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Abstract: Ectodysplasin A (EDA), a ligand of the TNF family, plays an important role in maintaining
the homeostasis of the ocular surface. EDA is necessary for the development of the meibomian
gland, the lacrimal gland, as well as the proliferation and barrier function of the corneal epithelium.
The mutation of EDA can induce the destruction of the ocular surface resulting in keratopathy,
abnormality of the meibomian gland and maturation of the lacrimal gland. Experimental animal
studies showed that a prenatal ultrasound-guided intra-amniotic injection or postnatal intravenous
administration of soluble recombinant EDA protein can efficiently prevent the development of ocular
surface abnormalities in EDA mutant animals. Furthermore, local application of EDA could restore
the damaged ocular surface to some extent. Hence, a recombinant EDA-based therapy may serve as a
novel paradigm to treat ocular surface disorders, such as meibomian gland dysfunction and corneal
epithelium abnormalities.

Keywords: ectodysplasin A; ocular surface; homeostasis

1. Introduction

Ectodysplasin A (EDA), encoded by the EDA gene positioned in the X chromosome,
is a member of the tumor necrosis factor (TNF) superfamily that contribute to cell death,
proliferation or differentiation [1]. However, EDA is a unique member of the TNF ligand
because of its limited sequence homology to other TNF-like molecules except for the
conserved TNF motif [2]. The EDA gene governs the morphogenesis of various ectodermal
organs such as the teeth, hairs, and mammary glands during prenatal development [3].
A literature survey revealed that, among several signaling pathways, the EDA pathway
was the first pathway to be utilized for the stimulation of tooth modifications. EDA gene
mutations are widely studied in X-linked hypohidrotic ectodermal dysplasia (XLHED) and
anhidrotic/hypohidrotic ectodermal dysplasia (HED), which is the most common genetic
disorder of ectodermal development in humans resulting in hypotrychosis, hypodontia,
heat intolerance, dry skin and dry eyes, the susceptibility to airway infections and crusting
of various secretions. Here, we review the signaling pathways involved in EDA, its role
in the morphogenesis of the ocular surface and the emergence of recombinant EDA as a
bioactive compound for the management of ocular surface disorders.

2. EDA/EDA Receptors System

EDA precursor protein is a transmembrane protein, which contains a short intracellular
domain, a transmembrane domain and an extracellular domain. The extracellular domain
consists of three functionally important regions of EDA: a furring protease recognition
sequence responsible for proteolytic processing of EDA, a collagen-like domain and a
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C-terminal TNF homology domain responsible for receptor binding [2,4]. The ectoderm-
derived epithelial cells express the EDAR, and a hinderance to the EDA-EDAR signaling
pathway leads to genetic disorders such as anhidrotic ectodermal dysplasia. The EDA
transcript undergoes complicated splicing events generating various splice variants, among
which EDA-A1 (391 amino acid) and EDA-A2 (389 amino acid) are the common functional
variants. They differ by an insertion of just two amino acid residues (Glu308 and Val309)
in the TNF domain [5]. Despite the high sequence homology, EDA-A1 and EDA-A2
specifically bind to two different receptors, the EDAR and X-linked EDA-A2 receptor
(XEDAR), respectively [6]. Being splice variants, the function and signaling proteins of the
EDA A1-EDAR pathway and EDA-A2-XEDAR pathway are distinct [7]. EDA-A1-EDAR
affects the development of skin appendages, including hair, teeth, sweat glands, meibomian
glands and preputial glands [8], whereas EDA-A2-XEDAR is a p53-induced gene with no
obvious implications in ectodermal appendage development [7].

EDA can regulate the NF-κB, Wnt, Shh, BMP and lymphotoxin-β (LTβ) pathways
spatio-temporally in the organogenesis and the maintenance of the ectodermal organ
(Figure 1).
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3. EDA-EDAR-Dependent Signaling Pathways
3.1. NF-κB Signaling Pathway

Among various signaling pathways involved in prenatal organogenesis, the NF-κB
pathway plays a major role in the development of most ectodermal organs. Many studies
on EDA mutant Tabby mice have proved that EDA-EDAR regulates the NF-κB signaling
pathway.

