 0.3] 11.8% 0.22 [-0.11; 0.43] 9.1% 0.22 [-0.11; 0.44] 14.8%	Prague, CU Random effects model Heterogeneity: $f^* = 2\%_{\rm ec}$, Z^* B T1—T2 Center Maastricht, UM Coponhagon, RVAU Cambridge, HNR Hotodam, DOT Parapiona, UNAV Sofia, MTT Prague, CU Random effects model Heterogeneity: $f^* = 31\%_{\rm ec}$: CF T1—T2 Center Maastricht, UM Coponhagon, RVAU Cambridge, HNR Heterogeneity: $f^* = 0\%_{\rm ec}$; AF T1—T2	-0.30 0.1092 - =0 Effect SE 0.14 0.0717 0.25 0.0027 0.25 0.0027 0.0027 0.25 0.0027 0.25 0.0027 0.0027 0.25 0.0027 0.25 0.0027 0.0027 0.25 0.0027 0.25 0.000 0.15 0.1229 0.25 0.0027 0.25 0.0027 0.2		-0.02 [-0.23; 0.20] 11.1%; -0.30 [-0.52; -0.03] 11.7%; -0.20 [-0.28; -0.13] 100.0%; 95%-CI Weight 0.14 [-0.00; -0.8] 15.7%; 0.11 [-0.02; -0.8] 14.2%; 0.25 [-0.03; 0.41] 12.3%; 0.20 [-0.03; -0.37] 11.0%; -0.06 [-0.25; 0.12] 9.6%; 0.09 [-0.05; 0.23] 15.3%; -0.01 [-0.19; 0.17] 10.4%; 0.19 [-0.02; 0.23] 15.3%; -0.01 [-0.19; 0.17] 10.4%; 0.12 [0.06; 0.18] 100.0%; 4 95%-CI Weight 0.13 [-0.05; 0.33] 18.8%; 0.24 [-0.28] 10.7%; 0.13 [-0.05; 0.33] 18.2%; 0.13 [-0.05; 0.33] 18.2%; 0.14 [-0.10; 0.38] 10.7%; -0.44 [-0.10; 0.48] 10.7%; -0.44 [-0.10; 0.48] 10.7%; -0.44 [-0.10; 0.48] 10.7%; -0.44 [-0.28; 0.16] 12.2%; -0.44 [-0.28; 0.16] 12.2%; -0.44 [-0.28; 0.16] 12.2%; -0.45 [-0.28; 0.16] 10.44 [-0.46] 10.5%; -0.45 [-0.40; 0.39] 10.6%; -0.45 [-0.40; 0.39] 10.6%;
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneity}, f^{-} = 0\%, x^{-} = 0 \\ \hline S3 T1 - T2 \\ \hline \mbox{Center} & \mbox{Effect} & \mbox{SE} \\ \mbox{Cenonhagen, RVAU} & -0.21 0.0902 \\ \mbox{Copenhagen, RVAU} & -0.32 0.0902 \\ \mbox{Copenhagen, RVAU} & -0.39 0.0893 \\ \mbox{Pristain, PO} & -0.39 0.0893 \\ \mbox{Pristain, PO} & -0.39 0.0893 \\ \mbox{Pristain, PO} & -0.30 0.0283 \\ \mbox{Pristain, PO} & -0.30 0.0283 \\ \mbox{Pristain, PO} & -0.30 0.0283 \\ \mbox{Pristain, PO} & -0.30 0.048 \\ \mbox{Heterogeneity}, f^{-} = 49\%, x^{+}_{-} = 0.0048 \\ \mbox{S4 T1} - T2 \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 D1} - 12 \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 D1} - 118 \\ \mbox{Heterogeneity}, f^{-} = 0\%, x^{+}_{-} = 0 \\ \mbox{Cambridge, HNN} & 0.22 0.1082 \\ \mbox{Heterogeneity}; f^{-} - 0\%, x^{+}_{-} = 0 \\ \mbox{G0 T1} - T2 \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 Pristain} \\ \mbox{G0 T1} - T2 \\ \mbox{Centerogeneity}; f^{-} - 0\%, x^{+}_{-} = 0 \\ \mbox{G0 T1} - T2 \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 Pristain} \\ \mbox{G0 D1} - T2 \\ \mbox{Centerofield}, UM & 0.02 0.0844 \\ \mbox{Heterogeneity}; f^{-} 0\%, x^{+}_{-} = 0 \\ \mbox{G0 D1} - \mbox{Centerofield}, UM & 0.02 0.0844 \\ \mbox{Heterogeneity}, f^{-} 0\%, x^{+}_{-} = 0 \\ \mbox{G0 D1} - \mbox{Centerofield}, UM & 0.02 0.0844 \\ \mbox{Heterogeneity}, f^{-} 0\%, x^{+}_{-} = 0 \\ \mbox{G0 D1} - \mbox{G0 D1} \\ \mbox{G0 D1} - \mbox{G0 D2} \\ \mbox{G0 D1} - \mbox{G0 D2} \\ \mbox{G0 D1} - \mbox{G0 D2} \\ \mbox{G0 D1} \\ \mbox{G0 D1} - \mbox{G0 D2} \\ \mbox{G0 D1} \\ \mbox{G0 D2} $		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.31 [-0.39; -0.04] 12.1% -0.38 [-0.38; -0.04] 12.1% -0.38 [-0.38; -0.04] 12.1% -0.38 [-0.38; -0.21] 12.5% -0.39 [-0.36; -0.21] 12.5% -0.39 [-0.36; -0.21] 11.5% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.29 [-0.37; -0.21] 100.0% 95%-CI Weight -0.39 [-0.10; 0.54] 16.0% 0.28 [-0.00; 0.55] 13.6% 0.27 [-0.00; 0.53] 13.6% 0.27 [-0.00; 0.53] 13.6% 0.22 [-0.11; 0.43] 9.1% 0.22 [-0.14; 0.30] 100.0% 95%-CI Weight 0.02 [-0.15; 0.18] 19.1%	Prague, CU Random effects model Heterogeneity: $f^* = 2\%_{\rm e}, 7$ B T1-T2 Center Maastricht, UM Copenhagen, RVAU Heraklion, UoC Potsdam, POT Pampiona, UNAV Sofia, NMT Prague, CU Random effects model Heterogeneity: $f^* = 31\%_{\rm e}, 7$ CF T1-T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pampiona, UNAV Sofia, NMT Prague, CU Random effects model Heterogeneity: $f^* = 0\%_{\rm e}, 6$ AF T1-T2 Center Maastricht, UM	-0.30 0.1092 - = 0 Effect SE 0.14 0.0777 0.14 0.0777 0.25 0.0827 0.25 0.0873 0.25 0.0873 0.25 0.0873 0.09 0.0783 0.19 0.0863 0.19 0.0863 0.13 0.0978 0.27 0.120 0.27 0.200 0.27 0.200 0.27 0.200 0.27 0.200 0.		-0.02 [-0.23; 0.20] 11.9% -0.30 [-0.52; 0.20] 11.7% -0.20 [-0.28; 0.05] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-CI Weight 0.14 [-0.00; 0.28] 15.7% 0.11 [-0.03; 0.28] 15.7% 0.12 [0.03; 0.41] 12.3% 0.03 [-0.05; 0.23] 15.3% 0.19 [0.02; 0.35] 11.3% 0.12 [0.06; 0.18] 100.0% 4 95%-CI Weight 0.04 [-0.05; 0.39] 10.5% 0.05 [-0.28; 0.16] 12.2% 0.05 [-0.28; 0.16] 12.5% 0.15 [-0.08; 0.18] 100.0% 4 95%-CI Weight 0.01 [0.04; 0.19] 100.%
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneily}, f' = 0\%, f' = 0 \\ \mbox{S3 T1-T2} \\ \hline \mbox{S3 T1-C2} \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 T1-C2} \\ \mbox{Center} & \mbox{Effect} & \mbox{S6 0.996} \\ \mbox{Corponhagen, RVAU} & -0.21 0.0992 \\ \mbox{Corponhagen, RVAU} & -0.25 0.0740 \\ \mbox{Cambridge, NNT} & -0.21 0.0928 \\ \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Prague, CU} & -0.36 0.0749 \\ \mbox{Random effects model} \\ \mbox{Heterogeneity}, f' = 40\%, f' = 0.0048 \\ \mbox{S4 T1-T2} \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 20 1096} \\ \mbox{S6 10 1-T2} \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 10 103} \\ \mbox{Center} & \mbox{Effect} & \mbox{S4 10 103} \\ \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{Center} \\ \mbox{Center} & \mbox{Center} & \mbox{Center}$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.38; -0.04] 12.1% -0.35 [-0.48; -0.04] 12.1% -0.35 [-0.48; -0.04] 12.1% -0.36 [-0.48; -0.09] 12.1% -0.39 [-0.56; -0.21] 11.2% -0.39 [-0.56; -0.21] 11.5% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.37; -0.21] 10.00% 95%-CI Weight -0.28 [-0.08; 0.44] 11.3% -0.29 [-0.28; 0.29] 9.5% 0.22 [0.19; 0.41] 10.9% 95%-CI Weight 0.22 [0.19; 0.41] 10.9% 95%-CI Weight 0.22 [0.19; 0.41] 11% -0.20 [-0.15; 0.18] 111% -0.20 [-0.15; 0.18] 111% -0.21 [-0.5] 11%	Prague, CU Random effects model Heterogeneity: $l^{2} = 2%$, c^{2} B T1-T2 Center Maastrich: UM Copenhagen, RVAU Cambridge, INNR Heraklon, UoC Potsdam, POT Panglona, UNAV Sofia, NMT Prague, CU Random effects model Heterogeneity: $l^{2} = 31%$, c^{2} Center Maastricht, UM Copenhagen, RVAU Cambridge, NNR Heraklon, UGC Panglona, UNAV Sofia, NMTI Prague, CU Random effects model Heterogeneity: $l^{2} = 0\%$, c^{2} AF T1-T2 