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Abstract: Our understanding of the regulatory processes of reepithelialization during wound healing
is incomplete. In an attempt to map the genes involved in epidermal regeneration and differentia-
tion, we measured gene expression in formalin-fixed, paraffin-embedded standardized epidermal
wounds induced by the suction-blister technique with associated nonwounded skin using NanoString
technology. The transcripts of 139 selected genes involved in clotting, immune response to tissue
injury, signaling pathways, cell adhesion and proliferation, extracellular matrix remodeling, zinc
transport and keratinocyte differentiation were evaluated. We identified 22 upregulated differentially
expressed genes (DEGs) in descending order of fold change (MMP1, MMP3, IL6, CXCL8, SERPINE1,
IL1B, PTGS2, HBEGF, CXCL5, CXCL2, TIMP1, CYR61, CXCL1, MMP12, MMP9, HGF, CTGF, ITGB3,
MT2A, FGF7, COL4A1 and PLAUR). The expression of the most upregulated gene, MMP1, correlated
strongly with MMP3 followed by IL6 and IL1B. rhIL-1β, but not rhIL-6, exposure of cultured normal
human epidermal keratinocytes and normal human dermal fibroblasts increased both MMP1 mRNA
and MMP-1 protein levels, as well as TIMP1 mRNA levels. The increased TIMP1 in wounds was
validated by immunohistochemistry. The six downregulated DEGs (COL7A1, MMP28, SLC39A2,
FLG1, KRT10 and FLG2) were associated with epidermal maturation. KLK8 showed the strongest
correlation with MKI67 mRNA levels and is a potential biomarker for keratinocyte proliferation.
The observed gene expression changes correlate well with the current knowledge of physiological
reepithelialization. Thus, the gene expression panel described in this paper could be used in patients
with impaired healing to identify possible therapeutic targets.

Keywords: wound healing; gene expression; keratinocytes; fibroblasts; cytokines; matrix
metalloproteinases

1. Introduction

Reepithelialization during wound healing is crucial for restoring the skin barrier. Our
understanding of the regulatory processes is incomplete for this fundamental process. The
factors responsible have not been fully delineated in humans [1,2], although there are
gene expression data from partial-thickness excisional and burn wounds [3,4] as well as
full-thickness skin wounds in patients with basal cell carcinoma [5].
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The suction-blister wound healing model is excellent for studies of the reepithelializa-
tion process, and this model has been used to evaluate systemic and topical factors and
interventions [1,6–17]. For example, treatment with a general matrix metalloproteinase
(MMP) inhibitor has been shown to delay reepithelialization [11]. Many clinical out-
comes have been validated, but more knowledge of the underlying molecular mechanisms
is needed.

The nCounter® (NanoString Technologies, Seattle, WA, USA) gene expression assay
is based on direct digital detection of mRNA molecules using target-specific, color-coded
probe pairs. It does not require the conversion of mRNA into cDNA by reverse transcription
or the amplification of the resulting cDNA by PCR, limiting analytical bias. Another
important feature is that the technology can be applied directly to RNA extracted from
formalin-fixed, paraffin-embedded (FFPE) tissues [18].

The aim of this study was to validate a customized gene expression panel using
archival FFPE tissues of epidermal wounds induced by the suction blister technique from a
randomized, double-blind controlled trial in healthy volunteers [1,14,15].

2. Results

To screen candidate genes involved in normal epidermal wound healing, we de-
signed a gene expression panel composed of 139 different target genes encoding transcrip-
tion factors, cytokines/chemokines, growth factors, receptors, extracellular matrix (ECM)
molecules, proteinases/antiproteinases, zinc importers/exporters, antibacterial peptides,
adhesion molecules and epidermal stratification markers (Appendix A, Table A1).

We analyzed FFPE tissues from 4-day-old epidermal wounds (reepithelialized to
30–40% as determined by histology [14]), including adjacent normal skin from 20 nondia-
betic participants (age 19–43 years old, 27.2 ± 6.0 years). The 8 women and 12 men were
included in the period from 30 March 2014 to 4 May 2014 [1,14,15]. Six participants had
skin type I, three had type II, seven had type III and four had skin type IV [19].

2.1. Determination of mRNAs by NanoString

The raw barcode counts of the immobilized labeled mRNA complexes were obtained
by automated scanning using inverted fluorescence microscopy. The data for all samples
and genes are shown in Supplementary Table S1. The expression of the genes was then
normalized to the spiked-in positive controls and six different housekeeping genes using
nSolver software. The housekeeping genes were expressed at similar levels for all samples.
The normalized values are shown in Supplementary Table S2 and were used for the
subsequent analyses.

Skin samples of three participants (24, 27 and 28) were flagged according to the nSolver
default algorithm due to low RNA contents; therefore, paired analyses with the wounds
were not possible. The comparisons between wounds and skin, expressed as fold changes
(FC) with p and q values, for the remaining 17 participants are shown for the 139 genes in
Supplementary Table S3.

