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Abstract: Both physiological and pathological aging processes induce brain alterations especially
affecting the speed of processing, working memory, conceptual reasoning and executive functions.
Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have
been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly
contributed by free radical reactions, it has been proposed that exogenous antioxidants could have
a positive impact on both aging and its associated manifestations. The aim of this report is to
provide a summary and a subsequent review of the literature evidence on the role of antioxidants
in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular
defense mechanisms through nutritional antioxidants or pharmacological compounds represents
an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such
as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the
Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the
cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential
preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using
preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are
well standardized.

Keywords: aging; antioxidants; cognition; epigenetic; hydroxytyrosol; Mediterranean diet; oxidative
stress; resveratrol

1. Introduction

It is well established that both the physiological and pathological aging processes
induce brain alterations affecting, particularly, some aspects of cognition, especially the
speed of processing, working memory, conceptual reasoning, and executive functions [1–3].
Even though the majority of the aged people retain relatively well-preserved health, this
trend reflects on numerous individuals, especially those with disability and fragility [4–6].
However, there is significant heterogeneity among older adults in the rate of decline in
some abilities, such as the measures of perceptual reasoning and processing speed [7].
More precisely, age-related brain deterioration results in a scaffolding of new compensatory
networks, depending on the factors that positively and negatively influence cognition.
This decline is mostly associated with a dysfunction of the pre-frontal cortex, which, being
especially vulnerable, tends to atrophy prematurely while aging, causing a reorganization of
brain functioning, which often occurs with hemispheric lateralization of the solicited regions
with more frequent bilateral brain activation [8–10]. Furthermore, many pathologies, such
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as common comorbidities in elder people, negatively affect cognition, though further
studies are required to better understand how aging plays a role and how brain structure
and brain function might mediate the relationship between comorbidities and age on
cognition [11–13].

Many therapeutic approaches (cognitive and physical training, pharmacology, etc.)
have been tested in literature to reduce the impact of brain aging on cognitive functioning,
but nothing has been proven to bring satisfactory results as a single therapy [4]. As aging is
partly contributed by free radical reactions, it has been proposed that exogenous antioxi-
dants should have a positive impact on both aging and its associated manifestations [14,15].

This report aims to provide a summary and a subsequent review of literature evidence
on the role of antioxidants in preventing and improving cognition in the aging brain.

2. Aging
2.1. General Mechanisms

Aging is an inevitable time-dependent decline of all biological functions, driven by a
genetic program and linked to an increased risk for numerous diseases [16]. It has been
suggested that the activation of multiple pathways due to the altered function of quality
control systems monitoring the performance of the genomic and proteomic repertoire of the
cells plays a major role [17]. In 2013, a total of nine biological hallmarks of aging have been
identified: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis,
mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell
exhaustion, and altered intercellular communication [18–20].

Actually, most chronic neurodegenerative human diseases (Alzheimer’s disease,
Parkinson’s disease, amyotrophic lateral sclerosis, etc.) are inherently associated with
increasing age, as cells with senescence features have been detected in both brains of elders
and patients with neurodegenerative disease, where they promote dysfunction [21,22]. In
fact, senescent cells are characterized by sustained cell cycle arrest and production of a
distinct senescence-associated secretory phenotype, and they accumulate with age and
age-related diseases throughout the body, where they actively promote tissue decay. Hu-
man aging and neurodegenerative diseases comprise a series of changes at the molecular,
cellular, physiological, and functional levels [23].

Interestingly, among the functional alterations, the cognitive, emotional, and social
deficiencies are very common and are mostly linked to brain alterations. Furthermore,
among the cellular changes, a major role is played by oxidative stress alterations. Since
these alterations are mostly inevitable, it has been suggested that the main objectives of
medical interventions for elders and by extension to neurodegenerative disease patients
should focus on maximizing the ability of an individual to function in his environment,
maintaining autonomy and maximizing quality of life [23].

