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Abstract: Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant
burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment
of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated
with important challenges, including drug resistance, low bioavailability, and adverse side effects; the
existence of physiological barriers further hampers treatment. Fortunately, these limitations may be
overcome by the application of nanotechnology, which can facilitate drug delivery while improving
drug stability and bioavailability. This review summarizes the challenges facing the treatment of
bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic
delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches
to the delivery of antibiotics for the treatment of pneumonia.

Keywords: bacterial pneumonia; traditional antibiotic therapy; bioactive nanoparticles; pulmonary
inhalation

1. Introduction

Pneumonia is one of the leading causes of death worldwide [1]. Pneumonia accounted
for 22% of deaths among children aged 1 to 5 years in 2019 [2] and is also an important
cause of death in older adults [3] and immunocompromised people [4]. The burden of
pneumonia on health-care resources is enormous due to hospitalization costs and long-term
consequences [5]. Infections with bacteria, viruses, fungi, mycoplasma, and chlamydia can
all cause pneumonia [6], but the most common pathogeny involves bacterial infections [7].

Presently, antibiotics are used as first-line drugs to treat pneumonia caused by bacteria,
mycoplasma, and chlamydia [8]. The incidence and mortality of pneumonia are greatly
reduced by the use of antibiotics [9]. However, there are challenges in the antibiotic
treatment of pneumonia. The primary threat in the treatment of bacterial pneumonia is
the development of antibiotic resistance, which is a global problem [10,11], and it is also an
important factor leading to the increasing burden of disease [12]. Compounding the serious
problem of antibiotic resistance is a shortage of new antibiotics and the slow pace of drug
development [13]. In addition, many challenges exist regarding the usage of antibiotics for
the treatment of bacterial pneumonia, including low bioavailability and high side effects
associated with traditional strategies, such as oral and systemic administration [14]. While
a locoregional delivery of antibiotics into the lung can increase drug bioavailability and
decrease systemic side effects, the anatomical, mucous, chemical, and immune barriers that
characterize lung tissue hamper the efficacy of antibiotics delivered in this way.

To address the current limitations of antibiotics in the treatment of pneumonia, new
antimicrobial chemicals and mechanisms of antimicrobial action should be developed. The
traditional mechanisms of antimicrobial action of antibiotics can be classified into five
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categories: interfering with cell wall synthesis [15,16], inhibiting protein synthesis [17,18],
interfering with DNA synthesis [19], inhibiting bacterial metabolic pathways [20], and
damaging bacterial cell membrane structures [14]. In recent years, nanoengineered drug
delivery systems have been recognized as a potential new strategy in the fight against bac-
terial pathogens [21]. The advent of nanotechnology has rekindled interest in the treatment
of pneumonia because nano-based drug delivery systems can be used as a tool for the
delivery of both systemic and topical therapeutic agents [22,23]. For systemically delivered
drugs, nanoparticles can be designed to target the infected region and intelligently release
the drugs at the site of infection. This strategy significantly improves the bioavailability of
drugs and reduces toxic side effects. For locoregionally administrated nano-based drugs,
the pulmonary barriers within the lung can be addressed, as these new drugs show good
permeability and are not easily cleared by mucus, but they are readily cleared by lung
macrophages (Figure 1).
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Figure 1. Therapeutic challenges (blue) in the treatment of bacterial pneumonia and novel bioactive
nanoparticles (red) that may be applied for the delivery of therapeutic agents.

Nanotechnology helps conventional antibiotics to better reach the target infected area
to exert antibacterial activity. The advantage of nanoparticles over conventional antibiotics
with a single target of action is their ability to affect the entire bacterial metabolism and
other multiple mechanisms of antibacterial activity. Resistance to these nanoparticles re-
quires multiple genetic mutations in bacteria, so the probability of bacteria developing
nanoparticle resistance through mutation is low. In addition, most of the nanoparticles can
be antibacterial through the mechanism of disrupting the bacterial cytosol. The bacterial cell
membrane is highly evolutionarily conserved and can hardly be changed by a few genetic
mutations, which further reduces the probability of bacterial resistance to nanoparticles.
Nanotechnology brings new hope for the clinical treatment of multidrug-resistant bacterial
lung infections.

In this review, we present several problems that exist in the treatment of bacterial
infectious pneumonia. In addition, in view of the limitations and challenges of current
therapies, we highlight the potential of nanotechnology-based delivery systems as a new
therapeutic approach. We also describe several nanoparticle types that have been investi-
gated for use in antibiotic delivery and discuss the advantages of inhalation therapy and
the obstacles to be overcome in the implementation of this new mode of drug delivery.
Finally, we introduce state-of-the-art therapeutic strategies and delivery vectors for the
treatment of pneumonia.
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2. Challenges of Traditional Antibiotic Therapy for Bacterial Pneumonia

Antibiotic treatment is associated with multiple important challenges (Figure 2), includ-
ing (1) increased antibiotic resistance [24,25], (2) limited range of antibiotic agent types [26],
(3) low bioavailability [14], (4) adverse side effects [27], and (5) barrier challenges [14].
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2.1. Antibiotic Resistance

The term “antibiotics” was first used to describe antimicrobial agents in 1941 by
Professor Selman Waksman, who discovered more than 20 antibiotics [9]. Since that
time, antibiotics have become indispensable in the treatment of various inflammatory
disorders [28,29].