2.2. Differentially Expressed Genes (DEGs) in Human Epidermal Wounds

We defined a DEG as a gene with a mean 2-FC and p < 0.05 in the wound group
compared to the associated nonwounded skin. When using this criterion, the following 28
DEGs (all p < 0.05, q < 0.05) arranged in descending order of FC were: MMP1, MMP3, IL6,
CXCL8, SERPINE1, IL1B, PTGS2, HBEGF, CXCL5, CXCL2, TIMP1, CYR61, CXCL1, MMP12,
MMP9, HGF, CTGF, ITGB3, MT2A, FGF7, COL4A1 and PLAUR (22 upregulated DEGs) and
COL7A1, MMP28, SLC39A2, FLG1, KRT10 and FLG2 (6 downregulated DEGs), as illustrated
in Figure 1.
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Figure 1. Box plot of injury-induced DEGs in wound tissue (blue symbols) vs. adjacent normal skin 
(green symbols) tissue of 4-day-old deroofed suction blisters (n = 17) arranged in descending FC 
order. Boxes represent the 25th–75th percentiles, whiskers represent the 5th–95th percentiles, and 
the horizontal dashed lines within the boxes indicate the median values. The y-axis shows log2-
transformed expression values. FC, fold change. 

Figure 1. Box plot of injury-induced DEGs in wound tissue (blue symbols) vs. adjacent normal
skin (green symbols) tissue of 4-day-old deroofed suction blisters (n = 17) arranged in descending
FC order. Boxes represent the 25th–75th percentiles, whiskers represent the 5th–95th percentiles,
and the horizontal dashed lines within the boxes indicate the median values. The y-axis shows
log2-transformed expression values. FC, fold change.
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2.3. MMP1 mRNA Correlations in Wounds

MMP1 was the most upregulated gene in the wounds compared to the skin. A first
step to elucidate the possible regulatory mechanisms of MMP1 was to correlate MMP1
mRNA with the expression of the other upregulated genes. The strongest correlation was
found for MMP3 (r = 0.83, p = 4.9 × 10−6) followed by the expression of IL6 (r = 0.70,
p < 0.001) and IL1B (r = 0.59, p < 0.01), as shown in Figure 2. IL1B mRNA levels correlated
strongly (r = 0.69, p < 0.001) with IL6 mRNA levels in wounds (Supplementary Figure S1).
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Figure 2. Correlation between MMP1 mRNA levels and MMP3 (A), IL6 (B), and IL1B (C) mRNA
levels in wounds. Log2-transformed expression values are shown on the y- and x-axes. MMP, matrix
metalloproteinase; IL, interleukin.

2.4. Effects of Cytokines on MMP1, MMP3 and TIMP1 Gene Expression and Secretion of MMP-1
and TIMP-1 into the Medium of Normal Human Epidermal Keratinocytes (NHEKs) and Normal
Human Dermal Fibroblasts (NHDFs)

To study the transcriptional regulation of MMP1, MMP3 and TIMP1 and translation
into MMP-1 and TIMP-1, NHEKs and NHDFs were exposed to 30 ng/mL rhIL-6 and
1 ng/mL rhIL-1β separately and together. The IL-6 and IL-1β concentrations were chosen
from measurements of 1-day-old suction blister wounds [20,21] and were found to be
noncytotoxic, as indicated by the similar LDH activities in the media (Table 1).

Table 1. LDH activity (mU/mL) in media from treated NHEKs and NHDFs.

Cell Type Control IL-6 IL-1β IL-1β + IL-6 p Value 1

NHEKs 25.9 ± 7.4 20.9 ± 6.3 19.1 ± 6.5 24.3 ± 8.4 0.370
NHDFs 14.7 ± 0.6 14.5 ± 0.9 13.7 ± 0.8 14.2 ± 1.5 0.377

1 One-way ANOVA. Mean ± SD of 6 replicates.

Previous studies in NHDFs indicated that IL-6 is anti-proliferative at ≥10 ng/mL
while IL-1β (0.1 ng/mL) is proliferative [22]. In our studies of NHDFs using the BrdU
incorporation assay [23,24], IL-6 and IL-1β did not significantly influence DNA synthesis
at 30 ng/mL and 1 ng/mL, while IL-6 at 100 ng/mL tended to reduce (p = 0.052) BrdU
incorporation into NHDFs (Supplementary Figure S2).

2.4.1. MMP1 and TIMP1 mRNA and MMP-1 and TIMP-1 Protein Levels

IL-6 treatment for 24 h increased MMP1 mRNA levels 1.6-fold in NHEKs and 2.5-fold
in NHDFs. The corresponding increases for IL-1β were 2.0-fold and 85-fold. Utani et al. [25]
reported a 2.5-fold increase in MMP1 mRNA in NHEKs and a 63-fold increase in NHDFs
after 8 h of IL-1β (10 ng/mL) treatment. There were no additive effects of combining
IL-6 with IL-1β treatment on the MMP1 mRNA levels in NHEKs (p = 0.641) or in NHDFs
(p = 0.362). MMP-1 protein levels in control conditioned media of NHEKs were
46.5 ± 6.6 ng/mL and of NHDFs 322 ± 53 ng/mL. IL-6 had no significant effect on MMP-1
protein levels while IL-1β increased MMP-1 protein levels in NHEKs (1.7-fold) and NHDFs
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(3.3-fold) compared to the controls. No additive effect of IL-6 was observed in either cell
type (Figure 3).
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Figure 3. Effects of IL-6 (30 ng/mL) and IL-1β (1 ng/mL) treatment of NHEKs (A,B) and NHDFs
(C,D) on MMP1 and TIMP1 mRNA (A,C) and protein media levels of MMP-1 and TIMP-1 (B,D).
mRNA levels were determined by RT–qPCR and normalized to RPLP0, expressed as FC relative to
control-treated NHEKs and NHDFs. The geometric mean ± back-transformed SEM of 6 replicates is
shown (A,C). MMP-1 and TIMP-1 protein levels were determined by ELISA. The mean ± SEM of 6
replicates is shown (B,D). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.