2.2. Brain Aging

Aging affects the brain and cognition because of multiple heterogeneous etiologies in-
cluding alterations at various levels: molecular and cellular, vasculature, gross morphology,
and cognition [24]. Numerous are the molecular and cellular changes brought by the aging
process in the brain; these are characterized by a gradual reduction of neurophysiological
functions, impaired adaptive neuroplasticity, dysregulated neuronal Ca2+ homeostasis,
neuroinflammation, and oxidative alteration of molecules and organelles [25].

Brain aging-associated cellular and molecular changes are often related to neurode-
generative diseases due to increased oxidative stress, inflammation, energy metabolism
disorders such as deregulated autophagy, mitochondrial dysfunction, and modifications
of IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic
control [26]. Interestingly, calorie restriction, physical exercise, and mental activities seem
to be able to extend lifespan and increase nervous system resistance to age-associated
neurodegenerative diseases, increasing protection against ROS generation, maintaining
cellular Ca2+ homeostasis, and inhibiting apoptosis.
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Our vascular changes and our blood pressure tend to rise, increasing the risk of stroke
and ischemia and causing white matter lesions of various sizes. Aging blood vessels
are characterized by shrunk blood flow, potentially leading to organ atrophy and loss
of function, that in the case of cerebral vascular aging can cause loss of the blood–brain
barrier integrity, eventually resulting in cognitive and sensorimotor decline as well as
diseases such as vascular cognitive impairment and dementia (VCID) due to chronic
cerebral hypoperfusion [27] (see Figure 1).
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well as ROS production, energy metabolism alteration, and neuroinflammation, which lead to pro-
gressive DNA and macromolecules damage, mitochondrial dysfunction, inflammation reaction, 
apoptosis, and epigenetic modifications; (2) vascular alterations and related disorders are very com-
mon and one of the leading causes of neurological disorders, morbidity, and mortality in older pa-
tients, manifesting its influence both systemically and on the more specific brain context; (3) with 
age come modifications of brain structure, with the frontal and pre-frontal lobes more influenced 
and occipital ones less affected; (4) cellular and molecular changes, but also vascular alterations and 
brain morphology modifications, are associated to functional impairment, which manifests mainly 
with memory loss and slight cognitive impairment but can lead to major pathological diseases such 
as dementia. In this context, antioxidants may play a major role in preventing cognitive aging prob-
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Figure 1. Brain-related aging mechanisms. Aging and neurodegenerative diseases are associated
with cognitive, emotional, and social deficiencies mostly linked to brain alterations. Aging of the
brain differs from other organs aging, as neurons are highly differentiated postmitotic cells, so
that their lifespan is mostly equal to the lifespan of the entire organism. Brain aging is complex
and heterogeneous but it substantially involves four levels of involvement: molecular and cellular,
vasculature, gross morphology, and cognition. (1) Cellular and molecular changes involve especially
(but not only) calcium-altered homeostasis, leading to hormone and neurotransmission changes,
as well as ROS production, energy metabolism alteration, and neuroinflammation, which lead to
progressive DNA and macromolecules damage, mitochondrial dysfunction, inflammation reaction,
apoptosis, and epigenetic modifications; (2) vascular alterations and related disorders are very
common and one of the leading causes of neurological disorders, morbidity, and mortality in older
patients, manifesting its influence both systemically and on the more specific brain context; (3) with
age come modifications of brain structure, with the frontal and pre-frontal lobes more influenced and
occipital ones less affected; (4) cellular and molecular changes, but also vascular alterations and brain
morphology modifications, are associated to functional impairment, which manifests mainly with
memory loss and slight cognitive impairment but can lead to major pathological diseases such as
dementia. In this context, antioxidants may play a major role in preventing cognitive aging problems.
ROS—reactive oxygen species. Images have been created by using the functionalities of Microsoft
PowerPoint 365 Version 2112. https://www.microsoft.com/microsoft-365 (accessed on 30 November
2022). Used with permission from Microsoft.