Centor Maastricht, UM Copenhagen, RVAU Sofia, NMTI Prague, CU	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.14 0.0757 0.25 0.0823 0.25 0.0873 0.25 0.0873 0.09 0.0728 -0.06 0.0940 0.19 0.0863 0.13 0.0978 0.27 0.1200 Effect SE 0.13 0.0938 0.13 0.0938 0.14 0.0938 0.12 0.021 -000 0.1228 -000 0.1208 -000 0.1228 -000 0.028 -000 0		-0.02 [-0.23; 0.20] 11.1% -0.30 [-0.52; -0.09] 11.7% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.28; -0.13] 100.0% 95%-CI Weight 0.14 [0.00; 0.28] 15.7% -0.25 [-0.09; 0.41] 12.3% 0.05 [-0.09; 0.41] 12.3% -0.05 [-0.09; 0.41] 12.3% -0.06 [-0.25; 0.12] 56% -0.07 [-0.19; 0.33] 15.8% -0.01 [-0.19; 0.17] 10.4% 0.12 [0.06; 0.18] 100.0% 4 95%-CI Weight 0.13 [-0.06; 0.33] 15.8% -0.23 [1.5% -0.14 [-0.10; 0.33] 15.8% -0.25 [-0.23] 15.3% -0.14 [-0.10; 0.33] 15.8% -0.26 [-0.28; 0.16] 12.2% 0.14 [-0.10; 0.38] 10.7% -0.66 [-0.28; 0.16] 12.2% -0.66 [-0.28; 0.16] 12.2% -0.61 [-0.28; 0.16] 12.2% -0.61 [-0.28; 0.16] 10.9% -0.00 [-0.24; 0.28] 10.7% -0.06 [-0.28; 0.55] 12.7% -0.44 [0.34; 0.15] 13.8% -0.27 [Weight
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneily}, f'=0\%, f'=0 \\ \mbox{S3}T1-T2 \\ \hline \mbox{S3}T1-T2 \\ \mbox{Center} & \mbox{S4}T1-T2 \\ \mbox{Constraints}, UM & -0.21 0.0992 \\ \mbox{Constraints}, UM & -0.21 0.0048 \\ \mbox{S4}T1-T2 \\ \mbox{Center} & \mbox{Effect} & \mbox{S4} \\ \mbox{Constraints}, UM & 0.33 0.1044 \\ \mbox{Cospensations}, IFVAU & 0.23 0.1044 \\ \mbox{Cospensations}, UM & 0.23 0.1044 \\ \mbox{Cospensations}, UM & 0.22 0.1057 \\ \mbox{Prague, CU} & 0.005 & 0.0174 \\ \mbox{Prague, CU} & 0.0$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.31 [-0.38; -0.04] 12.1% -0.38 [-0.48; -0.04] 12.1% -0.38 [-0.48; -0.04] 12.1% -0.39 [-0.39; -0.04] 13.2% -0.39 [-0.55; -0.21] 13.5% -0.39 [-0.55; -0.21] 13.5% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.37; -0.21] 10.00% 95%-CI Weight -0.38 [0.13; 0.54] 16.0% 0.28 [0.08; 0.47] 17.3% 0.28 [-0.08; 0.43] 13.5% 0.29 [-0.04; 0.29] 9.5% 0.22 [0.01; 0.18] 19.1% 0.22 [-0.15; 0.18] 19.1% 0.22 [-0.15; 0.18] 19.1% 0.24 [-0.28; 0.24] 15.5% 0.25 [-0.37; 0.24] 15.5% 0.26 [-0.15; 0.18] 19.1% 0.27 [-0.15; 0.18] 19.1% 0.28 [-0.28; 0.11] 12.8% 0.29 [-0.15; 0.18] 19.1% 0.29 [-0.15; 0.18] 19.1% 0.29 [-0.29; 0.11] 12.8%	Prague, CU Random effects model Heterogeneity: $f^* = 2%$, c^* B T1-T2 Center Massirich: UM Cambridge, INNR Heraktion, UGC Cambridge, INNR Heraktion, UGC Potsdam, PGT Panglona, UNAV Sofia, NMT Praque, CU Random effects model Heterogeneity: $f^* = 315$, CF T1-T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, INNR Heraktion, UGC Poistdam, PGT Prage, CU Random effects model Heterogeneity: $f^* = 0\%$, c^* A F T1-T2 Center Maastricht, UM Copenhagen, RVAU Copenhagen, RVAU Combridge, INC Heterogeneity, $f^* = 0\%$, c^*	-0.30 0.1092 - = 0 Effect SE 0.14 0.0717 0.10 0.0757 0.25 0.0823 0.25 0.0873 -0.06 0.040 0.09 0.0728 -0.06 0.040 0.09 0.0728 -0.06 0.040 0.09 0.0728 -0.06 0.040 0.09 0.0728 -0.01 0.0900 0.13 0.0383 0.13 0.0378 0.27 0.1260 0.14 0.1222 -0.06 0.142 -0.06 0.142 -0.06 0.142 -0.00 0.128 -0.1229 -0.00 0.128 -0.1229 -0.00 0.128 -0.1229 -0.00 0.128 -0.00 0.0587 -0.00 0.0587 -0.00 0.0587 -0.00 0.0587 -0.00 0.0587 -0.00 0.0587 -0.00 0.0587 -0.00 0.128 -0.00 0.0587 -0.00 0.00 0.00 0.00 0.0000 -0.00 0.0000 -0.00 0.0000 -0.00000 -0.0000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000000 -0.00000000 -0.0000000000		-0.02 [-0.23; 0.20] 11.5% -0.30 [-0.52; -0.09] 11.7% -0.20 [-0.52; -0.09] 11.7% -0.20 [-0.52; -0.09] 11.7% -0.20 [-0.52; -0.13] 100.0% 95%-CI Weight 0.14 [0.00; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.7% 0.15 [-0.03; 0.28] 15.3% -0.01 [-0.03; 0.28] 15.3% -0.01 [-0.02; 0.23] 15.3% -0.01 [-0.19; 0.17] 10.4% 0.19 [-0.05; 0.32] 18.3% -0.01 [-0.05; 0.32] 18.3% -0.01 [-0.06; 0.18] 100.0% 4 95%-CI Weight 0.13 [-0.06; 0.38] 10.7% -0.71 [-0.08; 0.38] 10.7% -0.71 [-0.08; 0.39] 10.8% 0.71 [-0.08; 0.39] 10.8% 0.71 [-0.08; 0.39] 10.8% 0.71 [-0.08; 0.39] 10.8% 0.71 [-0.09; 0.39] 10.8% 0.71 [-0.04; 0.39] 10.8% 0.71 [0.04; 0.19] 100.0%
$\label{eq:response} \begin{array}{c} \mbox{Random effects model} \\ \mbox{Heterogeneity}, f = 0%, f = 0\\ \mbox{S3}T1-T2\\ \mbox{S3}T1-T2\\ \mbox{Center} & \mbox{Effect} & \mbox{S4}\\ \mbox{Center} & \mbox{Effect} & \mbox{S4}\\ \mbox{Center} & \mbox{Center} & \mbox{Center} & \mbox{S4}\\ \mbox{Center} & \mb$		-0.01 [-0.28; 0.27] 10.5% 0.02 [-0.07; 0.11] 100.0% 95%-CI Weight -0.21 [-0.39; -0.04] 12.1% -0.35 [-0.49; -0.21] 12.5% -0.35 [-0.49; -0.21] 12.5% -0.36 [-0.59; -0.21] 12.5% -0.26 [-0.49; -0.09] 12.1% -0.26 [-0.44; -0.09] 12.1% -0.26 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.28 [-0.44; -0.09] 12.1% -0.29 [-0.37; -0.21] 100.0% 95%-CI Weight -0.39 [0.13; 0.54] 16.9% -0.39 [0.13; 0.54] 16.9% -0.39 [0.13; 0.54] 16.9% -0.39 [0.10; 0.54] 15.1% -0.29 [-0.10; 0.39] 13.6% 0.22 [-0.10; 0.44] 14.8% 0.22 [0.01; 0.44] 14.8% 0.24 [0.01; 0.16] 16.3% -0.01 [-0.26; 0.24] 8.5% -0.01 [-0.26; 0.24] 8.5%	Prague, CU Random effects model Heterogeneity: /* = 2%, -7 B T1-T2 Center Maastricht, UM Copenhagen, RVAU Cambridge, NNR Heterogeneity: /* = 31%, -7 Potsdam, POT Paraplona, UNAV Sofia, NMT Prague, CU Random effects mode Heterogeneity: /* = 31%, -7 CF T1-T2 Center Maastricht, UM Copenhagen, RVAU Potsdam, POT Paraplona, UNAV Sofia, NMT Prague, CU Random effects mode Heterogeneity: /* = 5%, -7 AF T1-T2 Center Maastricht, UM Copenhagen, RVAU CAF T1-T2 Center Maastricht, UM Copenhagen, RVAU Carbridge, HNN Heraklion, VOT	-0.30 0.1092 - = 0 Effect SE 0.14 0.0757 0.25 0.0873 0.25 0.0873 0.25 0.0873 0.25 0.0853 0.19 0.0863 0.19 0.0863 0.19 0.0863 0.19 0.0863 0.19 0.0863 0.19 0.0938 0.13 0.0958 0.13 0.0557 0.44 0.0558 0.43 0.0558		-0.02 [-0.23; 0.20] 11.1%; -0.30 [-0.52; -0.05] 11.7%; -0.30 [-0.52; -0.13] 100.0% 95%-CI Weight 0.14 [-0.00; 0.28] 15.7%; -0.11 [-0.03; 0.28] 14.3%; -0.25 [-0.29; 0.41] 12.3%; -0.26 [-0.23; 0.21] 15.3%; -0.06 [-0.25; 0.21] 15.4%; -0.15 [-0.10; 0.21] 15.4%; -0.15 [-0.10; 0.31] 16.8%; -0.12 [0.06; 0.18] 100.0%; -0.4 95%-CI Weight 0.13 [-0.06; 0.31] 18.2%; -0.13 [-0.06; 0.31] 18.2%; -0.14 [-0.10; 0.31] 18.2%; -0.15 [-0.20; 0.21] 15.3%; -0.01 [-0.28] 10.7%; -0.01 [-0.28; 0.17] -0.14 [-0.10; 0.31] 18.2%; -0.13 [-0.06; 0.31] 18.2%; -0.14 [-0.10; 0.38] 10.7%; -0.00 [-0.24; 0.24] 10.5%; -0.01 [-0.42; 0.41] 10.5%; -0.04 [-0.42] 0.55] 12.7%; -0.40 [0.29; 0.55] 13.4%; -0.40 [0.29; 0.51] 13.4%;