There are two main pathways by which antibiotics treat bacterial infections: inhibiting
bacterial growth and direct killing of bacteria [13,14]. According to their main principle
of action, antibiotics can be divided into five classes (Figure 3). These mechanisms of
action include interfering with cell wall synthesis. This class of antibiotics kills bacteria
by inhibiting mucopeptide synthetases and hindering the synthesis of the mucopeptides
that form the structural basis of the cell wall, causing the swelling and lysis of bacteria [15].
This class of antibiotics includes β-lactams such as penicillin and glycopeptides [15,16].
A second mode of action involves the inhibition of protein synthesis. These antibiotics
inhibit the growth of bacteria by binding to the ribosomal subunits responsible for bacterial
protein synthesis. For example, the 30S subunit of the bacterial ribosome can be bound by
macrolides, aminoglycosides, and tetracyclines to block protein synthesis [17,18]; similarly,
chloramphenicol binds to and inhibits the 50S ribosomal subunit [30]. A third type of
antibiotic works by interfering with DNA synthesis, such as the inhibition of the replication
of bacterial DNA by ciprofloxacin, which alters the superhelix of DNA by binding to
bacterial topoisomerases II and IV [19]. A fourth mechanism involves the inhibition of
bacterial metabolic pathways. Tetrahydrofolate is required by many bacteria as a one-
carbon unit donor [20]; sulfonamides and diaminopyrimidine antibiotics are inhibitors
of this pathway [31]. Finally, some antibiotics damage the bacterial cell membrane [14].
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For example, positively charged polymyxin and daptomycin interact with and destroy the
negatively charged bacterial membrane [32].
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In some cases, antibiotics can be rendered ineffective in killing or inhibiting the growth
of bacteria through the development of resistance. There are four main mechanisms
by which bacteria can exert drug resistance (Figure 4). The first mechanism involves
modification by enzymes. Specifically, many antibiotics can be hydrolyzed and neutralized
by bacterial enzymes. For example, β-lactamase enzymes disrupt the lactam structure
of penicillins and cephalosporins, making them unable to inhibit target mucopeptide
synthases [33,34]. Resistance can also be generated by a reduction of permeability or
increased efflux of antibiotics. The intake of antibiotics can be reduced by the down-
regulation of porin genes or structural modifications or loss of function of the porins that
allow antibiotics to enter [13]. On the other hand, efflux of these molecules from bacterial
cells can be increased by the up-regulation of active transporters [35]. Resistance can be
affected by changes to the antimicrobial target. Accumulation of mutations can lead to
the production of target molecules, such as proteins, that are no longer inhibited by the
antibiotic. For example, mutation in target enzymes have been shown to cause bacteria
to be resistant to quinolones [36]. Once a mechanism is established, it can be broadly
disseminated by the spreading of resistance genes. Bacteria can transmit antimicrobial genes
or plasmids to naturally susceptible bacteria through transformation [37], transduction [38],
and direct contact [39] to facilitate the acquiring of resistance.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 4. Mechanisms of antibiotic resistance. 

2.2. A Limited Range of Antibiotics 
Antimicrobial agents commonly used clinically for the treatment of pneumonia in-

clude macrolides, amoxicillin, fluoroquinolones, and third-generation cephalosporins 
[40–42]. However, the use of these antibiotics alone or in combination can lead to the emer-
gence of antibiotic-resistant bacteria, making it more difficult to cure infections [24]. 
Therefore, finding ways to prevent antibiotic resistance from emerging is essential for the 
treatment of bacterial pneumonia. 

The development of new antimicrobial agents is one important strategy to combat 
resistance. However, despite enormous research efforts and resource consumption, the 
development of new antibiotics has proceeded slowly [43,44]. In the 1980s, genomics and 
goal-based screening technologies were adopted by the pharmaceutical industry to accel-
erate antimicrobial innovation [45–47]. Undoubtedly, these technologies for screening 
drugs were a major advance in the development of new antibiotics [48]. Nonetheless, at 
present, only 51 new antibiotics have been developed, and only 8 of these drugs can be 
classified as innovative medicines [26]. What is even more frustrating is the fact that most 
of these newly developed drugs simply involve the chemical modification of existing 
drugs [46]. The development of new antimicrobial agents is slowed by several factors: the 
research is time consuming [49], the high investments yield at best low profits [50,51], and 
a long time is required to obtain approval from drug regulators. 

2.3. Low Bioavailability and High Side Effects of Antibiotics 
The administration of antibiotic drugs usually occurs via oral or intravenous routes, 

which result in systemic distribution. Only a small amount of the drug reaches the site of 
infection [14]. For example, after oral administration of fluoroquinolones, much of the 
drug is rapidly excreted through the biliary system, and approximately one-third of the 
drug is eventually present in the stool [52]. In order to ensure a therapeutic effect, it is 
often necessary to administer large doses and treat for long periods, which can lead to 
undesired toxic side effects and drug resistance [14]. Alternatively, if large doses are not 
feasible, the infectious bacteria are exposed to sub-inhibitory concentrations of drugs, 
whereupon they become more susceptible to adaptive mutations and other genetic 
changes, leading to an increased risk of drug resistance [53].  

The adverse side effects caused by the large doses also hamper the use of antibiotics 
in clinical treatment. For example, high doses of nitrofurantoin may lead to pulmonary 
toxicity [27], linezolid may lead to hematologic toxicity [27], metronidazole may cause 

Figure 4. Mechanisms of antibiotic resistance.



Int. J. Mol. Sci. 2022, 23, 15738 5 of 24

In order to overcome the problem of antibiotic resistance, it is important to consider
new agents that work in different ways. In addition, the mechanisms of resistance must be
considered when applying traditional or novel therapies.

2.2. A Limited Range of Antibiotics

Antimicrobial agents commonly used clinically for the treatment of pneumonia include
macrolides, amoxicillin, fluoroquinolones, and third-generation cephalosporins [40–42].
However, the use of these antibiotics alone or in combination can lead to the emergence
of antibiotic-resistant bacteria, making it more difficult to cure infections [24]. Therefore,
finding ways to prevent antibiotic resistance from emerging is essential for the treatment of
bacterial pneumonia.

The development of new antimicrobial agents is one important strategy to combat
resistance. However, despite enormous research efforts and resource consumption, the
development of new antibiotics has proceeded slowly [43,44]. In the 1980s, genomics
and goal-based screening technologies were adopted by the pharmaceutical industry to
accelerate antimicrobial innovation [45–47]. Undoubtedly, these technologies for screening
drugs were a major advance in the development of new antibiotics [48]. Nonetheless,
at present, only 51 new antibiotics have been developed, and only 8 of these drugs can
be classified as innovative medicines [26]. What is even more frustrating is the fact that
most of these newly developed drugs simply involve the chemical modification of existing
drugs [46]. The development of new antimicrobial agents is slowed by several factors: the
research is time consuming [49], the high investments yield at best low profits [50,51], and
a long time is required to obtain approval from drug regulators.