TIMP1 mRNA levels were increased in NHEKs (1.2-fold) and in NHDFs (3.6-fold)
with IL-1β, but not with IL-6 exposure. The TIMP-1 protein concentration of the control
medium of NHEKs was 19.1 ± 3.1 ng/mL and that of the NHDFs was 170 ± 23 ng/mL.
IL-1β increased TIMP-1 protein levels in conditioned media of NHDFs (1.2-fold) but not of
NHEKs. IL-6 treatment was ineffective (Figure 3).

2.4.2. MMP3 mRNA Levels

In NHEKs, only the combination of IL-6 and IL-1β upregulated MMP3 mRNA levels.
IL-6 had no significant effect on MMP3 mRNA levels in NHDFs, in contrast to the 121-fold
stimulation (p < 0.001) by IL-1β of MMP3 mRNA in NHDFs (Supplementary Figure S3).

2.5. TIMP-1 and Collagen I Protein Expression

We applied immunohistochemistry to validate the increased TIMP1 mRNA levels in
wounds at the protein level and to elucidate the cellular sources of TIMP-1 in 19 wounds
with adjoining skin. TIMP-1 was undetectable in the epidermal compartments of skin
and wounds. In the dermal compartments, a few fibroblasts revealed TIMP-1 staining
in normal skin, while the expression of the TIMP-1 protein was markedly increased in
fibroblasts and in endothelial cells, as well as lymphocytes in wounds, compared to normal
skin. TIMP-1 was observed in hair follicle epithelium more often in wounds than in the
skin. Acrosyringium of the eccrine sweat gland was positive in one wound. In general,
TIMP-1 stained granularly in the cytoplasm of the cells (Figure 4A,B).
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Collagen I strongly stained the dermis in both wounds and skin and was observed
below the basement membrane but not in epidermis (Figure 4C,D).

2.6. Proliferation Markers in Wounds

To delineate conceivable biomarkers of cell proliferation, we examined correlations
between MKI67 mRNA levels and the entire panel of genes. KLK8 (r = 0.90, p = 7.2 × 10−8)
and KRT6A (r = 0.83, p = 5.8 × 10−6) showed strong correlations with MKI67 mRNA levels,
as shown in Figure 5.
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3. Discussion

The aim of this study was to design and validate an expression panel of genes involved
in reepithelialization during wound healing. Unlike high-throughput next-generation
technologies, such as microarray and RNASeq, which produce a comprehensive set of gene
expression profiles, we selected genes known to be involved in wound healing from the
literature. This focused strategy lowers the false discovery rate (FDR) with accompanying
increased power. Of the 22 upregulated DEGs, nine were related to ECM remodeling, six
encoded cytokines/chemokines and five were growth factor-transcribing genes, and all of
these genes are considered important for reepithelialization.

MMP1 was the most upregulated gene in the wounds. Nuutila et al. [3] reported
that MMP1 was the top overexpressed gene in split-thickness skin graft (STSG) donor site
wounds using genome-wide transcriptomic methodology. MMP-1 is unambiguously asso-
ciated with reepithelialization [26] and we recently demonstrated the exclusive presence
of the MMP-1 protein in the neoepidermis and in fibroblasts in the dermis beneath the
neoepidermis [1].

The regulation of the MMP1 gene involves several signaling pathways [1,27,28]. The
strong correlation between IL6 and MMP1 mRNA levels indicated a possible role of IL-6
in the induction of MMP1. The effect of IL-6 treatment of cultured NHEKs and NHDFs
was weak in contrast to IL-1β. These somewhat contradictory results could be explained
by the indirect effect of IL-1β on IL6 expression [29]. We also found that IL1B mRNA levels
correlated strongly with IL6 mRNA levels in the wounds.

It has been suggested that collagen I is the primary inducer of MMP1 via the α2β1
integrin [30]. Collagen I was observed to be juxtaposed to the basement membrane by
immunohistochemistry, implying no direct contact of keratinocytes with collagen I, indi-
cating that collagen I-keratinocyte interactions are subordinate in the regulation of MMP1.
It should be emphasized that the basement membrane remains essentially intact during
reepithelialization [1,28]. The elevated COL4A1 may indicate the requirement for collagen
IV by migrating keratinocytes on the basement membrane but also for angiogenesis [28,31].

MMP1 belongs to the MMP family, consisting of 23 human members [2,32]. In another
study, MMP1 and MMP3 expression was coordinately induced [33]; the MMP1 and MMP3
genes are closely located on chromosome 11q22.2. MMP3 was also the second most upreg-
ulated gene and was increased by IL-1β but not by IL-6. In earlier studies, investigators
failed to detect MMP3 in suction blister wounds by in situ hybridization [11,28]. This
discrepancy might be attributed to the high sensitivity of our analyses. MMP-3 contributes
to the conversion of latent into active MMP-1 [34]. Apart from MMP1 and MMP3, MMP12
and MMP9 were upregulated. MMP-12 appears to play a key role in cytoskeletal rear-
rangements in migrating keratinocytes [35]. MMP-9 protein increases during suction blister
wound healing [7,11].