Figure 1. The effect of a low-calorie diet on plasma N-glycome composition in the first time period of eight weeks (T1–T2). Changes in plasma protein glycome composition after performing meta-analysis for all the centers are shown. SE—standard error; 95% CI–95% confidence interval; T1—time point 1; T2—time point 2; T3—time point 3; LB—total low branching glycans; S0—total neutral glycans; S1—total monosialylated glycans; S2—total disialylated glycan; S3—total trisialylated glycans; G4—total tetrasialylated glycans; G2—total digalactosylated glycans; G4—total tetragalactosylated glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans with core fucose; AF—total glycans with antennary fucose.

LB T2-T3 Center Effect SE		95%-CI	Weight	G1 T2–T3 Center	Effect SE		95%-Cl Weight
Maastricht, UM -0.01 0.0875 Copenhagen, RVAU -0.21 0.906 Cambridge, HNR -0.40 0.1271 Herakilon, UoC -0.24 0.1580 Potsdam, POT 0.07 0.103 Sofia, INAT -0.00 0.1117 Prague, CU -0.07 0.1113		$\begin{array}{llllllllllllllllllllllllllllllllllll$	16.4% 15.9% 10.5% 7.6% 13.6% 12.0% 11.6% 12.5%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	0.49 0.1082 -0.03 0.1119 -0.13 0.2032 -0.10 0.1868 0.32 0.1318 0.30 0.1533 -0.34 0.1331 -0.02 0.1228		$\begin{array}{cccccc} 0.49 & [0.28; 0.71] & 14.2\% \\ -0.03 & [-0.25; 0.19] & 14.0\% \\ -0.13 & [-0.53; 0.26] & 9.8\% \\ 0.10 & [-0.46; 0.27] & 10.5\% \\ 0.32 & [0.06; 0.58] & 13.1\% \\ 0.32 & [0.06; 0.60] & 12.0\% \\ -0.34 & [-0.60; -0.08] & 13.0\% \\ -0.02 & [-0.26; 0.22] & 13.5\% \end{array}$
Random effects model Heterogeneity: $t^2 = 46\%$, $\tau^2 = 0.0072$	-0.6 -0.4 -0.2 0 0.2 0.4 0.6	0.12 [-0.21; -0.02]	100.0%	Random effects model Heterogeneity: $l^2 = 79\%$, τ	$r^2 = 0.0542$	-0.6-0.4-0.2 0 0.2 0.4 0.6	0.07 [-0.12; 0.26] 100.0%
HB T2-T3 Center Effect SE		95%-CI	Weight	G2 T2–T3 Center	Effect SE		95%-CI Weight
Maastricht, UM -0.03 0.0898 Copenhagen, RVAU 0.10 0.0893 Cambridge, HNR 0.41 0.1244 Heraklion, UoC 0.22 0.1566 Potsdam, POT -0.11 0.1084 Pampiona, UNAV 0.65 0.117 Sofia, NMTI 0.23 0.1232 Prague, CU 0.05 0.9985		-0.03 [-0.20; 0.15] 0.10 [-0.07; 0.28] 0.41 [0.17; 0.66] 0.22 [-0.09; 0.52] -0.11 [-0.32; 0.11] 0.05 [-0.18; 0.28] 0.23 [-0.01; 0.47] 0.05 [-0.14; 0.25]	15.6% 15.7% 10.9% 7.9% 12.8% 11.7% 11.0% 14.3%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	-0.47 0.1090 -0.15 0.1173 -0.23 0.1736 -0.13 0.2043 -0.29 0.1471 -0.34 0.1434 0.15 0.1179 -0.02 0.1167	*- **	$\begin{array}{cccc} -0.47 & [-0.68; -0.25] & 15.1\% \\ -0.15 & [-0.38; 0.08] & 14.3\% \\ -0.23 & [-0.57; 0.11] & 9.9\% \\ -0.13 & [-0.53; 0.27] & 8.1\% \\ -0.29 & [-0.57; 0.00] & 11.8\% \\ -0.34 & [-0.63; -0.06] & 12.1\% \\ -0.15 & [-0.08; 0.38] & 14.3\% \\ -0.02 & [-0.25; 0.21] & 14.4\% \end{array}$
Random effects model Heterogeneity: $l^2 = 50\%$, $\tau^2 = 0.0089$	-0.6-0.4-0.2 0 0.2 0.4 0.6	0.10 [0.00; 0.20]	100.0%	Random effects model Heterogeneity: $l^2 = 63\%$, τ^2	2 - 0.0229	-0.6-0.4-0.2 0 0.2 0.4 0.6	-0.18 [-0.32; -0.04] 100.0%
S0 T2-T3 Center Effect SE		95%CI	Weight	G3 T2–T3 Center	Effect SE		95%-CI Weight
Maastricht, UM 0.52 0.1071 Copenhagen, RVAU -0.03 0.110 0.033 0.110 0.037 Gambridge, HNR -0.10 0.0237 Herakiloni, UoC -0.12 0.1923 Potadam, POT 0.317 0.1337 Pampiona, UNAV 0.36 0.1544 Sofia, NNHT -0.43 0.1247 0.033 0.1247		0.52 [0.31; 0.73] 0.03 [-0.24; 0.19] 0.10 [-0.50; 0.30] 0.12 [-0.50; 0.25] 0.31 [0.05; 0.57] 0.36 [0.05; 0.66] 0.34 [-0.60; -0.08] 0.03 [-0.28; 0.21]	14.1% 14.0% 10.0% 10.4% 13.0% 12.1% 13.0% 13.4%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Hersklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	-0.02 0.0786 0.20 0.0829 0.53 0.1257 0.33 0.1448 -0.08 0.1022 0.02 0.1087 0.35 0.1199 0.18 0.0914	-#- -#- -#- -#-	$\begin{array}{c} -0.02 \left[-0.18; 0.13\right] & 14.6\% \\ 0.20 \left[0.04; 0.36\right] & 14.3\% \\ 0.33 \left[0.05; 0.61\right] & 9.8\% \\ -0.08 \left[-0.28; 0.13\right] & 12.8\% \\ 0.02 \left[-0.19; 0.24\right] & 12.3\% \\ 0.35 \left[0.12; 0.59\right] & 11.5\% \\ 0.36 \left[0.02; 0.36\right] & 13.6\% \end{array}$
Random effects model Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0603$	-0.6 -0.2 0 0.2 0.4 0.6	0.08 [-0.11; 0.28]	100.0%	Random effects mode Heterogeneity: l ² = 72%.		-0.5 0 0.5	0.17 [0.04; 0.31] 100.0%
S1 T2-T3 Center Effect SE		95%-CI	Weight	G4 T2-T3 Center	Effect SE		95%-CI Weight
Maastricht, UM 0.14 0.089- Copenhagen, RVAU -0.03 0.0992 Cambridge, HNR -0.05 0.1202 Heraklion, UoC -0.08 0.1502 Potsdam, POT 0.18 0.118 Pampiona, UNAV 0.22 0.131 Sofia, NMT -0.02 0.1055 Prague, CU 0.17 0.0875		0.14 [-0.04; 0.32] -0.03 [-0.23; 0.16] -0.05 [-0.28; 0.19] -0.08 [-0.37; 0.22] 0.18 [-0.05; 0.41] 0.22 [-0.04; 0.47] -0.02 [-0.23; 0.19] 0.17 [0.00; 0.34]	18.1% 14.7% 10.0% 6.4% 10.4% 8.4% 12.9% 18.9%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Herakilon, UoC Potsdam, POT Pampiona, UNAV Sofia, NMTI Prague, CU	-0.01 0.1169 -0.27 0.1206 -0.11 0.1760 -0.08 0.1912 -0.17 0.1381 0.06 0.1622 -0.19 0.1357 -0.39 0.1166		$\begin{array}{cccc} -0.01 & [-0.24; 0.22] & 16.8\% \\ -0.27 & [-0.50; -0.03] & 15.8\% \\ -0.011 & [-0.46; 0.23] & 8.4\% \\ -0.08 & [-0.45; 0.30] & 7.2\% \\ -0.17 & [-0.44; 0.10] & 12.7\% \\ 0.06 & [-0.26; 0.38] & 9.6\% \\ -0.19 & [-0.46; 0.07] & 13.1\% \\ -0.39 & [-0.62; -0.16] & 16.7\% \end{array}$
Random effects model Heterogeneity: $I^2 = 10\%$, $\tau^2 < 0.0001$	-0.4 -0.2 0 0.2 0.4	0.08 [0.00; 0.15]	100.0%	Random effects model Heterogeneity: $l^2 = 19\%$, τ^2	² = 0.0039	0.6 -0.4 -0.2 0 0.2 0.4 0.4	-0.17 [-0.27; -0.06] 100.0%
S2 T2-T3 Center Effect SE		95%-CI	Weight	HM T2–T3 Center	Effect SE		95%-CI Weight
Maastricht, UM -0.62 0.1094 Copenhagen, RVAU -0.02 0.171 Cambridge, HNR -0.10 0.205 Heraklion, UoC 0.08 0.194 Potsdam, POT -0.40 0.1327 Pampiona, UNAV -0.49 0.1533 Solia, NMT 0.33 0.1404 Prapue, CU 0.04 0.1400		0.62 [-0.84; -0.41] 0.02 [-0.25; 0.21] 0.10 [-0.50; 0.31] 0.08 [-0.31; 0.46] 0.40 [-0.66; -0.14] 0.49 [-0.79; -0.19] 0.33 [0.06; 0.61] 0.04 [-0.23; 0.32]	13.9% 13.7% 10.4% 10.8% 13.1% 12.3% 12.8% 12.8%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	0.66 0.0936 0.09 0.1145 0.20 0.1455 0.50 0.1683 0.54 0.1033 0.47 0.1340 -0.23 0.1175 0.10 0.1296		$\begin{array}{ccccc} - 0.66 & [0.47; 0.84] & 13.6\% \\ 0.09 & [-0.14; 0.31] & 12.9\% \\ 0.20 & [-0.06; 0.48] & 11.8\% \\ 0.05 & [-0.36; 0.28] & 11.0\% \\ 0.54 & [0.34; 0.74] & 13.3\% \\ 0.47 & [0.21; 0.74] & 12.2\% \\ -0.23 & [-0.46; 0.00] & 12.8\% \\ 0.10 & [-0.15; 0.35] & 12.4\% \end{array}$
Random effects model Heterogeneity: $l^2 = 84\%$, $\tau^2 = 0.0778$	-0.5 0 0.5	0.16 [-0.37; 0.06]	100.0%	Random effects mode Heterogeneity: I ² = 87%, 1	1 τ ² = 0.0726	-0.5 0 0.5	0.23 [0.02; 0.44] 100.0%
S3 T2-T3 Center Effect SE		95%-CI	Weight	B T2–T3 Center	Effect SE		95%-Cl Weight
Maastricht, UM -0.08 0.092C Copenhagen, RVAU 0.12 0.688 Cambridge, HNR 0.43 0.125 Heraklion, UoC 0.29 0.159 Potsdam, POT -0.15 0.110 Pampiona, UNAV -0.03 0.113 Sofia, NMT 0.24 0.131 Prague, CU 0.03 0.1032		-0.08 [-0.26; 0.11] 0.12 [-0.06; 0.29] 0.43 [0.18: 0.67] 0.29 [-0.03; 0.60] 0.15 [-0.36; 0.07] 0.03 [-0.27; 0.20] 0.24 [-0.01; 0.50] 0.03 [-0.18; 0.23]	14.7% 15.1% 11.6% 9.0% 12.9% 12.1% 11.1% 13.6%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU	0.33 0.0845 -0.02 0.0793 -0.22 0.1490 -0.16 0.1330 0.34 0.0911 0.25 0.0911 -0.21 0.1067 -0.01 0.0963	-#	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Random effects model Heterogeneity: $I^2 = 63\%$, $\tau^2 = 0.0184$	-0.6-0.4-0.2 0 0.2 0.4 0.6	0.09 [-0.03; 0.21]	100.0%	Random effects model Heterogeneity: I ² = 81%, 1		-0.4 -0.2 0 0.2 0.4	0.05 [-0.10; 0.21] 100.0%
S4 T2-T3 Center Effect SE		95%-CI	Weight	CF T2-T3 Center	Effect SE		95%-Cl Weight
Massinicht, UM -0.01 0.1162 Copenhagen, RVAU. -0.27 0.1224 Cambhidge, HNR -0.12 0.1783 Herakilon, UAC -0.10 0.1953 Potsdam, PDT -0.17 0.1406 Pampiona, INAW 0.07 0.1595 Sofia, NMTI -0.19 0.1379 Praque, CU -0.40 0.1176 Random effect_model -0.010		0.01 [-0.24; 0.22] 0.27 [-0.51; -0.03] 0.12 [-0.47; 0.23] 0.10 [-0.48; 0.28] 0.17 [-0.44; 0.11] 0.07 [-0.25; 0.38] 0.19 [-0.46; 0.08] 0.40 [-0.63; -0.17] 0.17 [-0.27; -0.06]	16.8% 15.6% 8.4% 7.1% 12.5% 10.2% 12.9% 16.5% 100.0%	Maastricht, UM Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pamplona, UNAV Sofia, NMTI Prague, CU Random effects model			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
G0 T2-T3	0.6 -0.4 -0.2 0 0.2 0.4 0.6			Heterogeneity: I ² = 81%, t	-	-0.6 -0.4 -0.2 0 0.2 0.4 0.6	
Center Effect SE Maastricht, UM 0.40 0.0963		95%-Cl	14.3%	Center Maastricht, UM	Effect SE		95%-Cl Weight -0.53 [-0.67; -0.38] 13.2%
Copenhagen, RVAU -0.00 0.0961 Cambridge, HNR -0.16 0.1762 Horakilon, UoC -0.09 0.1839 Potsdam, POT 0.24 0.1204 Pampiona, UNAV 0.28 0.1239 Sofia, NMT -0.25 0.1030 Prague, CU -0.03 0.1034 Random effects model Heterogenetic; f* - 75%, c* - 0.0340		0.00 [-0.19; 0.19] 0.16 [-0.51; 0.18] 0.09 [-0.45; 0.27] 0.24 [0.00; 0.47] 0.28 [0.04; 0.52] 0.25 [-0.46; -0.03] 0.03 [-0.24; 0.17] 0.06 [-0.09; 0.21]	14.3% 9.5% 9.1% 12.8% 12.6% 13.5% 13.9% 100.0%	Copenhagen, RVAU Cambridge, HNR Heraklion, UoC Potsdam, POT Pampiona, UNAV Sofia, NMTI Prague, CU Random effects model Heterogeneity: $\vec{F} = 65\%$, \vec{c}	-0.50 0.0635 -0.34 0.0997 -0.39 0.0915 -0.56 0.0727 -0.49 0.1093 -0.17 0.0785 -0.58 0.0661		$\begin{array}{c} -0.50 \left[-0.62; -0.37 \right] \ 14.6\% \\ -0.34 \left[-0.54; -0.15 \right] \ 10.6\% \\ -0.39 \left[-0.57; -0.21 \right] \ 11.4\% \\ -0.56 \left[-0.70; -0.42 \right] \ 13.5\% \\ -0.49 \left[-0.70; -0.21 \right] \ 35.6\% \\ -0.17 \left[-0.32; -0.01 \right] \ 12.8\% \\ -0.58 \left[-0.71; -0.45 \right] \ 14.3\% \\ -0.45 \left[-0.54; -0.36 \right] \ 100.0\% \end{array}$
	-0.4 -0.2 0 0.2 0.4				_ 0.0110	-0.6-0.4-0.2 0 0.2 0.4 0	6