2.3. Low Bioavailability and High Side Effects of Antibiotics

The administration of antibiotic drugs usually occurs via oral or intravenous routes,
which result in systemic distribution. Only a small amount of the drug reaches the site
of infection [14]. For example, after oral administration of fluoroquinolones, much of the
drug is rapidly excreted through the biliary system, and approximately one-third of the
drug is eventually present in the stool [52]. In order to ensure a therapeutic effect, it is often
necessary to administer large doses and treat for long periods, which can lead to undesired
toxic side effects and drug resistance [14]. Alternatively, if large doses are not feasible, the
infectious bacteria are exposed to sub-inhibitory concentrations of drugs, whereupon they
become more susceptible to adaptive mutations and other genetic changes, leading to an
increased risk of drug resistance [53].

The adverse side effects caused by the large doses also hamper the use of antibiotics
in clinical treatment. For example, high doses of nitrofurantoin may lead to pulmonary
toxicity [27], linezolid may lead to hematologic toxicity [27], metronidazole may cause
neurotoxicity [27], fluoroquinolones may increase the risk of aortic aneurysm [27], and
gentamicin is often associated with acute kidney injury [54].

In addition to direct injuries to the patient, the gut microbiota, which is composed of a
variety of commensal bacteria that resist colonization and invasion by pathogens, will also
be disturbed by large-dose oral or systemic antibiotics. Antibiotic exposure can lead to an
imbalance in gut bacteria, which increases susceptibility to infection [55] and which is also
linked to a number of noncommunicable diseases [56]. Damage to the gut microbiota by
antibiotic exposure can be long-lasting; for example, long-term disturbances in microbiota
compositions have been observed even after short-term clindamycin exposure [57].

2.4. Barrier Challenges in Pneumonia Treatment

The treatment of pneumonia faces challenges posed by multiple types of barriers.
These barrier-related challenges can be divided into different categories according to the
routes of administration of the antibiotics.
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2.4.1. Barrier Challenges for the Systemic Delivery of Antibiotics

Systemic antibiotic delivery faces multiple obstacles and barrier-related challenges
(Figure 5). In some cases, the host cell membrane represents a barrier. Some bacteria, such
as Legionella pneumophila [14], enter the cytoplasm of host cells, lowering the killing effect
of antibiotics [58]. In this case, the cell membrane barrier causes several challenges. The
antibiotics that are applied to kill intracellular bacteria must reach adequate concentrations
of active drugs in cells, and they must be retained for a sufficient time. Those antibiotics that
do not readily enter cells, such as β-lactam drugs, have been shown to achieve intracellular
concentrations that may be too small to be effective. Once in the cell, the drug molecule
will be subject to active export, often leading to half-lives that are too short [59].
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Barriers may also be presented by organelles and organellar membranes. Host cells
may form phagosomes via the phagophore in order to recognize and bind to bacteria as a
defense mechanism. These structures bind to lysosomes to form autolysosomes that may
kill the bacteria [60]. However, some bacteria have evolved immune escape mechanisms
that can inhibit the bactericidal effects of autolysosomes [61]; these bacteria can survive and
even reproduce in phagosomes and phagolysosomes [62]. This bacterial defense mechanism
further protects these bacteria from antibiotics, as some antimicrobial compounds do not
readily enter the organelles. For example, clarithromycin has been shown to be excluded
by the phagosome where bacteria often reside [63]. Moreover, even if the antibiotic enters
the organelle, its activity may be impaired in the acidic environment of the lysosome [59].

A third type of barrier is presented by the formation of a bacteria biofilm barrier. Some
bacteria can form protective biofilms [64], which increase the speed with which antibiotic
resistance is acquired by bacteria by up to 1000-fold [65]. The biofilm itself also presents a
physical barrier that directly hampers the efficacy of antibiotics [66,67]. All of these barriers
make it difficult for systemically delivered antibiotics to contact bacteria, thus lowering the
inhibitory or killing potency.

2.4.2. Barrier Challenges for the Local Delivery of Antibiotics

Local delivery of antibiotics can circumvent first-pass metabolism, minimize systemic
side effects, decrease inactivation by metabolic enzymes, enhance drug bioavailability,
and facilitate the initiation of therapeutic action [68–70]. Nevertheless, in the case of
antibiotics used to treat bacterial pneumonia, local delivery of the drug to the lungs through
the respiratory tract also faces multiple obstacles. In addition to the barrier challenges
presented by cells, organelles, and bacterial biofilms, local drug delivery within the lung
must overcome the biological barriers presented by structures and functions specific to the
respiratory tract.
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The lungs exhibit strong innate defenses and physical barriers that make it difficult for
inhalable drugs to reach the site of action. When inhalable drugs do reach deep within the
lungs, they are rapidly cleared or inactivated by biological defense mechanisms. Therefore,
drug delivery to pulmonary targets is not an easy task.

Targeted delivery to the lungs requires overcoming three main known barriers. One
type of barrier is known as an anatomical barrier. The lungs have a complex bronchial tree
lined with ciliary cells that exert pulmonary mucociliary clearance to remove particles de-
posited in the airways. These functions create a mechanical barrier that inhibits pulmonary
drug delivery [71]. A second type of barrier involves the mucous barrier. Respiratory mu-
cus covering the airways from the nose to the fine bronchial tubes allows the capture and
removal of foreign bodies, including xenobiotic compounds such as antibiotic agents [71].
In addition, the mucous barrier works synergistically with anatomical barriers, and lung
mechanical barriers become more effective due to airway stenosis caused by inflammation
and mucus hypersecretion [71]. Immunological and metabolic barriers also influence drug
delivery. Since the function of the lungs is to participate in the exchange of air with the
outside world, they face a complex external environment; therefore, the lung forms a strong
barrier consisting of chemical and immune defenses. The chemical and immune barriers
to drug delivery in the lungs consist of proteolytic enzymes, surfactants, and alveolar
macrophages [72]. Proteolytic enzymes, including endopeptidase and cathepsin H, can
hydrolyze and thus inactivate drugs [72]. Many macrophages are also present in the alveoli,
and alveolar phagocytes can engulf and remove particles that reach the alveoli. Chemical
surfactants augment these functions by preventing inhaled particles from adhering to
the epithelial surface of the lung and facilitating their removal by macrophages [73,74].
It is clear, then, that effective pulmonary inhalation drug delivery requires overcoming
formidable barriers (Figure 6).
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3. Bioactive Nanoparticles for the Treatment of Bacterial Infections in the Lungs