Actually, multiple pathophysiological processes participate in accelerated aging and
aging-related cerebrovascular disorders, including arterial stiffness, endothelial replicative
senescence, microvascular rarefaction, narrowing of the vascular lumen, and oxidative
stress in inflammation [28–32]. As we age, our brains shrink in size, particularly at the level
of the prefrontal and frontal cortex and the late myelinating regions of the prefrontal and

https://www.microsoft.com/microsoft-365
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frontal lobes. All the brain is actually implicated in these alterations and, because of the
individual differences observed in brain development and the aging brain, the evaluation
is a complex task. Interestingly, the occipital cortex seems to be the least affected by brain
aging. Brain deterioration mainly is due to the loss of neuronal cells but there are also
changes in dendritic arbor, spines, and synapses.

The brain volume and weight start declining from age 20 with age, and the rate of
deterioration reaches 5% per decade after age 40 with an increased decline rate after the age
of 70 [33,34]. Indeed, there is a significantly larger loss of myelin lipids than of gangliosides.
The loss of myelin lipids is particularly large in the female brain after 70 years of age, while
the loss in male brain seems to be linear as early as 20 years of age.

Aging is associated with memory decline, and brain activation becomes more bilateral
for memory tasks as an attempt to compensate and recruit additional networks or because
specific areas are no longer easily accessible. Dementia is often associated with aging.
Genetics, epigenetics, neurotransmitters, hormones, and experience all have a part to play
in brain aging. Curiously, higher levels of education or occupational attainment may act
as a protective factor. Healthy diet, low to moderate alcohol intake, and regular exercise
are also protective. These results suggest that biological aging is not absolutely bound to
chronological aging, and it may be possible to slow biological aging and even reduce the
possibility of suffering from age-related diseases such as neurodegenerative pathologies.

3. Oxidative Stress
3.1. Oxidative Stress and Epigenetics

Oxidative stress or free radicals refer to an imbalance between reactive oxygen species
(ROS) generation and antioxidant defense systems, which are implicated in different
pathways of injury in the development of various disorders (including neurodegenerative
disorders and aging) [16,35–37]. Interestingly, oxidative stress plays a major role in the aging
process, both by direct damage and by causing epigenetic changes. Epigenetics is defined as
a heritable regulation of gene expression through DNA and histone protein modifications
without DNA sequence alteration [38]. Epigenetic modification is technically a reversible
process, switching on/off genes in order to dynamically respond to the cellular milieu [39].

Dysregulation of epigenetics is frequently found in physiological conditions such as
in aging but also in almost all diseases (especially cancers) [40]. Oxidative stress and epige-
netic alterations usually coincide in diseases, suggesting a close relationship between these
two events (Figure 2). It has been demonstrated that ROS cause global DNA hypomethy-
lation, promoter hypermethylation, and altered histone modification, while epigenetic
regulation of ROS-mediated processes suggests the possibility of promising tools to deepen
in our comprehension of the process of senescence, and to develop novel therapeutic
strategies [41–43]. Among the highlighted tools to counter the harmful epigenetic effects of
oxidative stress, dietary nutrients seem to be placed in a high spot [44–46].
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Figure 2. Oxidative stress and epigenetic changes in the cognitive aging process. Aging and neurode-
generative diseases are associated with cognitive, emotional, and social deficiencies mostly linked to
brain alterations. Aging is characterized by a state of genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient
sensing, stem cell exhaustion, and altered intercellular communication. In this context, oxidative
stress and epigenetic modifications play a major role, both as perpetrators and consequences of aging
processes. Oxidative stress and ROS increase cause DNA and macromolecule damage associated
with mitochondrial dysfunction, inflammation reaction, apoptosis, and epigenetic modifications.
Epigenetic changes are associated with DNA hypomethylation, promoter hypermethylation, and
altered histone modification due to various mechanisms (including oxidative stress). In this con-
text, antioxidants may play a major role in preventing cognitive aging problems. ROS—reactive
oxygen species.