Figure 2. The effect of different weight-maintenance diets on plasma N-glycome in the second time period of 26 weeks (T2–T3). Changes in plasma protein glycome composition after performing meta-analysis for all the centers are shown. SE—standard error; 95% CI–95% confidence interval; T1—time point 1; T2—time point 2; T3—time point 3; LB—total low branching glycans; HB—total high branching glycans; S0—total neutral glycans; S1—total monosialylated glycans; S2—total disialylated glycans; G3—total trisialylated glycans; S4—total tetrasialylated glycans; G3—total rigalactosylated glycans; G4—total tetragalactosylated glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans with core fucose; AF—total glycans with antennary fucose.

Figure 3. Changes in plasma N-glycome composition between different time-periods. Presented glycome changes are normalized to the first point. T1—time point 1; T2—time point 2; T3—time point 3; LB—total low branching glycans; HB—total high branching glycans; S0—total neutral glycans; S1—total monosialylated glycans; S2—total disialylated glycans; S3—total trisialylated glycans; S4—total tetrasialylated glycans; G0—total agalactosylated glycans; G1—total monogalactosylated glycans; G2—total digalactosylated glycans; G3—total trigalactosylated glycans; G4—total tetragalactosylated glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans with core fucose; AF—total glycans with antennary fucose.

Table 2. Changes in plasma N-glycome composition in the second time period (T2–T3) after meta-
analysis. Seven glycan traits showed statistically significant changes in their levels after 6 months on
different weight-maintenance diets (adjusted <i>p</i> -value < 0.05). AF—total glycans with antennary fucose;
LB—total low branching glycans; HB—total high branching glycans; S0—total neutral glycans; S1—
total monosialylated glycans; S2-total disialylated glycans; S3-total trisialylated glycans; S4-total
tetrasialylated glycans; G0-total agalactosylated glycans; G1-total monogalactosylated glycans;
G2-total digalactosylated glycans; G3-total trigalactosylated glycans; G4-total tetragalactosylated
glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans
with core fucose.

	T2-T3					
Glycan	Effect	Standard Error	p Value	Adjusted <i>p</i> Value		
AF total	-0.45084	0.04737	$1.79 imes 10^{-21}$	$1.905 imes 10^{-20}$		
G4 total	-0.16539	0.05396	0.00218	0.00580		
S4 total	-0.16587	0.05526	0.00269	0.00661		
G3 total	0.17495	0.06677	0.00878	0.01873		
G2 total	-0.18253	0.07246	0.01176	0.02353		
LB total	-0.11801	0.04941	0.01693	0.03186		
HM total	0.23105	0.10521	0.02809	0.04994		
S1 total	0.07768	0.03809	0.04144	0.06630		
HB total	0.09861	0.05152	0.05560	0.08472		
S3 total	0.08903	0.06291	0.15702	0.21847		
S2 total	-0.15549	0.11186	0.16449	0.21932		
S0 total	0.08276	0.10077	0.41152	0.50649		
G1 total	0.07344	0.09667	0.44741	0.51133		
G0 total	0.06073	0.07868	0.44021	0.51133		
B total	0.05390	0.07715	0.48477	0.53492		
CF total	0.01978	0.09589	0.83656	0.83656		

In the first time period (T1–T2), when subjects were on an 8-week LCD (Table 1, Figure 1), the most prominent changes in specific glycan structure levels were an increase in glycan structures with the antennary fucose (adjusted *p* value < 4.93×10^{-22}) and an increase in low-branched glycan structures (adjusted *p* value < 2.26×10^{-21}). The letter one is followed by a concomitant decrease in highly branched structures (adjusted *p* value < 2.32×10^{-13}), such as trigalactosylated (adjusted *p* value < 4.10×10^{-16}) and trisialylated (adjusted *p* value < 1.01×10^{-12}) glycan structures. Tetrasialylated (adjusted *p* value < 7.54×10^{-7}), tetragalactosylated (adjusted *p* value < 1.90×10^{-6}), as well as digalactosylated (adjusted *p* value < 3.29×10^{-5}) glycan structures showed the statistically significant increase after the LCD. Moreover, high-mannose glycans (adjusted *p* value < 2.22×10^{-7}) decreased, while bisecting glycans (adjusted *p* value < 0.00024) and core-fucosylated glycans (adjusted *p* value < 0.00959) increased their levels.

In the second time period (T2–T3), when subjects were going through one of the five weight-maintenance diets (Table 2, Figure 2), undoubtedly the most striking change was a decrease in glycan structures with the antennary fucose (adjusted *p* value < 1.91×10^{-20}). In addition, tetrasialylated structures (adjusted *p* value < 0.00661), tetragalactosylated structures (adjusted *p* value < 0.00580), and digalactosylated glycan structures (adjusted *p* value < 0.02353) and low-branched glycans (adjusted *p* value < 0.03186) decreased, while trigalactosylated (adjusted *p* value < 0.01873) and high-mannose glycans (adjusted *p* value < 0.04994) increased.