Analogous with other TNF family receptors, EDAR trimerizes upon binding of the
EDA-A1 ligand [9]. However, EDAR cannot bind to any of the TNF-associated factors
(TRAFs) directly; it requires a special adapter protein EDAR-associated death domain
(EDARADD), to recruit tumor necrosis factor receptor-associated factors (TRAFs) for the
activation of the downstream NF-κB signaling pathway [10,11] (Figure 1). As reported,
among the six TRAFs, only TRAF6 is involved in the activation of the EDA-A1-mediated NF-
κB signaling pathway [12,13]. Similarly, the XEDAR receptor undergoes ligand-mediated
trimerization [9,14] and can recruit TRAF3 and TRAF6 [12], thereby activating the NF-
κB signaling pathway [15]. When the TRAFs bind to the EDARADD, it activates the
IKK complex that consists of NEMO, IKKα and IKKβ. The IKK complex induces the
phosphorylation of Iκb. The phosphorylated Iκb is degraded and then releases NF-κB. NF-
κB translocates into the nucleus and activates the target genes [12,13]. If the X chromosome
carried the mutated EDA gene, NF-κB dysfunction would be evident through phenotypic
abnormalities in the development of the mammary gland [16], teeth [17], hair follicle [18]
and meibomian gland [19].
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3.2. Wnt/β-Catenin Signaling Pathway

Together with the NF-κB pathway, the Wnt/β-catenin signaling pathway is critical as
they crosstalk bidirectionally to initiate the morphogenesis of hair follicles [20], teeth [21],
the meibomian gland [22] and mammary gland [23]. Zhang et al., using a hair follicle
induction model, showed that the Wnt and Edar signaling pathways are interdependent
when inducing the formation of the primary hair follicle placod and the Wnt directly targets
Edar [20]. Similarly, Wang et al. (2020) found that EDAR stimulated the Wnt/β-catenin
signaling, promoting tumor cell proliferation in colorectal cancer. The gene expression
levels associated with Wnt/β-catenin signaling were upregulated in high EDA samples,
while β-catenin expression was significantly downregulated when EDAR was silenced [24],
highlighting the importance of EDA-EDAR in the activation of the Wnt/β-catenin signaling
pathway during development and tumorigenesis.

3.3. BMP Signaling Pathway

Most of the biological processes such as tooth morphogenesis, hair placode formation
and hair follicle patterning depend on the interaction between the Eda-Edar and the BMP
signaling pathways. An EDAR-BMP activation–inhibition phenomenon was introduced
by Mou et al., in which the upregulated BMPs inhibit the EDAR expression during the
determination of the follicles’ fate [25].

3.4. c-Jun N-Terminal Kinase Signaling Pathway

In the process of ectodermal differentiation, EDA-EDAR can activate the c-Jun N-
terminal kinase (JNK) signaling pathway, depending especially on the EDA-A2-XEDAR/NF-
κB [15,26,27]. A recent study showed that hepatic EDA expression promotes JNK activation
and is involved in the obesity-induced insulin resistance in skeletal muscle [28]. Studies
showed that the cytoplasmic domain of EDAR resembles the death domains, and mediates
the JNK and cell death pathways contributing to pathological phenotypes of anhidrotic
ectodermal dysplasia [29].

As well as the above signaling pathways, the EDA-EDAR system can activate the
sonic hedgehog (Shh) signaling [30] and upregulate FGF20 [31] and EGF [32,33].

4. Function of EDA in Physiology and Pathology

EDA is expressed in various organs and tissues, including the heart, kidney, pancreas,
brain, lung, liver, skeletal muscle, teeth, as well as the skin during both embryonic develop-
ment and adulthood [34]. Ever since its discovery in 1996 by D. Schlessinger, numerous
studies have determined the role of EDA in the development of ectodermal structures
such as the teeth, hair and several exocrine glands including the sweat, mammary and
meibomian glands [8,35]. The function of EDA in health and disease is summarized in
Table 1. Recently, the expression of the EDA/EDAR receptor system has been extensively
studied in the ocular surface as it is a regulator of the ectodermal organs.