MMP activity is antagonized by tissue inhibitors of metalloproteinases (TIMPs), and
TIMP1 transcripts were increased in wounds compared with adjacent skin. Our immunohis-
tochemical analysis clearly demonstrated increased TIMP-1 protein expression in wounds
vs. skin primarily due to TIMP-1-producing fibroblasts, endothelial cells, and lymphocytes.
In one study, TIMP1 mRNA was expressed in fibroblasts below the neo-epidermis but
absent in keratinocytes [28]. Mechanistically, inhibition of the proteolytic action of MMP-1
slows epidermal tongue movement. Local TIMP-1 overexpression retards keratinocyte
migration in wounds [36]. It has also been suggested that TIMP-1 is a beneficial angiogenic
factor [37].

Regulation of TIMP1 has rarely been described. IL-6 did not induce the TIMP1 gene in
NHDFs, corroborating earlier findings [38]. We found that IL-1β induced TIMP1, which
also resulted in increased TIMP-1 secretion from NHDFs [39].

Neither COL1A1 expression nor proliferation of stromal cells were increased in der-
mis [1]. The lack of a fibroproliferative response explains the fact that these lesions leave
no scar.
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The precursor plasminogen of the serine proteinase plasmin acts together with MMPs
for maximal keratinocyte migration [40,41]. Plasminogen activator inhibitor SERPINE1
and the receptor for urokinase plasminogen activator PLAUR were upregulated, indicating
the need for the plasminogen system in coordinating reepithelialization [42–44].

Different soluble mediators are involved in the immunoregulatory and inflammatory
processes in these lesions [20]. The protein levels of IL-6, IL-8 and IL-1β were dramatically
increased 1 day after wound infliction while IL-1α levels remained low [20]. These data
are convincingly consistent with our mRNA measurements of IL6, CXCL8 and IL1B. In
contrast, CSF2, IFNG, IL1A and TNF were not upregulated in the wounds vs. nonwounded
skin. This finding does not exclude the possibility that these cytokines were upregulated
earlier. The proinflammatory chemokines CXCL5, CXCL2 and CXCL1 in addition to CXCL8
were upregulated in wounds, presumably as a response to injury [45]. The main recep-
tor CXCR2 is expressed on innate immune cells and on keratinocytes; CXCR2-deficient
keratinocytes display impaired migration [46]. Prostaglandin-endoperoxide synthase 2
(PTGS2), also known as COX-2, is induced by trauma in the epidermis [47] and provides
proinflammatory prostaglandins.

Five growth factors (HBEGF, CYR61/CCN1, HGF, CTGF/CCN2 and FGF7) were up-
regulated in the wounds as indicated in previous studies [48–52]. The neoepidermis is
regenerated by the combined action of keratinocyte migration and proliferation. Previously,
we showed that keratinocyte proliferation was increased to the same magnitude in neoepi-
dermis and adjacent epidermis [1]. This finding might explain the lack of difference in gene
expression of the proliferation marker MKI67 between wounds and skin. Collectively, these
findings imply that the primary mode of action of the upregulated growth factors is the
stimulation of keratinocyte migration independent of their mitogenic effects; these factors
also have the ability to enhance the migration of epidermal keratinocytes in vitro [48–51,53].

The serine proteinase kallikrein-related peptidase 8 (KLK8) showed the strongest
correlation with MKI67. KLK8 is one of 15 different kallikreins in the epidermis involved in
epidermal homeostasis [54]. Interestingly, delayed wound healing in KLK8-knockout mice
was accompanied by decreased Ki-67 immunolabeling of the neoepidermis [55]. Keratin-6A
(KRT6A) mRNA levels also correlated strongly with MKI67 gene expression. Keratin-6A
protein levels were increased in proliferating vs. differentiating NHEKs in vitro [56], which
was the reason why we investigated the usefulness of keratin-6A protein as a biomarker for
keratinocyte proliferation in human wounds in a previous study [56]. However, keratin-6A
was undetectable possibly because it is an intracellular protein [56].

The increased MT2A mRNA levels in wounds corroborate our previous immunohis-
tochemical results using an anti-MT antibody that reacted not only with MT2A but also
with the subisoform MT1A [1]. Because MT1A was not significantly upregulated in the
wounds compared to skin, MT2A was most likely the predominant metallothionein isoform
detected in the wounds [1].

The downregulated genes were associated with epidermal maturation. Collagen VII
is the main component of anchoring fibrils. Nyström et al. [57] observed collagen VII
in migrating epidermis, but this finding was in wounds devoid of basement membrane.
Leivo et al. [10] found no differences in collagen VII between suction blister floor and
normal skin. The role of MMP-28 is unclear; MMP28 mRNA was detected distal to the
leading edge in the proliferating epidermal compartment [58]. The zinc importer SLC39A2
(ZIP2) has been suggested to participate in keratinocyte differentiation [59]. K10 is an
early epidermal differentiation marker. Filaggrins (FLG1 and FLG2) are essential for the
formation of a functional stratum corneum [60,61].

4. Materials and Methods
4.1. Ethical Statements

The study was approved by the Committee on Biomedical Research Ethics for the Capital
Region of Denmark (H-6-2014-001) and was registered at ClinicalTrials.gov (NCT02116725)
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on 15 April 2014, and conducted at the Department of Dermatology, Bispebjerg Hospital,
University of Copenhagen, Copenhagen, Denmark [14].

4.2. Participants

Healthy nonsmoking volunteers between 18 and 65 years of age were included after
providing written informed consent. Individuals with skin disorders; those who were
pregnant, breastfeeding or receiving systemic immunosuppressive treatment; and/or those
who were hypersensitive to zinc were excluded [1,14,15].