3.2. Role of Mitochondria

Mitochondria are intracellular organelles, manned with their own circular genome
(mtDNA), which play a major role in maintaining cellular homeostasis—by producing adeno-
sine triphosphate (ATP) and intermediate metabolites—and regulating energy metabolism,
cell survival and proliferation, and Ca2+ signaling [47,48]. Mitochondria are critical regulators
of cell death, a key feature of neurodegeneration. As mutations in mitochondrial DNA and
oxidative stress both contribute to aging, which is the greatest risk factor for neurodegenera-
tive disease, the evidence suggests that mitochondria also have a central role in aging-related
neurodegenerative diseases [49].

Despite being well-known hallmarks of aging, recent findings have revealed a novel
crosstalk between histone epigenetic modifications and oxidative stress during stem cell
aging, which once more highlights the importance of these issues for aging and age-related
diseases [50]. Evidence supports the major role of mitochondrial dysfunction in promoting
aging and in supporting neurodegenerative progression [51]. Mutations accumulate at
a higher rate in mtDNA than in nuclear DNA, resulting in mitochondrial dysfunction
and diseases, and this is even more true in older people, where there coexists a reduced
mitochondrial efficiency and a deterioration of the antioxidant system [52–54].

Studies in various species highlighted several alterations in mitochondria and mito-
chondrial DNA (mtDNA) associated with aging: increased disorganization of mitochon-
drial structure; decline in mitochondrial oxidative phosphorylation function; accumulation
of mtDNA mutation; increased mitochondrial production of ROS (superoxide, hydrogen
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peroxide, hydroxyl radicals and singlet oxygen); increased extent of oxidative damage to
DNA, proteins, and lipids [55].

Thus, the decline in mitochondrial energy metabolism that alters quality control
pathways, the enhanced mitochondrial oxidative stress, and the accumulation of mtDNA
mutations are important contributors to human aging. Since the efficacy of the respiratory
chain diminishes, aging is associated with electron leakage, increased ROS production and
reduced cellular ATP generation [56,57]. Mitochondria have been related also to multiple
diseases, often aging-related, such as neurodegeneration and cancer [58–60]. Interestingly,
it has been suggested that novel pathways that protect the cell through mitochondrial
quality control may offer unique opportunities for disease therapy in situations where
ongoing mitochondrial damage occurs [61].

Some interesting studies demonstrated the major role of oxidative stress in regu-
lating the lifespan, so reducing oxidative stress resulted in the expanded life in murine
models [62,63]. In a major study, to determine the role of the reactive oxygen species in
mammalian longevity and pathology, the authors generated transgenic mice that over-
express human catalase localized in the peroxisome, nucleus, or mitochondria [62]. In
the mice overexpressing the human mitochondria catalase, the median and maximum
lifespans were maximally increased (averages of 5 months and 5.5 months, respectively),
while cardiac diseases and cataract development were delayed, oxidative damage was
reduced, H2O2 production and H2O2

− induced aconitase inactivation were attenuated,
and the development of mitochondrial deletions was reduced.

These results support the free radical theory of aging and reinforce the importance of
mitochondria as a source of these radicals [62,63]. These results have been confirmed by an-
other study that demonstrated how the overexpression of the antioxidant enzyme catalase
in mitochondria can extend mouse lifespan, highlighting the importance of mitochondrial
damage in aging and suggesting that, when targeted appropriately, boosting antioxidant
defenses can increase mammalian life span [63,64]. Despite the need of further studies, ther-
apies targeting basic mitochondrial processes, such as energy metabolism or free-radical
generation, or specific interactions of disease-related proteins with mitochondria, hold
great promise [49].

3.3. Mediterranean Diet

The Mediterranean diet refers to a traditional diet consumed in Mediterranean coun-
tries and characterized by a high consumption of vegetables and olive oil and moderate
consumption of food rich in proteins. It has been demonstrated that the Mediterranean
diet, abundant in minimally processed plant foods, reduces the risk of developing various
chronic diseases and seems to increase life expectancy [65]. In fact, this diet has beneficial
effects in the primary and secondary prevention of cardiovascular disease, type 2 diabetes,
atrial fibrillation, and breast cancer [66,67].