In current practice and in emerging clinical trials, most pulmonary infection treatments
are administered through oral and intravenous routes, despite the fact that most antibiotics
and anti-inflammatory drugs are known to be eliminated rapidly from the circulatory
system [75]. Without a mechanism to specifically target drugs to the lungs, drugs are
distributed passively in the body, leading to low effective drug concentrations at the site of
infection. These low concentrations reduce the therapeutic effect and are conducive to the
development of drug resistance [76].
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The delivery of antibiotics by nano-based drug delivery systems represents a promis-
ing way to address these challenges. Nanodelivery systems can be engineered to change
the intrinsic physical and chemical properties of conventional antibiotics and provide
characteristics that preferentially target them to the appropriate site. More recently, smart
nano-based drug delivery systems have been designed to precisely target the desired region
and responsively release the drugs under specific stimuli; these systems have been demon-
strated to enhance local drug concentrations and to reduce side effects in healthy areas [77].
In this regard, there have been multiple studies focusing on the microenvironment of lung
infection. When bacteria infect the lung, a series of physiological index changes such as
inflammation, lowered pH, and increased levels of certain enzymes and reactive oxygen
species (ROS) occur at the infection site [78]. All of these abnormal indexes can serve as
stimuli for the smart nanosystems, enabling the directed release of drugs.

The application of nanocarriers to address bacterial infections in the lung has become
a common tool. Antimicrobial drugs are delivered to the bacteria in the lungs in order to
exert their antimicrobial effect. The inability to completely eradicate the bacteria from the
infected area is a consequence of the development of drug resistance [79]. After the drug is
injected intravenously into the organism and circulated throughout the body to the organs,
the first problem is how to enhance the process of accumulation of the drug in the lungs [80].
The size of the particles greatly affects the pulmonary targeting ability of the drug. For
systemic circulation, the drug dose needs to be increased to maintain the therapeutic effect,
which to some extent leads to bacterial resistance. Modification of nanocarriers and control
of nanoparticle size can confer active lung targeting properties to the drug [81]. The ability
of the materials in question to target the infected microenvironment of the lung further
addresses the problem of antimicrobial drug resistance. Drugs are released upon reaching
the infected environment of the lung and are unable to interact with bacteria due to the
cell membrane or biofilm barrier. Using nanocarriers with the ability to penetrate cell
membranes can deliver antimicrobial drugs into the cells and address the problem of
intracellular infections [82]. Some studies have reported that the use of guanidinylated
polycarbonate materials as adjuvants can help antimicrobial drugs reach intracellularly.
Even after incubation with bacteria for tens of generations, there was no problem of
bacterial drug resistance. The presence of biofilm hinders drug penetration, resulting
in poor therapeutic efficacy. Nanomaterials increase the ability of drug penetration and
penetration in biofilms to reach deep into the biofilm and bind to bacteria. The specific
surface structures of some materials anchor to the bacterial surface and exert synergistic
antibacterial activity. Helping drugs bind to bacteria by overcoming lung-associated
barriers is the key to nanotechnology for treating pneumonia bacteria [83].

Various bioactive nanoparticles have shown potential as carriers for pneumonia treat-
ments. The timing and concentration of therapeutic drug accumulation at the site of
infection are critical to the effective treatment of pneumonia [84]. Among many bioactive
nanoparticle systems applied for the treatment of bacterial lung infections, polymeric
nanoparticles are one of the most commonly used nanoagents. For example, nanoparticles
based on poly (lactic-co-glycolic acid) (PLGA) have been employed to effectively treat pneu-
monia, and their key advantages lie in their non-toxicity and biodegradability. In addition,
polyethylene glycol (PEG) is another commonly used material for carriers for lung drug
delivery systems [85]. To this point, several such materials have been approved by the Food
and Drug Administration (FDA) as carriers for drug delivery systems, including PLGA
and chitosan. In addition to polymer nanoparticles, liposomes, micelles, and inorganic
nanoparticles (e.g., gold nanoparticles, iron nanoparticles, and quantum dots) have also
been applied as antibiotics carriers. These particles have large areas that can be modified
with functional moieties, including targeting molecules and environmentally responsive
moieties (Figure 7). Research regarding these and other micellar, inorganic, and metallic
materials is currently identifying more effective nanomaterials for antimicrobial therapy in
the lung [86].
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Despite the promise of nanocarriers in pulmonary medicine, most drug carriers are
foreign substances. We need to consider the potential risks due to interactions between
nanomaterials and biological systems. Ideally, nanomaterials should perform functions in
the lungs and then be excreted from the body without any harmful effects [87]. However,
the introduction of foreign molecules may significantly alter physiological responses and
affect pharmacokinetics, an field that lacks laboratory studies. In addition to the interaction
of nanocarriers with organisms, the interaction of nanocarriers with bacteria must be
explored by further studies. The effects of long-term use of nanocarriers on bacterial
structure and genetics, among others, are not yet known. From the clinical point of view,
there are still many problems to achieve large-scale preparation of nanomedicines. Firstly,
the cost of raw materials has to be considered; some polymers are expensive to synthesize
and purify, such as PLGA-b-PEG and PEG-b-PLA [88]. Secondly, poor stability of drug-
material binding and low drug-loading capacity hinder the transition of nanomedicines
to clinical therapeutics. How to achieve the controlled preparation of nanomedicines and
balancing the therapeutic effect of drugs with the cost of raw materials are future challenges.
In addition, clarifying the metabolic processes of nanocarriers in the lung and in vivo are
also issues that need attention [89].