A clinical phenotype associated with EDA gene mutation is X-linked hypohidrotic ec-
todermal dysplasia (XLHED), also named as anhidrotic/hypohidrotic ectodermal dysplasia
(HED), which is the most common genetic disorder of ectodermal development in humans
resulting in hypotrychosis, hypodontia, heat intolerance, dry skin, susceptibility to airways in-
fections and crusting of various secretions [36]. In the ocular surface, the abnormal expression
of EDA mostly resulted in dry eye disease; that is, the pathology of the lacrimal functional
unit (lacrimal gland, cornea, conjunctiva, meibomian glands and so on).
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Table 1. Function of EDA in organs and tissues.

Physiology Pathology

Heart Expression [11] NA

Kidey Expression in kidney
epithelial cells [37] Polycystic kidney dysplasia [38], diabetic kidneys [37].

Pancreas Expression [39,40] Insulin resistance [39]
Brain Expression [41] NA

Lung

Expression in distal tracheal
regions and the
distal lung [42]. The development
of submucosal glands [43].

Lung infection [44,45], high prevalence of asthma-like
symptoms [46]

Liver Expression in hepatic stellate cells [28,47] Increases in non-alcoholic fatty liver disease and insulin
resistance [28]

Skeletal muscle Expression in muscle cells [28] Insulin resistance [28]

Skin and skin appendages Expression in epithelium. The formation
of skin appendages [35] and skin repair [48]

Defective formation and further morphogenesis
dysfunction of hair follicles, sweat glands and teeth [35],
delay in healing [48]

Mammary glands
Expression in mammary epithelium.
Mammary placode formation and
branching morphogenesis [31,49,50]

Smaller ductal trees [16,51]

Ocular surface
Expression in meibomian gland epithelium.
Meibomian gland formation [19] and
lacrimal gland morphogenesis [52]

Dry eye [53], delay in healing [33]

NA, no study.

5. The Homeostasis of Ocular Surface

The ocular surface is a complicated system, constituting the cornea, conjunctiva,
meibomian glands, lacrimal glands and the neural network, which complement each other
in maintaining the ocular surface homeostasis [54]. The cornea is the transparent and
avascular tissue that serves as a mechanical barrier and refractive surface of the eye. In
addition to the tear film, the corneal epithelium is the outermost layer constantly exposed
to the external environment. Conjunctiva plays an important role in protecting the eye
by producing mucin and the presence of immune cells [55]. The conjunctival epithelium
acts as a barrier similar to the corneal epithelium. The lacrimal gland renders lubrication
and protects the ocular surface by the secretion of tears consisting of water, electrolytes,
lipocalin, lactoferrin and mucus. The function of the lacrimal glands is also necessary for the
homeostasis of normal vision [56]. The meibomian glands are the largest sebaceous glands
that secrete various lipids including cholesterol, cholesterol esters, wax esters, triglycerides,
phospholipids, free cholesterol and free fatty acids. The meibum and aqueous tears make
up the stratified structure of the tear film. During the blink reflex, the meibum, aqueous
and mucin mix to form the tear film on the ocular surface [57]. The homeostasis of the
ocular surface plays an important role in maintaining the health of the eye. The destruction
of the homeostasis of the ocular surface results in a variety of diseases, such as meibomian
gland dysfunction, corneal epithelium abnormalities, dry eye disease, and etc.

6. The Role of EDA in the Development of Ocular Surface

Most of the ocular surface tissues such as the meibomian gland, lacrimal gland and
corneal epithelium, originate from the ectoderm [58]. As previously discussed, EDA is
involved in the development of several ectodermal organs, including the teeth, hair and
mammary glands [59]. Patients with defective EDA are also reported to have photophobia
and a reduction in the lacrimal function [60–63]. Kaercher et al. also observed that these
patients presented with alterations in the meibomian glands irrespective of age, and corneal
changes in some older patients. Other abnormalities, such as conjunctivitis, lacrimation
and dry eye progressed gradually with age in these patients [64]. Similarly, in the naturally
occurring animal model of XLHED, the integrity of the cornea, function of lacrimation
and formation of the meibomian gland was destroyed [65,66]. The Tabby mice, a mice
model generated by debilitating the EDA gene, also showed similar clinical characteristics
seen in XLHED [67,68]. The mutation of EDA was elucidated to be the major cause of
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alternation of the meibomian gland in XLHED [67,68]. A further study found that the
EDA-DKK4-Lrp6 axis plays a crucial role in the formation of the meibomian gland, and
that EDA directly activates the major Wnt pathway modulator Dickkopf-4 (Dkk4) and its
receptor Lrp6 during the meibomian gland’s induction [22].