The exact mechanism by which an increased adherence to the Mediterranean diet
exerts its favorable effects is mostly unknown; however, evidence suggests that the major
role is played by: lipid-lowering effect, protection against oxidative stress, inflammation
and platelet aggregation, modification of hormones and growth factors involved in the
pathogenesis of cancer (reduction of DNA damages, cell proliferation, and their survival,
angiogenesis, inflammations, and metastasis), inhibition of nutrient sensing pathways by
specific amino acid restriction, and gut microbiota-mediated production of metabolites
influencing metabolic health [66,68–70].

Interestingly, it has been demonstrated that the Mediterranean diet, and nutrients
in general, can modulate gene expression directly by binding to nuclear receptors or
acting indirectly modulating epigenetic effects (DNA methylation, histone modifications,
microRNAs) [69,71]. Among the nutrients contained in the Mediterranean diet, olive oil and
red wine are probably the most widely consumed and, when assumed at the correct dosage,
they have been demonstrated to have beneficial effects on health [72,73]. In bringing these
positive results, a major role is played by the presence of antioxidants in these aliments
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and, being among the most studied antioxidants, in the following chapters we will report
the experiences on hydroxytyrosol and resveratrol [74–76].

3.4. Antioxidants

As antioxidants are substances that are efficient to trap ROS and decrease oxidative
damage, these products have been studied for therapeutic approaches to many different
diseases. On the other hand, a deficiency of antioxidants such as vitamins C and E has been
associated with cognitive disorders [77]. In literature, many natural products and phar-
macological compounds have antioxidant properties [73,78]. Interestingly, resveratrol and
other polyphenols extracted from olive and wine but also other natural goods are among
the most studied and possess great antioxidant and anti-inflammatory properties [79–82].

3.5. Polyphenols

Polyphenols are natural, synthetic, or semi-synthetic organic molecules constituted by
numerous hydroxyl groups on aromatic rings (phenolic groups), presenting neuroprotective
and anti-inflammatory effects and capacity of control of oxidative stress, apoptosis and
mitochondrial dysfunction [81,83,84]. These products are divided into four main groups:
phenolic acids, flavonoids, stilbenes, and lignans.

The Mediterranean diet is a mainstay of nutritional therapeutic and preventive pro-
grams in many diseases because of a rich presence of foods and beverages abundant in
polyphenols, such as olives, olive oil, wine, fresh and processed fruits and vegetables,
leguminous plants, cereals, herbs, spices, tea, coffee, and beer [85,86]. A proper diet is one
of major factors contributing to good health and is directly related to the general condition
of the organism [87,88]. Polyphenols are converted and absorbed mainly in the oral cavity
and stomach; in the large intestine, the remaining polyphenols are further modified by
bacterial enzymes (e.g., glycosides, esters, etc.) to obtain metabolites of lower-weight
easier to absorb; these metabolites then circulate within blood, bound to proteins (mainly
albumin), and are conjugated in the liver and kidneys; finally, elimination happens in the
urine and feces [89].

Polyphenols are present in liquid natural products such as olive oil and green tea;
however, it is also true that they can be found in alcohols such as red wine (whose main
polyphenol is resveratrol) and beer [79,81,87,90–96]. Interestingly, the evidence suggests
that moderate wine consumption may decrease the risk of several cancers (including colon,
basal cell carcinoma, ovarian, and prostate cancer) and cognitive diseases; on the other
hand, it should be pinpointed to an adequate balance in order to avoid the negative effects
due to the presence of substances such as ethanol [97–99].