When comparing the effect of different weight-maintenance diets on glycome composition during the second time period (T2–T3) we did not see any significant differences between them (Supplementary Figure S3).

3. Discussion

During the 8-week period on the LCD, most people lost > 8% of their initial body weight [43], subsequentially reducing their average concentrations of high-sensitivity

C-reactive protein (CRP) [44]. Obesity causes a state of a chronic low-grade systemic inflammation [45], with elevated levels of certain circulating proinflammatory adipokines, such as TNF- α , IL-6, leptin, plasminogen activator inhibitor-1 (PAI-1), angiotensinogen, and CRP [46], as well as lower levels of adiponectin [47]. Moreover, during the chronic inflammation, other APPs mainly secreted by hepatocytes, such as α 1-acid glycoprotein (AGP) [48,49], α 1-antitrypsin (A1AT) [50], α 1-antichymotrypsin (AACT) [50], and haptoglobin (HPT) [50,51], exhibit not only altered serum concentrations [52,53] in response to proinflammatory cytokines [54], but also altered glycosylation [28,34,55].

The most prominent changes in the T1-T2 period of the Diogenes study were the increase in glycan structures with antennary fucose and low-branched glycan structures. The increase in low-branched, mono- and biantennary, glycan structures and accompanied decrease in high-branched glycan structures may primarily be contributed to the decreased levels of triantennary structures, trigalactosylated and trisialylated, as well as the increase in digalactosylated glycans. Other low-branched glycosylation features, such as monogalactosylated, disialylated, and monosialylated glycan structures exhibit the positive trend in their levels likewise, although not statistically significant. Elevated levels of complex high-branched and concomitant lower levels of low-branched glycan structures were found in many different chronic diseases, such as chronic obstructive pulmonary disease [56], chronic low back pain [57], T2D [35], and ovarian cancer [58], and are commonly related to chronic inflammation. Moreover, the same patterns of glycan branching as a response to a disease have been related to the specific serum proteins. High branching has been associated with glycosylation changes in some major APPs; transferrin glycans showed increased branching in rheumatoid arthritis [59] and ulcerative colitis [60], HPT glycans exhibited higher branching in pancreatic, hepatic, ovarian, and prostate cancer [61], A1AT glycans in hepatocellular carcinoma [62], while AACT showed higher branching in septic patients [63]. Therefore, decreased high branching and increased low branching of plasma proteins confirm that the LCD and subsequent weight loss correlate with the mitigation of chronic inflammation.

Contrary to the overall high-branched glycan structures, tetragalactosylated and tetrasialylated structures increased during the first time period. Tetra-antennary glycan structures are considered to primarily originate from AGP [64,65]. Increased levels of all AGP highly branched glycan structures (tri- and tetra-antennary alike) have previously been associated with different chronic inflammatory conditions [65]. However, it seems that AGP levels are increased during calorie restriction which, at least partially explains the observed increase in tetragalactosylated and tetrasialylated structures [66,67]. Moreover, enhanced levels of antennary fucose on glycan structures are also a consequence of the increased AGP levels since most of the structures with α 1,3 linked fucose on tri-, and tetra-antennary sialylated glycan predominantly originate from AGP. Changes in glycan structures originating from the AGP in response to LCD may not be solely due to the changes in AGP concentration. AGP may regulate food intake and energy homeostasis in response to nutrition status through the leptin receptor [68] and it may in fact protect adipose tissue from inflammation and metabolic dysfunction in mice by suppressing proinflammatory gene expression and pathways such as NF-κB and mitogen-activated protein kinase signaling and reactive oxygen species generation [69]. AGP glycans account for 42% of its molecular weight [70]; however, their exact role in these processes is yet to be elucidated.

Other glycosylation features that changed significantly after the 8-week LCD diet were decrease in high-mannose-type glycans and rise in bisecting and core fucosylation. High-mannose (M5–M9) glycans in human plasma proteins are predominantly derived from the apolipoprotein B-100 (ApoB) and immunoglobulin M (IgM) [33]. ApoB transports most of the plasma cholesterol and has a major role in the assembly of atherogenic low- and very low-density lipoproteins [33], and it has been shown that its concentration decreases during calorie restriction [71]. Yet, due to the analytical method used for plasma N-glycan analysis, it is hard to say whether the reduction in total plasma protein high-mannose glycans after LCD is solely caused by the change in ApoB concentrations or by the changes

in ApoB glycosylation, or both. Core fucosylation also shows a slight increase after the LCD; even though the majority of core fucosylated glycans originate from the IgG, we recently showed that IgG core fucosylation insignificantly decreases after LCD [72] and therefore observed changes cannot be attributed to this plasma protein. Moreover, IgG plasma core fucosylated N-glycan structures may originate from other immunoglobulins such as IgA and IgM as well as from apolipoproteins D and E, which means alterations in concentrations and/or glycosylation are the probable source of increased core fucosylation.

Plasma protein glycosylation alterations after the LCD-induced weight loss mainly reflect the anti-inflammatory glycosylation pattern [73,74], which is in line with the Diogenes study IgG glycosylation analysis [72].

Observed glycosylation alterations in the first time period were largely nullified after the six months on different weight maintenance regimes (Figure 3), which suggests that mainly the weight loss itself steers the glycosylation changes in plasma proteins. Moreover, there was no significant difference in glycosylation patterns between different types of weight-maintenance diets. Even though it was published that a diet rich in refined grain intake was associated with increased total fucosylation and reduced total sialylation [41] of serum proteins compared with dietary intake of vegetables and dairy, it is necessary to conduct further research to gain a more meticulous insight into dietary influence on plasma/serum protein glycosylation.

4. Material Methods

4.1. Subjects

Plasma glycoproteins' glycome composition was determined by analyzing 1850 blood plasma samples collected at eight centers of Diogenes study, previously described in detail [43,75,76]. Briefly, 938 overweight or obese adults, with the mean age of 41 years and mean BMI of 34 kg m⁻², entered the first phase of the study, the low-calorie diet phase. Participants (n = 773) who achieved the targeted weight loss ($\geq 8\%$ of their baseline weight) during the 8-week LCD period were randomly assigned to one of five maintenance diets for next six months. Randomization was performed using a simple block randomization method with stratification. Blood was collected at three different time points; at the beginning of the LCD intervention (time point 1, T1), after eight weeks on the LCD diet (time point 2, T2), and after six months on a weight-maintenance diet (time point 3, T3). More information about the Diogenes participants included in the plasma protein glycosylation analysis can be found in our recently published study [72].

4.2. Sample Preparation

Sample preparation and glycan analysis were carried out using the high-throughput method. Block randomization was used to determine the position of samples in 26 96-well plates. There were approximately 70 samples in each 96-well plate along with five randomly selected technical replicate samples from the same plate and five from other plates. In addition to the sample replicates, four internal plasma standards were included in each plate to maintain quality control and allow batch correction to be performed later.

The samples were prepared as previously described [77]. Briefly, 10 μ L of each plasma sample was pipetted into the sample collection plates (Waters, Milford, CT, USA) and 20 μ L of the detergent, 2% (w/v) sodium dodecyl sulfate (Invitrogen, Carlsbad, NM, USA) was added to all samples. Samples were incubated at 65 °C for 10 min to successfully denature plasma proteins. A total of 10 μ L of 4% (v/v) Igepal CA-630 (Sigma-Aldrich, St. Louis, MO, USA) was added to the samples to prevent undesired denaturation of the enzyme PNGase F (peptide-N-(N-acetyl-glucosaminyl)-asparaginamidase) F; Promega, Madison, USA) which in the next step was added as a mixture with 5x phosphate buffer saline (5x PBS, prepared in-house) in a total volume of 10 μ L per sample. Plasma protein deglycosylation was performed at 37 °C for 18 h. After deglycosylation was complete, the samples were fluorescently labeled with 25 μ L of a mixture of 2-aminobenzamide (2-AB; Sigma-Aldrich) and 30% glacial acetic acid (Merck, Germany) in dimethyl sulfoxide (Sigma-Aldrich), and incubated for 2 h at 65 °C. To remove the excess of reagents, 2-AB-labeled N-glycans were purified by hydrophilic liquid chromatography solid-phase extraction (HILIC-SPE) using 0.2 μ m wwPTFE 96-well membrane filter plates (Pall, New York, NY, USA). The samples were continuously washed with freshly prepared 96% acetonitrile (ACN) and the purified labeled glycans were eluted with 2 × 90 μ L of ultrapure water and stored at -20 °C until further use.

4.3. Hydrophilic Interaction Chromatography—Ultra-High-Performance Liquid Chromatography with Fluorescence Detection (HILIC-UHPLC-FLR) N-glycan Analysis

Analysis of 2-AB-labeled plasma protein N-glycans was performed on three Waters Acquity UPLC H-class instruments monitored by Waters Empower 3 software and consisting of a quaternary solvent manager, a sample manager and a fluorescence detector set with excitation and emission wavelengths of 330 and 420 nm, respectively. Labeled N-glycans were separated using Waters UPLC Glycan bridged ethylene hybrid (BEH) Amide chromatographic columns (130 A, 1.7 μ m BEH particles, 2.1 \times 10 mm) with 100 mmol/L freshly prepared ammonium formate, pH 4.4 as solvent A, and 100% LC-MS grade ACN (Honeywell, Charlotte, NC, USA) as solvent B. The separation method included a linear gradient of 70–53% acetonitrile (v/v) at a flow rate of 0.561 mL mL/min over 25 min in a 32.5 min analytical run with the injection volume of 20 µL. The system was calibrated with an external standard of hydrolyzed and 2-AB-labeled glucose oligomers, from which the individual glycan retention times were translated into glucose units (GUs). Chromatograms acquired in the analysis were processed using the automated integration method and separated into 39 glycan peaks (GP31–GP39). Glycan peaks were analyzed by their elution positions and then measured in glucose units, which were compared with reference values found in the GlycoStore database (available at: https://glycostore.org/, accessed on 15 January 2022) for structure assignment. A detailed interpretation of the glycan structures corresponding to each glycan peak is presented in Supplementary Figure S1. total area normalized (%Area) values were obtained for each peak to enable relative quantification of plasma N-glycans.