During embryonic development of the lacrimal gland (LG) in mice, the EDA pathway is
found to be active in both basal and supra-basal cell layers of the epithelial compartment [52].
However, Eda activity gradually decreased as development proceeded, and there were only a
few positive cells in the lacrimal gland acinar domain of the 13-week-old mice [52]. The LG
ductal and acinar compartment formation is not affected by the EDA pathway, while EDA is
necessary for the terminal differentiation of LG cells and the secretory function of LG during
development [52]. Compared to the wild-type mice, the terminal differentiation of cells was
found to be altered in all of the LG compartments of EDA−/− mice. Interestingly, the blinking
rate remained consistently higher even in one-year-old EDA−/− mice, indicating a long-term
physiological defect of the ocular surface in EDA−/− mutants.

In addition to the Tabby mice, Takashi Kuramoto et al. generated an swh/swh rat
model by inducing mutation of the Edar-associated death domain (Edaradd) gene, which
showed a similar phenotype of meibomian gland and other ocular surface abnormalities in
Tabby mice [69]. Collectively, the deficiency of EDA contributed to the deformation of the
meibomian gland and the immaturity of the lacrimal gland.

7. The Role of EDA in Ocular Surface Homeostasis

As discussed previously, most of the EDA in the ocular surface is contributed by
the meibomian gland in the adult stage [32,40], while the LG, corneal and conjunctiva
epithelium weakly express EDA [32,40]. However, the EDAR is highly expressed in the
cornea, meibomian gland, lacrimal gland and conjunctiva [33] (Figures 2 and 3, Table 2).
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Figure 2. The expression of EDA-EDAR in the ocular surface [33]. (A) Immunofluorescent staining of
EDA and EDAR expression in the corneal (Cor) and conjunctival (Conj) epithelium, lacrimal gland
(LG) and meibomian gland (MG). (Scale bars represent 50 µm). (B) Western blot results of EDA and
EDAR in corneal epithelium, conjunctiva, lacrimal gland and meibomian gland tissues. (C) ELISA
results of EDA in normal human serum, healthy human tear and tears from MGD patients (* p < 0.05).
(Reproduced from Ref. [33]).
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Figure 3. Schematic representation of EDA in ocular surface homeostasis. In ocular surface, the EDA
was mainly contributed by meibomian gland. EDA plays a crucial role in maintaining the ocular
surface hemostasis by promoting proliferation though EGF signaling pathway and maintaining
normal barrier function of corneal epithelium by SHH signaling pathway.

Table 2. Expression of EDA and pathways involved in ocular surface homeostasis.

EDA EDAR Function Pathway Pathology

Cornea + +++ Proliferation
Barrier function

EGF [33]
SHH [70]
ERK [33]

Corneal defect, keratitis, decrease
in corneal epithelial proliferation

and delayed corneal wound
healing [33]

Conjunctiva + ++ NA NA
Meibomian

gland +++ ++ Development WNT [22] Abnormal development of the
meibomian gland [33]

Lacrimal gland +/− ++ Development
Lacrimation Cxcl10 [52,71]

The terminal differentiation of
cells was abnormal and a decrease

in tear production [52]

+, weak expression; +++, high expression; ++, between + and +++; +/−, no confirmed; NA, no study.

7.1. Meibomian Gland

Meibomian gland dysfunction (MGD), a chronic abnormality, could induce dry eye,
which affects the health and well-being of millions of people, with terminal obstruction
and/or glandular secretion changes [72]. Mutation of the EDA gene induces the abnormal
development of the meibomian gland in XLHED patients [73] and animal models of
dog [66], mice [53] and rat [69]. We further confirmed that most of the EDA was contributed
by the meibomian gland in the ocular surface [33]. The meibomian gland secretes EDA
protein to the ocular surface, which in turn contributed to the health of the corneal and
conjunctiva [33]. In our previous study, we found that the production of EDA in tears was
dramatically decreased in the patients of MGD [33] Thus, the downregulation of EDA will
result in the progress of MGD and the destruction of the cornea and conjunctiva.