3.6. Antioxidants and Cognition in the Aging Brain

Oxidative stress and the inflammation due to increased oxidative stress are associated
to many chronic diseases, but the lack of anti-inflammatory drugs without side-effects has
stimulated the search for new active substances. It has been demonstrated that the Central
Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that
prevent the signs of senescence, such as cognitive decline or neurodegenerative diseases
such as Alzheimer’s disease and Parkinson’s Disease [100]. Both aging and associated
neurodegenerative diseases are accompanied by the decline of several brain functions,
including cognitive abilities, which are related to progressive deleterious changes at bio-
chemical and physiological levels, leading to the generation of oxidative stress, disturbed
protein metabolism with accumulation of protein aggregates, mitochondrial dysfunctions,
loss of synaptic connections, and ultimately neurodegeneration and cognitive decline [101].
Because of its high energy demand, the brain is more susceptible to ROS-mediated dam-
ages, as it oxidizes lipids, proteins, and nucleic acids, thereby causing an imbalance in
the homeostasis, and this especially occurs in the aging brain. It has been suggested that
oxidative stress is a key factor for age-associated neurodegeneration and cognitive decline
due to the imbalance between the rates of production and elimination of ROS.
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Interestingly, the involvement of the heme oxygenase (HO) pathway in anti-degenerative
mechanisms related to the induction of other heat shock proteins (HSPs, molecular chaperones
involved in cell protection from various forms of stress) has been demonstrated during various
physio-pathological conditions [102]. In fact, the vasoactive molecule carbon monoxide and
the potent antioxidant bilirubin, products of the HO-catalyzed reaction, represent a protective
system that is potentially active against the brain oxidative injury associated to the cognitive
dysfunction in the aging-associated neurodegenerative diseases [103,104].

Studies on both animal and human subject demonstrated that dietary interventions
and plant-derived bioactive compounds with antioxidant properties could be beneficial
for recovering the memory or delaying the onset of memory impairment, especially in
case of stress-mediated changes [105]. Recently, the supplementation of spice and herbs
containing phenolic substances with potent antioxidant and chemo-preventive properties,
such as curcumin (a powerful antioxidant derived from the curry spice turmeric), has
been considered as an alternative, nutritional approach to reduce oxidant damage and
neurodegenerative pathology associated with aging.

Recently, human studies have been conducted to determine the effective nutritional
and lifestyle protocols for the prevention of neurodegenerative diseases [106]. The Mediter-
ranean diet and antioxidant and anti-inflammatory products seem to play a significant role
in most of the proposed protocols [107]. Furthermore, higher adherence to the Mediter-
ranean dietary pattern has been associated with decreased cognitive decline and incidence
of neurodegenerative diseases [108]. Here, we report the example of two among the most
studied antioxidant products and their role in preventing cognitive dysfunction due to
brain aging: hydroxytyrosol and resveratrol (see Table 1 for the evidence on neuroprotective
and cognitive role of resveratrol and hydroxytyrosol and Figure 3 for a graphic description
of the resveratrol and hydroxytyrosol molecular mechanisms of action).

Table 1. Evidence on neuroprotective and cognitive role of resveratrol and hydroxytyrosol. AMPK,
AMP-activated protein kinase; βA, beta amyloid, COX, cyclooxygenase; CSF, cerebrospinal fluid;
ERβ, estrogen receptor β; ERK, extracellular signal-regulated kinase; LPS, lipopolysaccharide; MMP9,
matrix metalloproteinase 9; NF-κB, nuclear factor κB; NO, nitric oxide, PGES-1, prostaglandin E
synthase-1; TNF, tumor necrosis factor.

Study Type Subject Component Dose Main Findings Ref.

Neuroinflammation

Retrospective study
38 patients with

Alzheimer disease and
CSF Aβ42 < 600 ng/mL

Resveratrol 500 mg
Reduction of CSF MMP9, modulation of

neuroinflammation, and induction of
adaptive immunity.

[109]

Animal study Rat model of
Alzheimer’s disease

Resveratrol-Selenium
nanoparticles Not clear

Reduced neuroinflammation and
neurotoxicity by regulating

Sirt1/miRNA-134/GSK3β expression
[110]

Animal study

Adult Sprague-Dawley
rats: 6-OHDA-induced

Parkinson’s disease
rat model.