3.1. Liposomes

Liposomal delivery of antibiotics for the treatment of pneumonia is currently being
explored. The components of liposomes, especially phospholipids, are biocompatible and
biodegradable. Liposomes can act as drug carriers, increase the concentration of drugs in
the body, protect encapsulated drugs, and allow the controllable release of drugs [90,91].
Delivery of antibiotics with liposomes increases cellular uptake, effectively reducing the
dose of the drug and decreasing toxicity. Transpulmonary delivery of drug-carrying
liposomes can also reduce drug toxicity to lung tissue by preventing local irritation. By
promoting uptake by tracheal epithelial cells and alveolar epithelial cells, the compounds
reach the circulation intact, thus enhancing the therapeutic effect of the drug [92].

The enhanced uptake of liposomes into cells can facilitate the delivery of antimicrobial
drugs to intracellular compartments. For example, Su et al. designed a multifunctional
copolymer en route to the development of polymer-enhanced liposomes (PALs). These
PALs lead to a specific targeting of alveolar macrophages via a mannose moiety, and they
were found to improve the efficiency of delivery of streptomycin to the target cells [93]. In
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another work, Rathnayake et al. designed lipid-encapsulated targeted nanoassemblies to
deliver antibiotics to the environment of bacteria or even to the bacterial cytoplasm. The
liposome shell prevented premature drug release and degraded only after exposure to
lipase secreted by Pseudomonas aeruginosa, successfully targeting and inhibiting the growth
of P. aeruginosa in lung epithelial cells [94]. Lung-targeted nanovesicles composed of
lipids also have been shown to eliminate both extracellular and intracellular drug-resistant
bacteria, potentially addressing the problem of bacterial drug resistance [95].

In addition to the elimination of bacteria from the lungs, treatment of inflammation
caused by bacterial infections is also a matter of concern. Recently, Allemailem et al.
prepared thymoquinone-based liposomes and found that they exhibited both antibacterial
and antibiofilm activity in the treatment of Acinetobacter baumannii infections [96]. Drug co-
delivery with liposome systems may be an effective way to address both inflammation and
infection [97]. In one study, the anti-inflammatory agent resolving D1 was combined with
the antibiotic ceftazidime in a nanoagent to target an inflamed vascular system (Figure 8).
After administration of this combination to mice, cytokine levels were found to be reduced
and bacterial growth in the lungs was also inhibited [98].
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with RvD1 and Ceftazidime (CAZ). (B) The nanovesicles home to the infectious lung deliver both
RvD1 and CAZ. RvD1 binds to GPCRs (ALX/FPR2), inhibiting the NF-κB pathway to decrease the
expression of cell adhesion molecules, and mitigating neutrophil tissue infiltration and increasing the
phagocytosis. Simultaneously, CAZ inhibits bacterial growth in the lung. Modified and reproduced
with permission from the Spring [98].

To address the effect of biofilm formation on drug concentrations at sites of infection,
Rao et al. proposed an antibiotic adjuvant liposome with a negatively charged surface.
This hydrophilic particle readily penetrated the sputum layer, with its degradation and
drug release facilitated by phospholipase A2 accumulated in the microenvironment of a
P. aeruginosa biofilm. The liposomes enhanced the antibacterial activity of azithromycin,
which had a significant effect on P. aeruginosa and prevented the bacteria from adhering to
airway epithelial cells, thereby preventing recurrent infections [99].

In an ideal drug therapy system, the drug should only be released at the site of bacterial
infection. Fortunately, liposomes can be modified with chemical moieties that endow them
with a pneumonia-targeting ability. For instance, Pushparaj et al. integrated a siderophore,
pyochelin, into liposomes. This targeted nanoparticle was shown to have strong activity
against P. aeruginosa and was able to limit the toxicity of the drug [100]. Antibiotics loaded
into the liposome core can take advantage of specific transmembrane pores induced by the
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liposomes and can be released at the site of infection, augmenting the effectiveness of the
therapeutic agents [101].

Several inhalable liposomal formulations have been used in the clinic to deliver
drugs directly to infected pulmonary cells, thereby speeding the onset of treatment ef-
fects. Recently, mannose-modified liposomes have been designed as inhalable formula-
tions for the treatment of latent tuberculosis infections. These nanoparticles, which also
have macrophage targeting and pH-sensitive characteristics, were shown to eliminate
Mycobacterium tuberculosis from macrophages [102]. The uniform encapsulation of drugs
in liposomal particles by spray-drying techniques can also protect the compounds from
degradation by biological or chemical barriers [103].

3.2. Micelles

Many studies have focused on the application of micelles in pneumonia therapy. Since
micelles are self-assembled from amphiphilic copolymers and they exhibit some advantages
over other types of carrier materials. For example, they tend to have higher stability, stimuli-
responsive properties, and higher biocompatibility than other particles, and they can be
used to load hydrophobic drugs [104]. Many indicators within the bacterial infection
microenvironment, such as altered pH and changes to levels of reactive oxygen species and
enzymes, can serve as specific targets and responsive stimuli for micellar nanoparticles [105].
In addition, micelles are capable of self-assembling around hydrophobic drugs to achieve
targeted and responsive release for drug design needs. In a recent study, Chen et al. loaded
vancomycin into nanonuclei, which effectively reduced the bacterial burden and alveolar
damage in the lung. After reaching the site of infection, these micellar particles released the
antibiotics due to bond lysis occurring in the more acidic pH environment of the infection,
and the normal alveolar microstructure was achieved [106].

Micellar nanoparticles have achieved good efficacy in the removal of intracellular
bacteria, the eradication of bacterial biofilms, and the treatment of inflammation. For exam-
ple, Yang et al. designed micellar particles to enhance drug accumulation in macrophages
by modifying the micellar surface with mannose (Figure 9). These nanoparticles rapidly
released antibiotics upon the cleavage of disulfide bonds in the reducing intracellular envi-
ronment, thus achieving targeted treatment of intracellular drug-resistant pathogens [107].
Other targeted smart micelles have been shown to selectively bind with different types of
bacterial surface receptors, achieving the precise release of drugs [108,109].