4.3. Induction of Epidermal (Suction Blister) Wounds, Treatment and Tissue Procedures

Suction blisters (10 mm in diameter) were raised on each buttock in 30 remunerated
participants, and the blister roofs were excised. Two of the three treatments (zinc sulfate,
placebo, or control) were randomized to the left or right wound by concealed allocation,
i.e., each of the 3 treatments was applied to 20 wounds in 20 participants. In the present
study, the participants of the control arm of this three-arm randomized, double-blind trial
were included [14]. Wounds and adjoining skin were treated once daily with distilled water
and covered with a bacteria-proof and moisture-retaining dressing (Mepore Film & Pad,
Mölnlycke Health Care, Göteborg, Sweden) [1,15]. On post-wounding day 4, wounds,
including uninjured skin, were excised [1]. The biopsies were fixed in 4% phosphate-
buffered paraformaldehyde (pH 7.4) overnight at 4 ◦C and embedded in paraffin.

4.4. Macrodissection and Isolation of RNA from FFPE Wound and Skin Compartments

Tissue sections were cut at 5 µm and dissected into one central wound piece and two
adjacent pieces of normal nonwounded skin (Figure 6).
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Figure 6. Macrodissection of FFPE tissue section of a day-4 suction blister wound into central wound
(1 piece) including neoepidermis and adjoining nonwounded normal skin including epidermis
(2 pieces). Reepithelialization was calculated using the following formula: Neoepidermis (mm)/
Wound length (mm) × 100%. Total RNA was extracted, and the extracts were subjected to nCounter
mRNA analysis. Epidermal compartments are black and dermal compartments blue. Scale bar, 1 mm.

The tissue pieces were deparaffinized in xylene and absolute ethanol, and the tissue
was scratched into reaction vials using a scalpel. Total RNA was extracted with a High Pure
FFPE RNA Micro Kit (Roche, Mannheim, Germany). The concentration and purity of RNA
in 20 µL elution buffer were determined by NanoDrop (NanoDrop Technologies, Wilming-
ton, DE, USA) spectrophotometry. RNA purity was indicated by the OD260 nm/OD280 nm
ratio (≥1.5 was acceptable).

4.5. Design of Gene Panel and nCounter Analyses

The NanoString human Preselected PlexSet Wound Healing Panel was used encom-
passing 90 target genes related to clotting, immune response to tissue injury, and ECM
remodeling, along with relevant signaling pathway genes coordinating wound healing.
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Forty-nine wound-healing related genes expressed in skin were added to this panel by
the authors, as indicated in Appendix A (Table A1). The details of the design of our gene
expression panel are found in Supplementary Table S4.

The isolated total RNA (100 ng) was hybridized to the code sets at 65 ◦C overnight
on the nCounter Prep Station. Gene expression was analyzed with an nCounter Digital
Analyzer. Fluorescence was determined using a built-in inverted fluorescence microscope
using all 550 possible counting areas of the NanoString cartridges.

nSolver software, version 4.0, was used to export, quality check, and normalize
the hybridization results. Background subtraction was performed by negative control
thresholding using the average of the included 8 probe-set negative controls. Normalization
was performed in two steps. First, based on the geometric mean of the spiked-in positive
controls, the positive control normalization factor was calculated to adjust for differences in
various steps of the process. Default settings between 0.3 and 3 were used. Second, to adjust
for differences in analyte abundance and quality across samples, a normalization factor
was calculated based on the geometric mean of the included housekeeping genes (ABCF1,
GUSB, HPRT1, LDHA, PTEN and RPLP0). The default settings (0.1–10) were applied.

4.6. Immunohistochemical Analysis of TIMP-1 and Collagen I

Sections with a thickness of 4 µm were cut, and slides were deparaffinized and rehy-
drated. The sections were pretreated and stained using the Omnis automated
slide-processing system from Agilent (Glostrup, Denmark). The tissue sections were sub-
jected to heat-induced epitope retrieval pretreatment using EnVision™ FLEX
Target Retrieval Solution High pH (GV804, Dako Omnis, Agilent) for TIMP-1 or
EnVision™ FLEX Target Retrieval Solution Low pH (GV805, Dako Omnis, Agilent) for
collagen I for 30 min, followed by incubation with rabbit monoclonal antibodies against
TIMP-1 (clone EPR18352, 1:500, ab211926, Abcam, Cambridge, UK) or collagen α1 (I)
(E8F4L, 1:100, #72026, Cell Signaling, Danvers, MA, USA) for 30 min at 32 ◦C. The reactions
were detected using the standard polymer technique EnVision™ FLEX/HRP Detection
Reagent (GV800, Dako Omnis, Agilent), and signal intensity was enhanced using the
EnVision™ FLEX+ Rabbit LINKER (GV809, Dako Omnis, Agilent) and visualized using
EnVision™ Flex DAB+ Chromogen system (GV825, Dako Omnis, Agilent). Finally, the sec-
tions were counterstained with hematoxylin and mounted with Pertex. The immunostained
sections were evaluated by a senior consultant pathologist (L.M.R.G.).