7.2. Lacrimal Gland

The LG secretes the aqueous layer of the tear film [74]. Although the EDA activity
was observed to progressively decrease during development [52], the quantity and quality
of tear production by the LG was dramatically alternated in progressive XLHED patients
and animal models. The LG weight was increased in EDA−/− mice compared with wild-
type mice [52]. Moreover, the terminal differentiation of cells was found to be altered
to an unmatured state in all the LG compartments including the epithelium of ducts
and acinar, and myoepithelial cells in EDA−/− mice [52]. Indeed, a proper terminal
differentiation is crucial for physiological LG secretion [52]. The EDA pathway not only
maintains appropriate cell differentiation but also mediates the expression of the protective
secretory factors found in the tear film. Additionally, the growth factors and inflammatory
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cytokines such as growth differentiation factor 5 (Gdf5), C-X-C motif chemokine ligand
10 (CXCL10) known to be secreted in basal tears were downregulated in the EDA−/−

LG [52,71]. It is a remarkable fact that Gdf5 is involved in the inhibition of corneal epithelial
cells’ proliferation [75], while CXCL10 is associated with dry eye [76]. Moreover, it is
shown that EDA−/− animals presented with delayed corneal wound healing [70], which
could possibly be due to LG maturation defects, and the TGF-β1, FGF7 and HGF of the
lacrimal gland showed abnormal expression during this process. Surprisingly, inhibiting
EDA signaling in the LG epithelium seems to be part of a feedback loop between the cornea
and LG, which allows the secretion of reflex tears supporting corneal wound healing [52].
Similar to the meibomian gland, the EDA could maintain the homeostasis of the LG and
promote tear production to support the cornea and conjunctiva.

7.3. Cornea

The corneal epithelium weakly expresses EDA protein, whereas it significantly ex-
presses EDAR [33] (Figure 1). Few researchers have reported that EDA signaling is inactive
in the cornea during physiological and pathological conditions [52]. However, the corneal
changes, such as corneal defect and keratitis was age dependent in patients and animal
models with EDA mutation [52,63,64]. The corneal epithelial integrity was defective and
the thickness was reduced in the early postnatal stage of EDA mutant Tabby mice, with
the decrease in corneal epithelial proliferation and delayed corneal wound healing [33].
EDA-mutated Tabby mice also displayed significant inflammation of the ocular surface
and corneal pannus during their adult stage [70]. Primarily, these defects were assumed
to be induced by the alteration of the tear film lipid layer in MGD and the reduction in
tear production by LG dysfunction [64,77]. More recently, researchers have concluded
that these syndromes are a primary sign of XLHLED, i.e., EDA deficiency [78]. In our
previous study, we found that EDA contributes to the maintenance of the epithelial bar-
rier function [70], with the upregulating of ZO-1 and claudin-1 expression through the
activation of the sonic hedgehog signaling pathway [70]. Our study also showed that
EDA could promote corneal epithelial cell proliferation through regulation of the EGFR
signaling pathway [33]. Exogenous EDA protein could rescue the normal corneal epithelial
morphology in the EDA-deficient Tabby mice [33]. In our view, although the alternation
of the meibomian gland and the LG contributed to the dysfunction of the cornea, EDA
expression may directly balance the hemostasis of the corneal epithelium by promoting the
proliferation and thereby maintaining the barrier function. The conditional dysfunction of
the EDA receptor in the cornea can be attempted to better understand the function of EDA
in the cornea.

8. Therapeutic Efficiency of Recombinant EDA

XLHED is a systemic genetic disease caused by mutation of the EDA gene and defi-
ciency of the signaling protein EDA [79,80], which leads to the abnormal development of
exocrine glands, hair and teeth [81]. The affected individuals inescapably suffer from severe
MGD and a dry eye phenotype [53], along with chronic conjunctivitis and blepharitis [33].