Micellar materials also have the potential to be applied to bacterial imaging. In particu-
lar, they show great potential as targeted imaging and treatment agents in the detection and
elimination of infectious bacteria. Park et al. reported a new family of antimicrobial agents
that are constructed by self-assembly of chimeric antimicrobial lipopeptides and other
polymers. The antimicrobial lipopeptide consists of distearoyl phosphatidylethanolamine
(DSPE) and HnMc linkages. HnMc micelles are highly targeted to the site of bacterial infec-
tion and are effective in killing drug-resistant bacteria. Such an antimicrobial lipopeptide
and amphiphilic copolymer design strategy will be useful in the detection and treatment of
bacterial infections [110].

Similarly, micelles have been applied to the treatment of sepsis. A combination
of antibiotics and anti-inflammatory drugs in the micelles stops the spread of bacteria
and relieves the inflammation caused by bacteria. Thus, the systemic bacteremia and
excessive inflammation that cause sepsis are avoided [111]. Similarly, Zhang et al. syn-
thesized micellar nanoparticles through the self-assembly of 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-poly(ethylene glycol) with appropriate drugs. This assembly formed
copolymers that are sensitive to pH and bacterial enzymes and thus are responsive to the
infection microenvironment. Application of this system to a mouse model of sepsis led to
the reduction of systemic bacteria, white blood cells, and inflammatory cytokines [112].
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3.3. Polymer Nanoparticles

Polymeric nanoparticles have been widely applied in studies of lung infections. There
are multiple types of polymers that can associate with different drug molecules and that
are biocompatible, highly functional, and exhibit low toxicity. Recent studies have shown
that nanoparticles consisting of polymer-loaded antibiotics greatly reduce the toxicity of
the drug but retain antibacterial activity. These nanoparticles have especially been applied
to the reintroduction of older antibiotics into the clinic. For example, polymyxin B (PMB)
is effective against multidrug-resistant Gram-negative bacteria, but their nephrotoxicity
and neurotoxicity limit the doses that can be administered. However, a recent study using
polymer-delivered mucin showed good efficacy [113]. Here, the authors modified PMB
with 2,3-dimethylmaleic anhydride and grafted oligomeric chitosan to prepare polyionic
nanocomplexes. The polymers shielded the positive charge of PMB by electrostatic interac-
tions, reducing the side effects of the drug but retaining its antimicrobial activity.

Other similar studies have shown that electrostatic assembly of polymyxins with
polyanionic materials leads to good results. The targeted-release properties of the drug im-
parted by the polymeric material could be a general approach to improve other highly toxic
antibiotics [114]. Zhang et al. produced polymer nanoparticles through self-assembly
of negatively charged hyaluronic acid (HA) with positively charged PMB molecules
(Figure 10). After intravenous injection, the nanoparticles were found to aggregate in
the infected area of the lung due to the targeting of HA to CD44 receptors overexpressed
on endothelial cells in the inflammatory state. Due to the antibacterial activity of PMB
in which it binds to the phosphate group of lipopolysaccharides (LPS) in the bacterial
outer membrane, the drug in PMB-HA nanoparticles is competitively released upon the
encountering of bacteria. Furthermore, by reducing the positive charge of PMB, PMB-HA
nanoparticles reduce cellular damage as well as histological toxicity, thus improving cellu-
lar and biological safety. This intelligent delivery system provides a new approach for the
resurrection of PMB in the treatment of bacterial inflammatory diseases [115].
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ability to precisely kill the pneumonia bacteria with outstanding biosafety. Modified and reproduced
with permission from the Royal Society of Chemistry [115].

Polymers can be used both as drug carriers and in combination with other therapeu-
tic modalities to exert combined therapeutic effects. In addition to delivering antibiotics,
polymers combined with antibodies, vaccines, and phages can have a dual therapeutic ef-
fect [116–119]. For example, Hussain et al. combined vancomycin-loaded nanoparticles with
phage-recognized amino acid peptides, and the combined delivery of the two drugs improved
the antimicrobial activity of the nanoparticles in vivo. This approach reduced the systemic
dose of the drug required and minimized side effects [120]. Overall, polymeric materials offer
drug delivery strategies for the synergistic treatment of bacterial resistant infections.

3.4. Inorganic Nanoparticles

The threat of antibiotic resistance has led to an urgent need to develop new antibacte-
rial compounds, with inorganic nanoparticles being used as antibiotic alternatives. Related
inorganic antimicrobial materials have shown good antibiotic-like activity. The synergistic
antibacterial activity of inorganic antimicrobial materials with antibiotics can help achieve
better therapeutic results. Recently, researchers reported a material that has not led to drug
resistance, even with repeated use. The material is biodegradable and has achieved positive
therapeutic results for a wide range of bacterial infections [121]. The related synthesized
compounds have been shown to have antibacterial activity against most bacteria, with the
antibacterial activity further improved by structural modifications [122–124].