4.4. Data Analysis

4.4.1. Normalization and Batch Correction

Normalization and batch correction were performed on UHPLC glycan data to eliminate experimental variation in measurements. To remove experimental noise and make the glycan peak measurements comparable across samples regardless of their absolute intensities, a total area normalization was performed. The peak area of each of the 39 glycan structures obtained directly was divided by the total area of the corresponding chromatogram and multiplied by 100, with each peak being expressed as a percentage of the total integrated area. Before batch correction, normalized glycan measurements were log-transformed due to the right skewness of their distributions and the multiplicative nature of batch effects. Batch correction was performed on logarithmically transformed measurements using the ComBat method (R package sva) [78], where the technical source of variation, the number of sample plates, was modeled as a batch covariate. This was performed for each glycan peak. Estimated batch effects were subtracted from logarithmically transformed measurements to provide measurement correction for experimental noise.

4.4.2. Derived Traits

Sixteen derived traits were calculated from 39 glycan structures directly obtained by UHPLC analysis. These derived glycan traits represent a share of structurally similar glycan groups with joint biosynthetic pathways. Total plasma protein-derived glycan traits were calculated as the ratios of glycan peaks (GP1-GP39) with the same structural characteristics in a total plasma protein glycome: total low branching glycans (mono- and biantennary glycans), LB = (GP1 + GP2 + GP3 + GP4 + GP5 + GP6 + GP8 + GP9 + GP10 + GP11 + $0.5 \times GP12 + GP13 + GP14 + GP15 + GP16 + GP17 + GP18 + GP20 + GP21 + GP22 +$

GP23)/SUM (GP1-GP39) \times 100; total high branching glycans (tri- and tetraantennary glycans), HB = (GP24 + GP25 + GP26 + GP27 + GP28 + GP29 + GP30 + GP31 + GP32 + GP33 + GP34 + GP35 + GP36 + GP37 + GP38 + GP39)/SUM (GP1 – GP39) \times 100; total agalactosylated glycans, $G0 = (GP1 + GP2)/SUM (GP1 - GP39) \times 100$; total monogalactosylated glycans, $G1 = (GP3 + GP4 + GP5 + GP6 + GP13)/SUM (GP1 - GP39) \times 100$; total digalactosylated glycans, G2 = GP8 + GP9 + GP10 + GP11 + 0.5xGP12 + GP14 + GP15 + GP16 + GP17 + GP17 + GP16 + GP17 $GP18 + GP20 + GP21 + GP22 + GP23)/SUM (GP1 - GP39) \times 100$; total trigalactosylated glycans, G3 = (GP24 + GP25 + GP26 + GP27 + GP28 + GP29 + GP30 + GP31 + GP32 + GP33 + GP34+ GP35)/SUM (GP1 – GP39) \times 100; total tetragalactosylated glycans, G4 = (GP36 + $GP37 + GP38 + GP39)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP3)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39)/SUM (GP1 - GP39) \times 100$; total neutral glycans, $S0 = (GP1 + GP2 + GP3)/SUM (GP1 - GP39)/SUM (GP1 - GP39) \times 100$; total neutral glycans, S0 = (GP1 + GP2)/SUM (GP1 - GP39)/SUM (GP1 - GP39)/SU $GP3 + GP4 + GP5 + GP6 + GP8 + GP9 + GP10 + GP11)/SUM (GP1 - GP39) \times 100; total$ monosialylated glycans, S1 = (0.5xGP12 + GP13 + GP14 + GP15 + GP16 + GP17)/SUM $(GP1 - GP39) \times 100$; total disialylated glycans, S2 = (GP18 + GP20 + GP21 + GP22 + GP23 + GP23)+ GP24 + GP25 + GP26 + GP27)/SUM (GP1 – GP39) \times 100; total trisialylated glycans, S3 = (GP28 + GP29 + GP30 + GP31 + GP32 + GP33 + GP34 + GP35 + GP36)/SUM (GP1 - GP39) \times 100; total tetrasialylated glycans, S4 = (GP37 + GP38 + GP39)/SUM (GP1 -GP39) \times 100; total glycans with bisecting GlcNAc, B = (GP2 + GP3 + GP6 + GP9 + GP11 + GP15 + GP17 + GP23)/SUM (GP1 – GP39) \times 100; total glycans with antennary fucose, $AF = (GP27 + GP33 + GP35 + GP39)/SUM (GP1 - GP39) \times 100$; total glycans with core fucose, CF = (GP1 + GP2 + GP4 + GP5 + GP6 + GP10 + GP11 + GP13 + GP16 + GP17 + GP22 + GP23 + GP31 + GP34 + GP35)/SUM (GP1 – GP39) \times 100; total high-mannose glycans, $HM = (GP7 + 0.5 \times GP12 + GP19)/SUM (GP1 - GP39) \times 100.$

4.4.3. Longitudinal Analysis

Longitudinal analysis of patient samples during their observation period was performed by implementing a linear mixed effects model R-package lme4 [79], where glycan measurement was the dependent variable, time was modeled as a fixed effect, the individual ID was included in the model as a random intercept, with age, sex, and BMI included as additional covariates. The analyses were initially performed separately for each center and then combined using a random effects meta-analysis approach (R-package meta, metagen; method = "ML") [80]. Prior to the analyses, all glycan variables were transformed to a standard normal distribution (mean = 0, sd = 1) by the inverse transformation from ranks to normality (R package "GenABEL", function rntransform) [81]. The use of rank-transformed variables in analyses makes estimated effects of different glycans in different centers comparable because transformed glycan variables have the same standardized variance. The false detection rate was controlled using the Benjamini–Hochberg method (function p.adjust(method = BH)). The data were analyzed and visualized using the R programming language (version 3.0.1).

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/ijms232415772/s1. Supplementary Figure S1. Representative HILIC-UPLC-FLR chromatographic profile of the plasma protein 2-aminobenzamide-labeled Nglycome. Graphic representation of the glycan structures corresponding to each glycan peak (GP). In the case of multiple structures per GP, the upper structure is the major one, and the lower one is minor in abundance. EU: emission units. Supplementary Figure S2. Plasma N-glycome composition changes between different centers of the Diogenes study normalized to the first point. T1—time point 1; T2—time point 2; T3—time point 3; LB—total low branching glycans; HB—total high branching glycans; S0-total neutral glycans; S1-total monosialylated glycans; S2-total disialylated glycans; S3-total trisialylated glycans; S4-total tetrasialylated glycans; G0-total agalactosylated glycans; G1—total monogalactosylated glycans; G2—total digalactosylated glycans; G3-total trigalactosylated glycans; G4-total tetragalactosylated glycans; HM-total high-mannose glycans; B-total glycans with bisecting GlcNAc; CF-total glycans with core fucose; AF-total glycans with antennary fucose. Supplementary Figure S3. Plasma N-glycome composition changes between different diets normalized to the first point. GI-glycaemic index; T1-time point 1; T2time point 2; T3—time point 3; LB—total low branching glycans; HB—total high branching glycans; S0—total neutral glycans; S1—total monosialylated glycans; S2—total disialylated glycans; S3—total trisialylated glycans; S4—total tetrasialylated glycans; G0—total agalactosylated glycans; G1—total monogalactosylated glycans; G2—total digalactosylated glycans; G3—total trigalactosylated glycans; G4—total tetragalactosylated glycans; HM—total high-mannose glycans; B—total glycans with bisecting GlcNAc; CF—total glycans with core fucose; AF—total glycans with antennary fucose.

Author Contributions: H.D.—carried out the experiments, writing—original draft preparation, review and editing, P.T.—carried out the experiments, F.V.—data analysis and interpretation, visualization, A.A., E.E.B. and G.L.—involved in funding acquisition, study design, reviewing, and editing the manuscript, I.G.—writing—original draft preparation, review and editing, supervised the project. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Structural and Investment Funds grant for the Croatian National Centre of Competence in Molecular Diagnostics (grant number KK.01.2.2.03.0006); IRI "CardioMetabolic" grant (grant number KK.01.2.1.02.0321); and Croatian National Centre of Research Excellence in Personalized Healthcare grant (grant number KK.01.1.1.01.0010).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the local local ethical committees in the respective countries.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to data being confidential records.

Acknowledgments: This work was supported by the Human Glycome Project. Equipment and products from Waters and New England Biolabs[®], Inc. were used for this research. The work of doctoral student Helena Deriš has been supported in part by the "Young researchers' career development project—training of doctoral students" of the Croatian Science Foundation.

Conflicts of Interest: The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Gordan Lauc is the founder and owner and Helena Deriš, Petra Tominac, Frano Vučković and Ivan Gudelj are employees of Genos Ltd., a company that specializes in high-throughput glycomics and has several patents in this field. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that can be construed as a potential conflict of interest.

Abbreviations

BMI—body mass index; CVD—cardiovascular disease; T2D—type 2 diabetes; LCD—low-calorie diet; LP—low protein; HP—high protein; LGI—low glycemic index; HGI—high glycemic index; U(H)PLC—ultra-(high)-performance liquid chromatography; APPs—acute phase proteins; CRP—C-reactive protein; AGP— α 1-acid glycoprotein; HPT—haptoglobin; A1AT— α 1-antitrypsin; AACT— α 1-antichymotrypsin; ApoB—the apolipoprotein B-100; GP—glycan peak.