Resveratrol 10–40 mg/kg per day
for 10 weeks

Alleviation of 6-OHDA-induced
chromatin condensation, mitochondrial

tumefaction, and vacuolization of
dopaminergic neurons in rat substantia

nigra. Reduction of the reduced
inflammatory reaction by lowering

levels of COX-2 and TNF-α mRNA in
the substantia nigra.

[111]

In vitro animal study

Primary microglial cell
cultures prepared from

cerebral cortices of
neonatal rats

Resveratrol 1–50 µM

Reduction of microglial
activation.Resveratrol is the first known

inhibitor, which specifically prevents
PGES-1 expression without affecting

cyclooxygenase-2 (COX-2) levels.

[112]

In vitro animal study Rat astroglioma C6 cells Resveratrol up to 50 µM

Reduction of microglial
pro-inflammatory responses by

modulation of PG, NO,
and NF-κB activity

[113]
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Table 1. Cont.

Study Type Subject Component Dose Main Findings Ref.

Neuroinflammation

In vitro animal study Rat astroglioma C6 cells Resveratrol 200 µM Modulation of NF-κB [114]

In vitro animal study Rat astroglioma C6 cells 21 resveratrol
derivatives Variable

3 derivatives demonstrated to be able to
reduce of microglial pro-inflammatory
activity by modulating TNF-α and NO

synthase expression

[115]

In vitro animal study
Primary cortical

neuron-glia cultures of
female Wistar rats

Resveratrol 15–60 µM

Inhibition of LPS-induced microglial
activation and subsequent production of

multiple pro-inflammatory and
cytotoxic factors (TNF-α, NO,

and interleukin-1β)

[116]

In vitro BV-2 cells Resveratrol 0–1000 nM

Neuroprotection against
hypoxia-induced neurotoxicity through

inhibiting microglial activation by
suppressing the activation of NF-kB,

ERK, and JNK-MAPK
signaling pathways

[117]

In vitro
Vascular adventitial
fibroblasts isolated

from rats
Hydroxytyrosol 12.5, 25, 50, 100, 200,

400 µM

Regulation of the autophagy of vascular
adventitial fibroblasts through
SIRT1-mediated Akt/mTOR
suppression.Inhibition of the

inflammatory response of vascular
adventitial fibroblasts

[118]

In vitro and ex vivo Hypoxia-reoxygenation
in rat brain slices Hydroxytyrosol 1, 5 and 10 mg/kg

per day

Neuroprotective effect due to
antioxidant and anti-inflammatory

activity
[119]

In vitro and ex vivo Hypoxia-reoxygenation
model in rat brain slices

Hydroxytyrosol
derivatives Variable

Neuroprotective effect due to reduction
in oxidative and nitrosative stress and

anti-inflammatory activity.Reduction in
brain cell death.

[120]

Experimental
animal study

APP/PS1 transgenic
mice Hydroxytyrosol 5 mg/kg/day

Ameliorated mitochondrial dysfunction,
reduced mitochondrial carbonyl protein,
and enhanced superoxide dismutase 2

expression, reversed the phase 2 enzyme
system and reduced the levels of the

brain inflammatory markers

[121]

Oxidative stress

In vitro HepG2 cells Resveratrol 10–60 µM

Protection of mitochondria against
oxidative stress through

AMPK-mediated glycogen synthase
kinase-3β inhibition

[122]

In vitro Rat hippocampal cells Resveratrol 5–25 µM Protection of hippocampal neuronal
cells against toxicity induced by NO [123]

Experimental animal
study Caenorhabditis elegans Hydroxytyrosol 100 µg/mL Prevention of oxidative stress and

β-amyloid aggregation [124]

In vitro and ex vivo
Type-1-like diabetic

hypoxia-reoxygenation
model in brain slices

3’,4’-
dihydroxyphenylglycol

and hydroxytyrosol

5 mg/kg/day
(hydroxytyrosol) and
0.5 or 1 mg/kg/day

(3′ ,4′-
dihydroxyphenylglycol)