In addition to biodegradable antimicrobial polycarbonates, other antimicrobial ma-
terials have been reported to address drug resistance as well as toxicity issues and have
good potential for clinical applications. Some inorganic antimicrobial materials, such as
nanorods and nanosheets, exhibit the potential to enhance the accumulation of drugs in
bacteria. Accordingly, related antimicrobial material delivery systems show improved
results in treating bacterial infections [125,126]. In addition to the aforementioned inorganic
nanoparticles, metallic nanomaterials with tunable size have also been applied as nanodrug
delivery materials. For example, the highly porous zeolite–imidazolium salt backbone
(ZIF-8) offers tremendous advantages in the construction of drug delivery systems when it
is compounded with HA. HA targets CD44 receptors on macrophages leading to cellular
uptake and the intracellular delivery of associated antibiotics. In the acidic environment of
lysosomes in macrophages, the material structure can be disintegrated to release the drug,
which can then eradicate intracellular pathogenic bacteria [127]. These results suggest that
metallic nanomaterials will be useful as an alternative antibacterial delivery system [128].
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By diminishing the inflammation caused by bacterial infection, relevant nanometallic
compounds or enzymes can reduce pneumonia-related damage by eliminating excess
reactive oxygen species in the inflammatory environment. Wu et al. proposed to deplete
H2O2 from bacterially infected lungs by reacting H2O2 with MOFs to protect tissue and
prevent sepsis (Figure 11). Inorganic nanoparticles were prepared by loading Fe3+-doped
MOFs with ampicillin (nFMs@Amp). MOFs effectively accumulated in the lungs after
systemic administration due to infection-induced alveolar–capillary barrier dysfunction. In
addition, the nanosystem has a good chemical kinetic bactericidal effect on drug-resistant
bacteria. By synergistic treatment with the antibiotic ampicillin, MOFs eliminated more than
98% of invading Streptococcus pneumoniae [129]. For example, related work on the removal
of H2O2 opens new avenues for the clinical treatment of toxin-secreting bacteria. Here,
a nanoenzyme was found to be effective in reducing the concentration of H2O2 that was
stimulated by the presence of a bacterial infection. The reduction of H2O2 concentrations
to physiological levels also facilitates the breakdown of biofilms in vivo and the prevention
of new biofilm formation, which would be expected to accelerate the repair of tissue
damage [130]. Combining such materials with photothermal therapy would enhance the
addressing of the problem of biofilm resistance. This strategy thus provides a promising
strategy for non-antibiotic therapy [131,132].Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 17 of 28 
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Figure 11. Schematic illustration showing the working principles of nFMs@Amp to treat hydrogen
peroxide (H2O2)-secreting Streptococcus pneumoniae (S. pneumoniae) infection. (A) Schematic diagram
of the synthesis steps of nFMs@Amp. (B) Schematic diagram of the process of Streptococcus pneumoniae
causing lung infection in mice and the mechanism of action of nFMs@Amp in eliminating H2O2 from
the lungs of infected mice. Modified and reproduced with permission from the Elsevier [129].
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4. Pulmonary Inhalation of Nanoparticles in the Treatment of Pneumonia

Both the local concentration and the retention time of the drugs within an inflam-
matory lesion can impact clinical outcomes. Delivering the drug directly to infected cells
through the alveoli and bronchi can shorten the time to onset of action compared to the
systemic delivery route. Therefore, inhaled drugs are gradually gaining attention among
researchers [133–136]. Systemic administration requires specific targeting to achieve an
optimal effect, but local delivery to the lungs provides more direct targeting. Pulmonary
inhalation administration can significantly increase local drug concentrations, thereby
reducing the necessary dose. In other words, local delivery can enhance the drug’s effec-
tiveness. Inhaled drug delivery thus remains a preferred clinical approach for the treatment
of various lung-related diseases, including acute lung injury and asthma. Pulmonary
delivery of nebulized drugs also offers a potential way to treat bacterial infections of the
lung (Figure 12).
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4.1. Pulmonary Drug Delivery Barriers

Effective pulmonary inhalation drug delivery requires overcoming relevant barriers,
including anatomical, physical, immunological, and metabolic barriers. Due to the physio-
logical limitations of the lung, it is reported that inhaled formulations with particle sizes
smaller than 1 to 3 µm are required for deep delivery into the alveoli. Therefore, nebulizing
of the nanodrug formulations to the appropriate formulation size is necessary [137,138].
With respected to the physical barrier, respiratory mucus covers the airways from the nose
to the fine bronchial tubes for the capture and removal of foreign bodies. Respiratory
secretions in the airways and alveolar linings may also trap polymer particles or reduce
their stability. The mucus screens out nanoparticles larger than the grid spacing of the
mucin network, which is approximately 100 to 400 nm. In addition, mucus also slows the
diffusion of molecules smaller than the sieve spacing, constructing a dynamic barrier for
the protection of the physiological state of the lung.

In addition to the mucosal barrier, nanoparticles may be cleared by macrophages and
epithelial endocytosis in the alveoli [139]. Nanoparticles of 260 nm and smaller have been
reported to be readily transferred from the lung into the systemic circulation, which is
detrimental to the efficacy of locally delivered drugs, and it may increase systemic side
effects. Due to the limitations of the pulmonary drug delivery barrier, specific requirements
are placed on the nature of the drug delivery system. Firstly, the inhaled formulation
should be nebulized into droplets of appropriate size for effective deposition into the
alveoli. Secondly, hydrophilic and electroneutral nanoparticles are preferred for their
propensity to penetrate the mucus barrier and successfully reach the cell surface. Finally,
to meet metabolic requirements, the carrier system also needs to be biodegradable and
neither cytotoxic nor immunogenic. This requires carrier materials with suitable size and
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surface properties to achieve higher delivery efficiency, better drug efficacy, and optimal
safety profiles.

4.2. Nanoparticles for Pulmonary Inhalation

Direct delivery of antibiotics via pulmonary inhalation has been practiced in the
clinic. For example, while antimicrobial peptides (AMP) are effective therapeutic agents,
traditional systemic routes of administration may lead to undesired effects, including
low bioavailability and high toxicity. In this context, the pulmonary inhalation route
has been found to address these limitations. A study by van der Weide et al. found
that novel antimicrobial peptide nanomedicines (AA139) were therapeutically effective
in the treatment of sepsis caused by multidrug-resistant Klebsiella pneumoniae when they
were encapsulated into nanoparticles by polymers or micelles. The therapeutic effect of
nanoparticles containing AA139 on rats with pneumonia-related sepsis was measured after
tracheal intubation aerosolization. These nanodrugs significantly prolonged survival time
and thus acted as an effective treatment of pneumonia-related sepsis caused by multidrug-
resistant Gram-negative bacteria [140]. Non-natural antimicrobial peptides have also been
reported to show in vitro efficacy against a wide range of drug-resistant strains and to resist
degradation in biological fluids [141]. The development of multifunctional antimicrobial
peptides and the preparation of biodegradable nanoparticles have expanded the range of
applications of antimicrobial drugs [142].