In 2003, Olivier Gaide et al. synthesized soluble recombinant fusion forms of EDA,
namely Fc: EDA1 and Fc:EDA2, and these were effective when tested on the Tabby mice
model [68]. Meanwhile, researchers found that prenatal ultrasound-guided intra-amniotic
injections [82] or the postnatal intravenous administration of soluble recombinant EDA
(Fc: EDA1) [65] can efficiently modify the disease development in the XLHED animal
models [65,66]. Additionally, after the Fc: EDA1 treatment during the postnatal period,
meibomian gland and eyelid development were successful and tear production was sig-
nificantly increased. Meanwhile, the rate of keratoconjunctivitis sicca and eye infection
incidence was greatly reduced [63,64,80]. Taken together, these results indicated that the
soluble recombinant EDA (Fc: EDA1) applied during the postnatal period can efficiently
maintain the homeostasis of the ocular surface. Furthermore, in the mEDA-A1 transgenic
Tabby mice, the meibomian glands were restored considerably. Meanwhile, the neovas-
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cularization, keratitis, ulceration and keratinization of the cornea, and blepharitis and
conjunctivitis of the ocular surface inflammation were significantly prevented [70]. In our
study, we found that applying mouse recombinant EDA protein in the conjunctival sac
of Tabby mice significantly promoted epithelial wound healing and the proliferation of
the corneal epithelium [33]. Thus, recombinant EDA could be a promising therapeutic
candidate in the reconstruction of the ocular surface homeostasis. What is more, the TNF
ligands and receptor binding with the Fas-associated protein with death domain (FADD)
family adaptors or TNF-R-associated factor (TRAF) family adaptors were composed by
trimerization. The FADD often mediate apoptosis and TRAF mediate cell differentiation
and inflammation. EDA-EDAR through EDARADD recruits tumor necrosis factor TRAFs
for the activation of the downstream NF-κB signaling pathway and other signaling path-
ways. The abnormal expression of EDA may induce inflammation. However, the possible
inflammatory involved effect of EDA should be further studied. Although there was no sig-
nificant side effect by systemic or local allied EDA, the safety of recombinant ectodysplasin
A1 replacement protein in human subjects should also be further investigated.

9. Perspective

As the EDA-EDAR system governs prenatal development, the application of recombi-
nant EDA protein could be a boon in treating XLHED. Further pharmacological studies and
genetic studies should focus on determining the downstream of the EDA signaling pathway
to correct ocular surface disorders and the crosstalk between other pathways to promote
corneal homeostasis. What is more, exogenous EDA performed a promising therapeutic
effect on the ocular surface destruction of EDA mutation-induced MGD, and the local
application of EDA in ocular surface destruction, such as MGD and corneal epithelium
dysfunction, should be confirmed in the future.

The Initial regulatory steps in the EDA signaling pathway are still not fully understood.
In the ocular surface, EDA could upregulate the expression of Ki67, EGFR, p-EGFR and
p-ERK in the corneal epithelium. In other words, EDA can promote corneal epithelial cell
proliferation through regulation of the EGFR signaling pathway [33] (Figure 2, Table 2). The
role of EDA in the crosstalk of the EGFR signaling pathway, the sonic hedgehog signaling
pathway and the downstream regulators needs further study. The EDA-EDAR-involved
NF-κB signaling pathway, Wnt/β-catenin signaling pathway, BMP signaling pathway and
c-Jun N-terminal kinase signaling pathway are highly related to the pathology of the ocular
surface, and the correlation of these signaling pathways and EDA-EDAR should be further
studied in the ocular surface. During the development of the meibomian gland, EDA
targets Lrp6-DKK4 to modulate Wnt action to regulate meibomian gland induction [22]
(Table 2). However, the role of EDA in maintaining the homeostasis of the meibomian
gland is not well elucidated.

The majority of the EDA in the tear film is produced by the meibomian gland, and
it is dramatically decreased in MGD. Thereby, the detection of EDA in tears could be an
index to assess and diagnose the function of the meibomian gland [33]. The correlation of
EDA in tears with the grade of MGD needs to be further studied. As we reported that EDA
could maintain the barrier function and promote the proliferation of the corneal epithelium,
the correlation of corneal epithelium dysfunction and the quality of tear EDA should be
further confirmed, especially in persistent corneal epithelium defects. Thus, the potential
applications of EDA in ocular surface health and diseases remains to be widely researched.
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