4.7. Studies in NHEKs and NHDFs

NHEKs (C-12006) were derived from 24- to 57-year-old Caucasian women and pur-
chased from PromoCell (Heidelberg, Germany). NHEKs were cultured in keratinocyte
growth medium-2 medium (PromoCell) composed of keratinocyte basal medium (KBM)-2
with penicillin (100 IU/mL), streptomycin (100 µg/mL), and amphotericin-B (50 ng/mL)
and supplemented with bovine pituitary extract (30 µg/mL), recombinant human epider-
mal growth factor (0.125 ng/mL), insulin (5 µg/mL) and transferrin (10 µg/mL), hydro-
cortisone (0.33 µg/mL), epinephrine (0.39 µg/mL) and CaCl2 (0.06 mM) and on collagen
I-coated surfaces. NHDFs (CC-2511) were derived from a 37-year-old Caucasian woman
and purchased from Lonza (Basel, Switzerland). NHDFs were cultured in DMEM with
GlutaMAX™, glucose (4.5 g/L) and pyruvate (Gibco, Life Technologies, Grand Island, NY,
USA) with 10% fetal bovine serum (FBS; Gibco heat-inactivated qualified FBS, 10500064,
Thermo Fisher Scientific, Waltham, MA USA), penicillin (100 IU/mL) and streptomycin
(100 µg/mL). Cells were incubated in a humidified atmosphere of 5% CO2/air at 37 ◦C
and were passaged using 0.05% trypsin-0.02% EDTA (Biological Industries, Kibbutz Bet-
Haemek, Israel) [24].

NHEKs and NHDFs were seeded (1 × 105 in 1 mL/well) in 24-well tissue culture
plates (CellStar®, Greiner Bio-One). NHEKs were grown in wells coated with collagen
I [14]. Cells were incubated for 72 h. The confluent cell layers were then washed with
Dulbecco’s PBS (pH 7.4) and starved for 24 h in serum-free KBM-2/DMEM with 1.8 mM
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CaCl2 containing 1 mg/mL bovine serum albumin. The cells were then treated with
30 ng/mL rhIL-6 (206-IL, R&D Systems, Minneapolis, MN, USA) and 1 ng/mL rhIL-1β
(201-LB, R&D Systems) separately and combined for 24 h [62]. Media were collected,
spun (2000× g, 10 min, 4 ◦C) and the supernatants kept at −80 ◦C until analysis for LDH
activity [14], and MMP-1 (RAB0361, Sigma-Aldrich, St. Louis, MO, USA) and TIMP-1
(ab187394, Abcam) levels by ELISA [1,63].

Total RNA of the treated NHEKs and NHDFs was extracted with 1 mL of TriReagent®

(Molecular Research Center, Cincinnati, OH, USA). Bromochloropropane (100 µL) was
added to isolate the aqueous phase containing the RNA, which was precipitated using
isopropanol. The RNA pellet was then washed in ethanol and subsequently dissolved in
10 µL RNAse-free water. Total RNA concentrations were determined with the Ribo-Green
assay (R11490, Life Technologies).

Total RNA (500 ng) was converted into cDNA in 20µL using OmniScript reverse
transcriptase (Qiagen, Valencia, CA, USA) and 1µM poly-dT (Invitrogen) according to the
manufacturer’s protocol (Qiagen). For each target mRNA, 0.5µL of cDNA was amplified
in 25µL of SYBR Green polymerase chain reaction (PCR) containing 1× QuantiTect SYBR
Green Master Mix (Qiagen) and 100 nM of each primer, as shown in Table 2. The amplifica-
tion was monitored in real time using an MX3005P Real-time PCR machine (Stratagene, La
Jolla, CA, USA). Ct values were related to a standard curve made with known concentra-
tions of cloned PCR products or DNA oligonucleotides (Ultramer™ oligos, Integrated DNA
Technologies, Leuven, Belgium) with a DNA sequence corresponding to the sequence of
the expected PCR product. The specificity of the PCR products was confirmed by melting
curve analysis after amplification. RPLP0 mRNA was chosen as an internal control.

Table 2. Primer sequences for RT–qPCR analyses of treated NHEKs and NHDFs.

Gene GenBank ID Sense (Forward) Antisense (Reverse)

MMP1 NM_002421.4 CGAATTTGCCGACAGAGATGAAG GGGAAGCCAAAGGAGCTGTAGATG
MMP3 NM_002422.5 GATCCTGCTTTGTCCTTTGATGCTGT CTGAGGGATTTGCGCCAAAAGTG
TIMP1 NM_003254.3 CGGGGCTTCACCAAGACCTACA TGGTCCGTCCACAAGCAATGA

GAPDH NM_002046.4 CCTCCTGCACCACCAACTGCTT GAGGGGCCATCCACAGTCTTCT
RPLP0 NM_053275.3 GGAAACTCTGCATTCTCGCTTCCT CCAGGACTCGTTTGTACCCGTTG

4.8. Statistical Analysis

DEGs were identified by the paired t test (participant eliminated as factor, p < 0.05,
log2FC ≥ |1.00|). All data were log2-transformed prior to analysis using Qlucore Omics
Explorer software, version 3.7 (Qlucore AB, Lund, Sweden). Gene expression correlations
with MMP1 and MKI67 were calculated using Pearson’s correlation coefficients. Cell
culture data (LDH, BrdU incorporation, RT–qPCR and ELISAs) were analyzed with one-
way ANOVA and the Holm-Sidak post hoc method using SigmaPlot software, version 14.0
(Systat, Palo Alto, CA, USA). The level of statistical significance was set to p < 0.05. FDR-
adjusted p values, i.e., q values, were calculated [64].