The pulmonary barrier limits the scope of antibiotic applications for pulmonary
inhalation delivery. Most antibiotics cannot be delivered directly to the lungs due to
their inherent limitations, such as high hydrophobicity and poor cellular absorption [143].
The introduction of nanomaterials has greatly improved the efficiency of pulmonary drug
delivery and significantly reduced drug toxicity. Among the common lung delivery vehicles,
PLGA-related polymers have been used to carry several types of drugs, such as proteins,
peptides, DNA, and siRNA. Casciaro et al. delivered PLGA-encapsulated antimicrobial
peptides via a liquid injector to a mouse model of pneumonia. The PLGA nanoparticles
inhibited bacterial growth, leading to a reduction in lung bacterial load [144]. PLGA
nanoparticles have also been used to aid drug penetration through the mucus barrier and
improve the efficiency of pulmonary drug delivery. Wu et al. constructed nanoparticles
of hydrophilic HA with PLGA containing PMB to enable better penetration of the drug
through the mucus barrier (Figure 13). The modification of PLGA improved the drug
delivery efficiency and promoted the slow release of the drug for sustained treatment [145].

In addition, polymeric PEGs have also been widely used as nanomaterials for pul-
monary drug delivery by inhalation. Hydrophilic and electroneutral PEGs have shown
promise in overcoming the mucus barrier for better drug delivery to infected cells. Drug
PEGylation imparts a hydrophilic layer to the drug, changing its hydrophilicity and size
to permit its penetration through the mucus layer [146]. In addition to the delivery of
traditional antimicrobial drugs, PEG is also commonly used for delivery of siRNA for anti-
inflammatory therapy. This nanocomplex with dual permeability to both mucus and cell
membranes promises to become a practical tool for the treatment of severe pneumonia [147].

With the development of nanotechnology, inhalation therapy combined with vari-
ous treatments, such as phototherapy and sonodynamic therapy (SDT), has been found
to effectively remove bacteria and avoid antibiotic resistance. Due to the strong tissue
penetration of ultrasound, SDT has potential applications in the treatment of deep tissue
diseases. The use of ultrasound to activate acoustic sensitizers to produce different reac-
tive oxygen species leads to a strong antibacterial effect. In a recent study, metal-organic
framework-derived nanoparticles were designed to be used in inhaled treatments of bacte-
rial pneumonia. ZIF-8 was incorporated into these nanoparticles as an acoustic sensitizer
to generate bactericidal reactive oxygen species upon sonodynamic therapy [148]. Simi-
larly, upon nebulized intratracheal inoculation, nanoparticles constructed of ZrTi2O6 have
been found to aggregate in the infected areas of the lung. In addition, after ultrasound
irradiation in vitro, this material produces reactive oxygen species that kill Gram-negative
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multidrug-resistant bacteria. This inhaled SDT has great potential as a replacement for
antibiotic treatment of drug-resistant bacterial pneumonia (Figure 14).
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5. Conclusions and Perspectives for Future Work

Lung infections caused by bacteria continue to be a global problem of great concern.
Since the discovery of penicillin in 1928, a series of antibiotics have been created that have
saved the lives of countless patients. However, the extensive use of antibiotics has also
caused the development of bacterial resistance, which is caused by multiple mechanisms
such as the production of hydrolytic enzymes, alteration of targets of action, increased
activity of efflux pumps, and biofilm formation. The search for antibiotic alternatives and
the development of drug carriers lead to effective tools to address this issue.

Oral and intravenous antibiotic formulations have been used extensively in the clinic.
Intravenous administration of drugs through systemic circulation avoids the first-pass effect
and improves the bioavailability of the drug. However, intravenous formulations inevitably
suffer from lack of pulmonary targeting and systemic toxicity in the treatment of pulmonary
infections. Currently, bioactive nanoparticles prepared by nanotechnology to modify the
size, surface properties, and hydrophobicity of drugs have improved the therapeutic effect.
Multiple properties of nanoparticles can facilitate the delivery of antibiotics to the lungs.
Common bioactive nanoparticles include liposomes, micelles, polymers, and inorganic
nanoparticles. These nanoparticles have been extensively studied in order to effectively
deliver antibiotics to infected cells or around bacteria, addressing the problem of bacterial
resistance. Nanoparticles have been studied in the context of removal of bacteria that
reside inside or outside of cells, and they have been used to deliver therapies to deal with
the inflammation produced by bacterial infections. From a clinical perspective, much
work remains to be completed before bioactive nanoparticles can transition from the
research phase to clinical applications. Current challenges include the improvement of
biocompatibility, biodegradability, and toxicity associated with nanoparticles.

Pulmonary inhalation drug delivery offers a new route of administration of therapies
for pulmonary infectious diseases that directly addresses the issue of drug targeting. In-
halation administration reduces drug toxicity and leads to a more rapid onset of action
compared to intravenous formulations. The process from drug inhalation to action is associ-
ated with a series of hurdles, and administration places difficult demands on the inhalation
device. For instance, local administration of drugs that are toxic or readily cleared by the
lungs may require a drug carrier. Many studies have also shown that the mucus barrier
present in the lungs is a major challenge that may be overcome through the application
of nanotechnology. In particular, in pneumonia, mucus secretion in the lungs increases,
further preventing drugs from entering the cells of the lungs. Polymeric nanoparticles can
penetrate this mucus, which makes them strong candidates for pulmonary drug delivery.
Another key issue in this regard is the idea that hydrophilic drugs tend to be the best
candidates for inhalation therapy; modification of hydrophobic drugs with nanoparticles
can expand the scope of application.

In addition to drug delivery, nebulized inhalation combined with other means of
treating pneumonia has shown good therapeutic results. With the help of inhaled acoustic
sensitizers deep within in the lungs, SDT is able to remove recalcitrant bacteria, enabling
highly effective non-invasive treatments. Recently, the use of phages for the delivery of
pneumonia therapies has become an emerging modality that is related to nanotechnological
solutions. Phage therapy has the advantages of high specificity, low drug resistance, and
low incidence of side effects, driving the use of this tool in precision therapies. A number of
antibiotic-alternative therapies have also received attention from the point of view of drug
delivery modalities. The combination of multifunctional drug carriers as well as synergistic
therapies is expected to provide new avenues for the treatment of bacterial pneumonia.
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