References

- World Health Organization. Obesity and Overweight. 2019. Available online: https://www.who.int/en/news-room/factsheets/detail/obesity-and-overweight (accessed on 25 August 2022).
- Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; de Gonzalez, A.B.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; Joshy, G.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. *Lancet* 2016, 388, 776–786. [CrossRef] [PubMed]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. *JAMA Cardiol.* 2018, *3*, 280–287. [CrossRef] [PubMed]
- 4. Turpie, A.G.G.; Bauer, K.A.; Eriksson, B.I.; Lassen, M.R. Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. *Arch. Intern. Med.* 2002, *162*, 1867–1872. [CrossRef]
- 5. Bays, H.E.; Chapman, R.H.; Grandy, S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: Comparison of data from two national surveys. *Int. J. Clin. Pract.* **2007**, *61*, 737–747. [CrossRef] [PubMed]
- Narayan, K.M.V.; Boyle, J.P.; Thompson, T.J.; Gregg, E.W.; Williamson, D.F. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care 2007, 30, 1562–1566. [CrossRef]

- 7. Barberio, A.M.; Alareeki, A.; Viner, B.; Pader, J.; Vena, J.E.; Arora, P.; Friedenreich, C.M.; Brenner, D.R. Central body fatness is a stronger predictor of cancer risk than overall body size. *Nat. Commun.* **2019**, *10*, 383. [CrossRef]
- Casanova, F.; O'Loughlin, J.; Martin, S.; Beaumont, R.N.; Wood, A.R.; Watkins, E.R.; Freathy, R.M.; Hagenaars, S.P.; Frayling, T.M.; Yaghootkar, H.; et al. Higher adiposity and mental health: Causal inference using Mendelian randomization. *Hum. Mol. Genet.* 2021, 30, 2371–2382. [CrossRef]
- 9. Harrington, M.; Gibson, S.; Cottrell, R.C. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. *Nutr. Res. Rev.* **2009**, 22, 93–108. [CrossRef]
- 10. Clifton, P.M.; Keogh, J.B. Effects of different weight loss approaches on CVD risk. Curr. Atheroscler. Rep. 2018, 20, 27. [CrossRef]
- Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [CrossRef]
- 12. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. *Lancet* 2009, 374, 1677–1686. [CrossRef] [PubMed]
- Strelitz, J.; Sharp, S.J.; Khunti, K.; Vos, R.C.; Rutten, G.E.H.M.; Webb, D.R.; Witte, D.R.; Sandbæk, A.; Wareham, N.J.; Griffin, S.J. Association of weight loss and weight loss maintenance following diabetes diagnosis by screening and incidence of cardiovascular disease and all-cause mortality: An observational analysis of the ADDITION-Europe trial. *Diabetes Obes. Metab.* 2021, 23, 730–741. [CrossRef] [PubMed]
- 14. Aucott, L.S.; Philip, S.; Avenell, A.; Afolabi, E.; Sattar, N.; Wild, S. Patterns of weight change after the diagnosis of type 2 diabetes in Scotland and their relationship with glycaemic control, mortality and cardiovascular outcomes: A retrospective cohort study. BMJ Open 2016, 6, e010836. [CrossRef]
- 15. Wing, R.R.; Phelan, S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005, 82, 222S–225S. [CrossRef] [PubMed]
- 16. Wing, R.R.; Hill, J.O. Successful weight loss maintenance. Annu. Rev. Nutr. 2001, 21, 323–341. [CrossRef]
- 17. Hall, K.D.; Kahan, S. Maintenance of lost weight and long-term management of obesity. *Med. Clin. North Am.* 2018, 102, 183–197. [CrossRef] [PubMed]
- Paixão, C.; Dias, C.M.; Jorge, R.; Carraça, E.V.; Yannakoulia, M.; De Zwaan, M.; Soini, S.; Hill, J.O.; Teixeira, P.J.; Santos, I. Successful weight loss maintenance: A systematic review of weight control registries. *Obes. Rev.* 2020, *21*, 2008–2011. [CrossRef] [PubMed]
- 19. Lee, M.B.; Hill, C.M.; Bitto, A.; Kaeberlein, M. Antiaging diets: Separating fact from fiction. *Science* 2021, 374, eabe7365. [CrossRef] [PubMed]
- 20. Hamm, P.; Shekelle, R.B.; Stamler, J. Large fluctuations in body weight during young adulthood and twenty-fwe-year risk of coronary death in men. *Am. J. Epidemiol.* **1989**, *129*, 312–318. [CrossRef]
- Olson, M.B.; Kelsey, S.F.; Bittner, V.; Reis, S.; Reichek, N.; Handberg, E.; Merz, C.N.B. Weight cycling and high-density lipoprotein cholesterol in women: Evidence of an adverse effect: A report from the NHLBI-sponsored WISE study. *J. Am. Coll. Cardiol.* 2000, *36*, 1565–1571. [CrossRef]
- 22. Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. *Essentials of Glycobiology*; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [CrossRef]
- 23. Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [CrossRef] [PubMed]
- Hennig, R.; Cajic, S.; Borowiak, M.; Hoffmann, M.; Kottler, R.; Reichl, U.; Rapp, E. Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. *Biochim. Biophys. Acta Gen. Subj.* 2016, 1860, 1728–1738. [CrossRef] [PubMed]
- Gornik, O.; Wagner, J.; Pučić, M.; Knežević, A.; Redžić, I.; Lauc, G. Stability of N-glycan profiles in human plasma. *Glycobiology* 2009, 19, 1547–1553. [CrossRef] [PubMed]
- Knežević, A.; Gornik, O.; Polašek, O.; Pučić, M.; Redžić, I.; Novokmet, M.; Rudd, P.M.; Wright, A.F.; Campbell, H.; Rudan, I.; et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. *Glycobiology* 2010, 20, 959–969. [CrossRef] [PubMed]
- Krištić, J.; Vučković, F.; Menni, C.; Klarić, L.; Keser, T.; Beceheli, I.; Pučić-Baković, M.; Novokmet, M.; Mangino, M.; Thaqi, K.; et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 779–789. [CrossRef]
- 28. Arnold, J.N.; Saldova, R.; Hamid, U.M.A.; Rudd, P.M. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. *Proteomics* **2008**, *8*, 3284–3293. [CrossRef]
- Novokmet, M.; Lukić, E.; Vučković, F.; Durić, Ž.; Keser, T.; Rajšl, K.; Remondini, D.; Castellani, G.; Gašparović, H.; Gornik, O.; et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. *Sci. Rep.* 2014, *4*, 4347. [CrossRef]
- Akmačić, I.T.; Ventham, N.T.; Theodoratou, E.; Vučković, F.; Kennedy, N.A.; Krištić, J.; Nimmo, E.R.; Kalla, R.; Drummond, H.; Štambuk, J.; et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. *Inflamm. Bowel Dis.* 2015, 21, 1237–1247. [CrossRef]
- Thanabalasingham, G.; Huffman, J.E.; Kattla, J.J.; Novokmet, M.; Rudan, I.; Gloyn, A.L.; Hayward, C.; Adamczyk, B.; Reynolds, R.M.; Muzinic, A.; et al. Mutations in HNF1A result in marked alterations of plasma glycan profile. *Diabetes* 2013, 62, 1329–1337. [CrossRef]

- 32. Vučković, F.; Krištić, J.; Gudelj, I.; Teruel, M.; Keser, T.; Pezer, M.; Pučić-Baković, M.; Štambuk, J.; Trbojević-Akmačić, I.; Barrios, C.; et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. *Arthritis Rheumatol.* **2015**, *67*, 2978–2989. [CrossRef]
- 33. Clerc, F.; Reiding, K.R.; Jansen, B.C.; Kammeijer, G.S.M.; Bondt, A.; Wuhrer, M. Human plasma protein N-glycosylation. *Glycoconj. J.* 2015, 33, 309–343. [CrossRef] [PubMed]
- der Linden, E.C.M.B.; de Haan, P.F.; Havenaar, E.C.; van Dijk, W. Inflammation-induced expression of sialyl Lewis(x) is not restricted to α1-acid glycoprotein but also occurs to a lesser extent on α1- antichymotrypsin and haptoglobin. *Glycoconj. J.* **1998**, 15, 177–182. [CrossRef] [PubMed]
- 35. Keser, T.; Gornik, I.; Vučković, F.; Selak, N.; Pavić, T.; Lukić, E.; Gudelj, I.; Gašparović, H.; Biočina, B.; Tilin, T.; et al. Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. *Diabetologia* 2017, 60, 2352–2360. [CrossRef] [PubMed]
- Cvetko, A.; Mangino, M.; Tijardović, M.; Kifer, D.; Falchi, M.; Keser, T.; Perola, M.; Spector, T.D.; Lauc, G.; Menni, C.; et al. Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches. *BMJ Open Diabetes Res. Care* 2021, 9, e002263. [CrossRef] [PubMed]
- Demus, D.; Jansen, B.C.; Gardner, R.A.; Urbanowicz, P.A.; Wu, H.; Štambuk, T.; Juszczak, A.; Medvidović, E.P.; Juge, N.; Gornik, O.; et al. Interlaboratory evaluation of plasma N-glycan antennary fucosylation as a clinical biomarker for HNF1A-MODY using liquid chromatography methods. *Glycoconj. J.* 2021, *38*, 375. [CrossRef]
- Juszczak, A.; Pavić, T.; Vučković, F.; Bennett, A.J.; Shah, N.; Medvidović, E.P.; Groves, C.J.; Šekerija, M.; Chandler, K.; Burrows, C.; et al. Plasma fucosylated glycans and C-reactive protein as biomarkers of HNF1A-MODY in young adult–onset nonautoimmune diabetes. *Diabetes Care* 2019, 42, 17–26. [CrossRef]
- 39. Gudelj, I.; Lauc, G.; Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 2018, 333, 65–79. [CrossRef]
- Perkovic, M.N.; Bakovic, M.P.; Kristic, J.; Novokmet, M.; Huffman, J.E.; Vitart, V.; Hayward, C.; Rudan, I.; Wilson, J.F.; Campbell, H.; et al. The association between galactosylation of immunoglobulin G and body mass index. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* 2014, 48, 20–25. [CrossRef]
- 41. Kim, T.; Xie, Y.; Li, Q.; Artegoitia, V.M.; Lebrilla, C.B.; Keim, N.L.; Adams, S.H.; Krishnan, S. Diet affects glycosylation of serum proteins in women at risk for cardiometabolic disease. *Eur. J. Nutr.* **2021**, *60*, 3727–3741. [CrossRef]
- 42. Greto, V.L.; Cvetko, A.; Štambuk, T.; Dempster, N.J.; Kifer, D.; Deriš, H.; Cindrić, A.; Vučković, F.; Falchi, M.; Gillies, R.S.; et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. *Int. J. Obes.* **2021**, *45*, 1521–1531. [CrossRef]
- Larsen, T.M.; Dalskov, S.; Van Baak, M.; Jebb, S.; Kafatos, A.; Pfeiffer, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Kuneåjovãj, M.; Holst, C.; et al. The diet, obesity and genes (diogenes) dietary study in eight European countries—A comprehensive design for long-term intervention. *Obes. Rev.* 2010, *11*, 76–91. [CrossRef]
- 44. Gögebakan, Ö.; Kohl, A.; Osterhoff, M.A.; van Baak, M.A.; Jebb, S.A.; Papadaki, A.; Martinez, J.A.; Handjieva-Darlenska, T.; Hlavaty, P.; Weickert, M.O.; et al. Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors: The diet, obesity, and genes (diogenes) study: A randomized, controlled trial. *Circulation* 2011, 124, 2829–2838. [CrossRef] [PubMed]
- 45. Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A chronic low-grade inflammation and its markers. *Cureus* **2022**, *14*, e22711. [CrossRef] [PubMed]
- 46. Lau, D.C.W.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atheroslcerosis. *Am. J. Physiol. Heart Circ. Physiol.* **2005**, *288*, H2031–H2041. [CrossRef]
- Giordano, P.; Del Vecchio, G.C.; Cecinati, V.; Delvecchio, M.; Altomare, M.; De Palma, F.; De Mattia, D.; Cavallo, L.; Faienza, M.F. Metabolic, inflammatory, endothelial and haemostatic markers in a group of Italian obese children and adolescents. *Eur. J. Pediatr.* 2011, 170, 845–850. [CrossRef] [PubMed]
- 48. Montero, D.; Walther, G.; Perez-Martin, A.; Roche, E.; Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. *Obes. Rev.* **2012**, *13*, 441–455. [CrossRef]
- Benedek, I.; Fiske, W.D., 3rd; Griffen, W.; Bell, R.; Blouin, R.; McNamara, P. Serum alpha 1-acid glycoprotein and the binding of drugs in obesity. Br. J. Clin. Pharmacol. 1983, 16, 751. [CrossRef]
- Kim, S.W.; Choi, J.-W.; Yun, J.W.; Chung, I.-S.; Cho, H.C.; Song, S.-E.; Im, S.-S.; Song, D.-K. Proteomics approach to identify serum biomarkers associated with the progression of diabetes in Korean patients with abdominal obesity. *PLoS ONE* 2019, 14, e0222032. [CrossRef]
- 51. de Pergola, G.; di Roma, P.; Paoli, G.; Guida, P.; Pannacciulli, N.; Giorgino, R. Haptoglobin serum levels are independently associated with insulinemia in overweight and obese women. *J. Endocrinol. Investig.* **2007**, *30*, 399–403. [CrossRef] [PubMed]
- 52. Whicher, J.T. Abnormalities of plasma proteins. In *Scientific Foundations of Biochemistry in Clinical Practice*, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1994; pp. 464–494. [CrossRef]
- 53. Gulhar, R.; Ashraf, M.A.; Jialal, I. *Physiology, Acute Phase Reactants*; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519570/ (accessed on 31 August 2022).
- 54. Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. *N. Engl. J. Med.* **1999**, 340, 448–454. [CrossRef] [PubMed]
- Gornik, O.; Lauc, G. Glycosylation of serum proteins in inflammatory diseases. *Dis. Markers* 2008, 25, 267–278. [CrossRef] [PubMed]