5. Conclusions

The major genes involved in human epidermal wound healing were successfully
quantified using a customized panel for the NanoString platform. The obtained wound
healing gene expression signature, consisting of 28 DEGs, is a start in identifying possible
therapeutic targets to accelerate reepithelialization and epidermal stratification. The over-
lapping functions of upregulated cytokines/chemokines and growth factors could indicate
biological redundancies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms232415746/s1.
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Appendix A

Table A1. Gene expression panel of 139 targets (genes included in the nCounter PlexSet Preselected
Human Wound Healing Panel arehighlighted in grey).

Gene Name GenBank ID

ACTC1 NM_005159.4 actin, alpha, cardiac muscle 1

ACVRL1 NM_000020.1 activin A receptor type II-like 1

ADAM17 NM_003183.4 ADAM metallopeptidase domain 17

ADORA2A NM_000675.3 adenosine A2a receptor

AGER NM_001136.3 advanced glycosylation end product-specific receptor

ANGPT1 NM_001146.3 angiopoietin 1

BMP1 NM_001199.1 bone morphogenetic protein 1

CCL2 NM_002982.3 chemokine (C-C motif) ligand 2

CCL7 NM_006273.2 chemokine (C-C motif) ligand 7

CD36 NM_000072.3 thrombospondin receptor

CD40LG NM_000074.2 CD40 ligand
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Table A1. Cont.

Gene Name GenBank ID

CD59 NM_000611.4 complement regulatory protein

CDH1 NM_004360.2 E-cadherin (epithelial)

COL1A1 NM_000088.3 collagen type I, alpha 1 chain

COL3A1 NM_000090.3 collagen type III, alpha 1 chain

COL4A1 NM_001845.4 collagen, type IV, alpha 1 chain

COL4A3 NM_000091.4 collagen, type IV, alpha 3 (Goodpasture antigen)

COL5A2 NM_000393.3 collagen, type V, alpha 2 chain

COL5A3 NM_015719.3 collagen, type V, alpha 3 chain

COL7A1 NM_000094.2 collagen type VII, alpha 1 chain

COL14A1 NM_021110.1 collagen, type XIV, alpha 1 chain

COL17A1 NM_000494.3 collagen type XVII, alpha 1 chain

CSF2 NM_000758.2 colony stimulating factor 2 (granulocyte-macrophage)

CSF2RA NM_006140.3 colony stimulating factor 2 receptor alpha subunit

CSF3 NM_000759.3 colony stimulating factor 3 (granulocyte)

CTGF NM_001901.2 connective tissue growth factor

CTNNB1 NM_001098210.1 catenin (cadherin-associated protein), beta 1, 88 kDa

CTSG NM_001911.2 cathepsin G

CTSK NM_000396.2 cathepsin K

CTSV NM_001333.3 cathepsin V

CXCL1 NM_001511.1 chemokine (C-X-C motif) ligand 1

CXCL2 NM_002089.3 chemokine (C-X-C motif) ligand 2

CXCL5 NM_002994.3 chemokine (C-X-C motif) ligand 5

CXCL8 NM_000584.2 chemokine (C-X-C motif) ligand 8

CXCL11 NM_005409.4 chemokine (C-X-C motif) ligand 11

CYR61 NM_001554.3 cysteine-rich angiogenic inducer 61

DEFB4 NM_004942.2 beta-defensin 2

EGF NM_001963.4 epidermal growth factor

EGFR NM_201282.1 epidermal growth factor receptor

EGR1 NM_001964.2 early growth response 1

ENTPD1 NM_001098175.1 ectonucleoside triphosphate diphosphohydrolase 1

EREG NM_001432.2 epiregulin

F3 NM_001993.3 coagulation factor III (thromboplastin, tissue factor)

F5 NM_000130.2 coagulation factor V (proaccelerin, labile factor)

F13A1 NM_000129.3 coagulation factor XIII, A1 polypeptide

FGF2 NM_002006.4 fibroblast growth factor 2 (basic)

FGF7 NM_002009.3 fibroblast growth factor 7

FGF10 NM_004465.1 fibroblast growth factor 10

FLG1 NM_002016.1 filaggrin

FLG2 NM_001014342.2 filaggrin family member 2

FN1 NM_212482.1 fibronectin

GNAQ NM_002072.2 guanine nucleotide binding protein (G protein)
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Table A1. Cont.

Gene Name GenBank ID

HBEGF NM_001945.1 heparin-binding EGF-like growth factor

HGF NM_000601.4 hepatocyte growth factor (hepapoietin A, scatter factor)

HIF1A NM_001530.2 hypoxia inducible factor 1 alpha subunit

IFNG NM_000619.2 interferon gamma

IGF1 NM_000618.3 insulin-like growth factor 1 (somatomedin C)

IL1A NM_000575.3 interleukin 1 alpha

IL1B NM_000576.2 interleukin 1 beta

IL2 NM_000586.2 interleukin 2

IL4 NM_000589.2 interleukin 4

IL6 NM_000600.3 interleukin 6 (interferon, beta 2)

IL6ST NM_002184.2 interleukin 6 signal transducer (gp130)

IL10 NM_000572.2 interleukin 10

ITGA1 NM_181501.1 integrin, alpha 1

ITGA2 NM_002203.2 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2
receptor)

ITGA3 NM_002204.2 integrin, alpha 3 (antigen CD49C)

ITGA4 NM_000885.4 integrin, alpha 4 (antigen CD49D)