- Pavić, T.; Dilber, D.; Kifer, D.; Selak, N.; Keser, T.; Ljubičić, Đ.; Dugac, A.V.; Lauc, G.; Rumora, L.; Gornik, O. N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology. J. Transl. Med. 2018, 16, 323. [CrossRef] [PubMed]
- Trbojević-Akmačić, I.; Vučković, F.; Vilaj, M.; Skelin, A.; Karssen, L.C.; Krištić, J.; Jurić, J.; Momčilović, A.; Šimunović, J.; Mangino, M.; et al. Plasma N-glycome composition associates with chronic low back pain. *Biochim. Biophys. Acta Gen. Subj.* 2018, 1862, 2124–2133. [CrossRef] [PubMed]
- Saldova, R.; Royle, L.; Radcliffe, C.M.; Hamid, U.M.A.; Evans, R.; Arnold, J.N.; Banks, R.E.; Hutson, R.; Harvey, D.J.; Antrobus, R.; et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. *Glycobiology* 2007, 17, 1344–1356. [CrossRef]
- 59. Feelders, R.A.; Vreugdenhil, G.; de Jong, G.; Swaak, A.J.G.; van Eijk, H.G. Transferrin microheterogeneity in rheumatoid arthritis. Relation with disease activity and anemia of chronic disease. *Rheumatol. Int.* **1992**, *12*, 195–199. [CrossRef]
- Grzymisławski, M.; Derc, K.; Sobieska, M.; Wiktorowicz, K. Microheterogeneity of acute phase proteins in patients with ulcerative colitis. World J. Gastroenterol. 2006, 12, 5191. [CrossRef]
- 61. Zhang, S.; Shang, S.; Li, W.; Qin, X.; Liu, Y. Insights on N-glycosylation of human haptoglobin and its association with cancers. *Glycobiology* **2016**, *26*, 684–692. [CrossRef]
- Kataoka, H.; Seguchi, K.; Inoue, T.; Koono, M. Properties of α1-antitrypsin secreted by human adenocarcinoma cell lines. *FEBS Lett.* **1993**, *328*, 291–295. [CrossRef]
- Čaval, T.; Lin, Y.-H.; Varkila, M.; Reiding, K.R.; Bonten, M.J.M.; Cremer, O.L.; Franc, V.; Heck, A.J.R. Glycoproteoform profiles of individual patients' plasma alpha-1-antichymotrypsin are unique and extensively remodeled following a septic episode. *Front. Immunol.* 2021, *11*, 3413. [CrossRef]
- 64. Keser, T.; Tijardović, M.; Gornik, I.; Lukić, E.; Lauc, G.; Gornik, O.; Novokmet, M. High-throughput and site-specific N-Glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery. *Mol. Cell. Proteom.* **2021**, *20*, 100044. [CrossRef]
- 65. Doherty, M.; Theodoratou, E.; Walsh, I.; Adamczyk, B.; Stöckmann, H.; Agakov, F.; Timofeeva, M.; Trbojević-Akmačić, I.; Vučković, F.; Duffy, F.; et al. Plasma N-glycans in colorectal cancer risk. *Sci. Rep.* **2018**, *8*, 8655. [CrossRef] [PubMed]
- 66. Brown, W.; Garcia, M.; Mamedova, L.; Christman, K.; Zenobi, M.; Staples, C.; Leno, B.; Overton, T.; Whitlock, B.; Daniel, J.; et al. Acute-phase protein α-1-acid glycoprotein is negatively associated with feed intake in postpartum dairy cows. J. Dairy Sci. 2021, 104, 806–817. [CrossRef] [PubMed]
- 67. Maraj, M.; Hetwer, P.; Kuśnierz-Cabala, B.; Maziarz, B.; Dumnicka, P.; Kuźniewski, M.; Ceranowicz, P. α 1-acid glycoprotein and dietary intake in end-stage renal disease patients. *Nutrients* **2021**, *13*, 3671. [CrossRef] [PubMed]
- 68. Sun, Y.; Yang, Y.; Qin, Z.; Cai, J.; Guo, X.; Tang, Y.; Wan, J.; Su, D.-F.; Liu, X. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway. *Diabetes* **2016**, *65*, 1630–1641. [CrossRef] [PubMed]
- Lee, Y.S.; Choi, J.W.; Hwang, I.; Lee, J.W.; Lee, J.H.; Kim, A.Y.; Huh, J.Y.; Koh, Y.J.; Koh, G.Y.; Son, H.J.; et al. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. *J. Biol. Chem.* 2010, 285, 22174–22185. [CrossRef] [PubMed]
- Van Dijk, W.; Havenaar, E.C.; Der Linden, E.C.M.B.-V. α1-Acid glycoprotein (orosomucoid): Pathophysiological changes in glycosylation in relation to its function. *Glycoconj. J.* 1995, 12, 227–233. [CrossRef]
- 71. Huffman, K.M.; Parker, D.C.; Bhapkar, M.; Racette, S.B.; Martin, C.K.; Redman, L.M.; Das, S.K.; Connelly, M.A.; Pieper, C.F.; Orenduff, M.; et al. Calorie restriction improves lipid-related emerging cardiometabolic risk factors in healthy adults without obesity: Distinct influences of BMI and sex from CALERIETM a multicentre, phase 2, randomised controlled trial. *eClinicalMedicine* 2022, 43, 101261. [CrossRef]
- 72. Deriš, H.; Tominac, P.; Vučković, F.; Briški, N.; Astrup, A.; Blaak, E.E.; Lauc, G.; Gudelj, I. Effects of low-calorie and different weight-maintenance diets on IgG glycome composition. *Front. Immunol.* **2022**, *13*, 995186. [CrossRef]
- 73. Vattepu, R.; Sneed, S.L.; Anthony, R.M. Sialylation as an important regulator of antibody function. *Front. Immunol.* **2022**, *13*, 1571. [CrossRef]
- 74. Kaneko, Y.; Nimmerjahn, F.; Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. *Science* **2006**, *313*, 670–673. [CrossRef]
- 75. Moore, C.S.; Lindroos, A.K.; Kreutzer, M.; Larsen, T.M.; Astrup, A.; Van Baak, M.A.; Handjieva-Darlenska, T.; Hlavaty, P.; Kafatos, A.; Kohl, A.; et al. Dietary strategy to manipulate ad libitum macronutrient intake, and glycaemic index, across eight European countries in the Diogenes Study. Obes. Rev. 2010, 11, 67–75. [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.-M.; van Baak, M.; Jebb, S.A.; Papadaki, A.; Pfeiffer, A.F.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunešová, M.; Pihlsgård, M.; et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. *N. Engl. J. Med.* 2010, 363, 2102–2113. [CrossRef] [PubMed]
- Akmačić, I.T.; Ugrina, I.; Štambuk, J.; Gudelj, I.; Vučković, F.; Lauc, G.; Pučić-Baković, M. High-throughput glycomics: Optimization of sample preparation. *Biochemistry* 2015, 80, 934–942. [CrossRef]
- 78. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics* **2012**, *28*, 882–883. [CrossRef] [PubMed]
- 79. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [CrossRef]

- 80. Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer: Cham, Switzerland, 2015. [CrossRef]
- 81. Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. *Bioinformatics* 2007, 23, 1294–1296. [CrossRef] [PubMed]