ITGA5 NM_002205.2 integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

ITGA6 NM_000210.1 integrin, alpha 6

ITGAV NM_002210.2 integrin, alpha V

ITGB1 NM_002211.3 integrin, beta 1 (fibronectin receptor, antigen CD29)

ITGB3 NM_000212.2 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)

ITGB5 NM_002213.3 integrin, beta 5

ITGB6 NM_000888.3 integrin, beta 6

IVL NM_005547.2 involucrin

KLK8 NM_144507.1 kallikrein-related peptidase 8

KRT6A NM_005554.3 keratin 6A

KRT10 NM_000421.3 keratin 10

LAMA3 NM_000227.3 laminin subunit alpha 3

MAPK1 NM_138957.2 mitogen-activated protein kinase 1

MAPK3 NM_001040056.1 mitogen-activated protein kinase 3

MIF NM_002415.1 macrophage migration inhibitory factor

MKI67 NM_002417.2 marker of proliferation Ki-67

MMP1 NM_002421.3 matrix metallopeptidase-1 (interstitial collagenase)

MMP2 NM_004530.2 matrix metallopeptidase-2 (gelatinase A)

MMP3 NM_002422.3 matrix metallopeptidase-3

MMP7 NM_002423.3 matrix metallopeptidase-7 (matrilysin)

MMP8 NM_002424.2 matrix metallopeptidase-8

MMP9 NM_004994.2 matrix metallopeptidase-9 (gelatinase B)

MMP10 NM_002425.1 matrix metallopeptidase-10

MMP12 NM_002426.3 matrix metallopeptidase-12

MMP13 NM_002427.2 matrix metallopeptidase-13
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Table A1. Cont.

Gene Name GenBank ID

MMP14 NM_004995.2 matrix metallopeptidase-14

MMP28 NM_001032278.1 matrix metallopeptidase-28

MT1A NM_005946.2 metallothionein 1A

MT2A NM_005953.3 metallothionein 2A

MYC NM_002467.3 MYC proto-oncogene, BHLH transcription factor

NF1 NM_000267.2 neurofibromin 1

NGF NM_002506.2 nerve growth factor

PDGFA NM_002607.5 platelet-derived growth factor alpha polypeptide

PF4 NM_002619.2 platelet factor 4

PI3 NM_002638.3 peptidase inhibitor 3 (elafin)

PI3K NM_006218.2 phosphatidylinositide 3-kinase

PLAT NM_000931.2 plasminogen activator, tissue

PLAU NM_002658.2 plasminogen activator, urokinase

PLAUR NM_001005376.2 plasminogen activator, urokinase receptor

POLR1B NM_019014.3 polymerase (RNA) I polypeptide B, 128 kDa

PTGS2 NM_000963.1 prostaglandin-endoperoxide synthase 2

RAC1 NM_006908.4 ras-related C3 botulinum toxin substrate 1 (rho family)

RHOA NM_001664.2 ras homolog family member A

S100A7 NM_002963.3 psoriasin

S100A8 NM_002964.3 S100 calcium binding protein A8

S100A9 NM_002965.2 S100 calcium binding protein A9

SERPINB3 NM_006919.2 serpin family B member 3 (serine proteinase inhibitor)

SERPINE1 NM_000602.2 serpin peptidase inhibitor, clade E (plasminogen activator
inhibitor type 1)

SLC30A1 NM_021194.2 solute carrier family 30 member 1 (ZnT1)

SLC39A2 NM_014579.1 solute carrier family 39 member 2 (ZIP2)

SLC39A4 NM_017767.2 solute carrier family 39 member 4 (ZIP4)

SOD1 NM_000454.4 superoxide dismutase [Cu-Zn]

STAT3 NM_003150.3 signal transducer and activator of transcription 3

TFPI NM_001032281.2 tissue factor pathway inhibitor

TGFA NM_003236.2 transforming growth factor, alpha

TGFB1 NM_000660.3 transforming growth factor, beta 1

TGFB2 NM_003238.2 transforming growth factor, beta 2

TGFBR3 NM_003243.3 transforming growth factor, beta receptor III

THBD NM_000361.2 thrombomodulin

TIMP1 NM_003254.2 TIMP metallopeptidase inhibitor 1

TIMP2 NM_003255.4 TIMP metallopeptidase inhibitor 2

TIMP3 NM_000362.4 TIMP metallopeptidase inhibitor 3

TLR4 NM_138554.2 toll-like receptor 4

TMPRSS6 NM_153609.2 transmembrane protease, serine 6

TNF NM_000594.2 tumor necrosis factor
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Table A1. Cont.

Gene Name GenBank ID

VEGFA NM_001025366.1 vascular endothelial growth factor A

VTN NM_000638.3 vitronectin

VWF NM_000552.3 von Willebrand factor

WAS NM_000377.2 WASP actin nucleation promoting factor

WISP1 NM_080838.1 WNT1 inducible signaling pathway protein 1

WNT5A NM_003392.3 wingless-type MMTV integration site family, member 5A

ABCF11 NM_001090.2 ATP-binding cassette, sub-family F (GCN20), member 1

GUSB1 NM_000181.3 glucuronidase, beta

HPRT11 NM_000194.1 hypoxanthine phosphoribosyltransferase 1

LDHA1 NM_001165414.1 lactate dehydrogenase A

PTEN1 NM_000314.3 phosphatase and tensin homolog

RPLP0 1 NM_001002.3 ribosomal protein, large, P0
1 Housekeeping Gene.
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