A 1:1 ratio of hydroxytyrosol/3’,4’-
dihydroxyphenylglycol results in

reduced brain cell death,
neuroprotective, and antioxidant effects

[125]

Animal study Wistar rats Hydroxytyrosol 2.5 mg/kg per day Brain protection against the oxidative
stress caused by 3-nitropropionic acid [126]

Cerebrovascular function

Randomized,
double-blinded

clinical trial
22 healthy adults Resveratrol 250 and 500 mg

Increases cerebral blood flow during
cognitive task performance in health

adults but lacking interpretable
cognitive effects

[127]

Randomized,
double-blinded

clinical trial
60 adults Resveratrol 500 mg Increases cerebral blood flow but lacking

interpretable cognitive effects [128]

Randomized
clinical trial

80 post-menopausal
women Resveratrol 75 mg twice daily

Enhance both cerebrovascular function
and cognition in

post-menopausal women
[129]
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Table 1. Cont.

Study Type Subject Component Dose Main Findings Ref.

Neuroinflammation

Randomized,
double-blinded

clinical trial

125 postmenopausal
women Resveratrol 75 mg twice daily Enhance cognition, cerebrovascular

function, and insulin sensitivity [130]

Randomized,
double-blinded

clinical trial

129 postmenopausal
women Resveratrol 75 mg twice daily Enhance cognition and cerebrovascular

function [131]

Randomized,
double-blinded

clinical trial

36 dementia-free,
non-insulin dependent

type 2 diabetes
mellitus adults

Resveratrol 0, 75, 150, and 300 mg at
weekly intervals

Acute enhancement of vasodilator
responsiveness in cerebral vessels.The
maximum improvement was observed

with the lowest dose used.

[132]

Autophagy

Animal study Rats with chronic
cerebral hypoperfusion Resveratrol 50 mg/kg per day

Autophagy activation via the
AKT/mTOR signaling pathway to

improve cognitive dysfunction.
[133]

Animal study 120 Sprague-Dawley
rats Resveratrol 60 mg/kg

Neuroprotective effects due to
regulating autophagy and apoptosis

mediated by the Akt/mTOR pathway
[134]

Animal study Rats Resveratrol 1.8 mg/Kg Neuroprotective effects due to
regulating autophagy through AMPK [135]

Neuroprotective effect enhancement

Randomized,
double-blinded

clinical trial
23 adults Resveratrol andpiperine 250 mg (resveratrol),

20 mg (piperine)

Co-supplementation of piperine with
resveratrol enhances the effects of

resveratrol on cerebral blood flow effects
without altering bioavailability.

[136]

In vitro animal study Murine HT22
hippocampal cells

Resveratrol and
melatonin

Resveratrol: 0.1, 1, 5, 10,
and 20 µM.Melatonin:
1, 10, 50, 100, and 500

µM.

Melatonin potentiates the
neuroprotective properties of resveratrol

against Aβ-induced toxicity by
modulating GSK3β and AMPK activity

[137]

In vitro/in vivo animal
study

Primary hippocampal
cell cultures from

pregnant
Sprague–Dawley rats

Resveratrol 15–40 µM

Neuroprotection against βA-induced
neurotoxicity by inducing the

phosphorylation of protein kinase
Cδ isoform

[138]

In vitro C12 cells Hydroxytyrosol
Hydroxytyrosol -rich

extract based with
45.5% of hydroxytyrosol

Brain cell cryoprotection [139]

Animal study Piglets Hydroxytyrosol 1.5 mg/kg per day Upregulation of proteins related to brain
cell detoxification. [140]

Cognitive impairment

Randomized
double-blinded
controlled trial

119 patients with mild
to moderate

Alzheimer disease
Resveratrol 500 mg

Resveratrol is well tolerated and seems
to be able to penetrate the blood–brain

barrier to produce its
neuroprotective effects

[141]

Animal study Mice Resveratrol 5 and 10 mg/kg
Protection from 3-nitropropionic

acid-induced motor and
cognitive impairment

[142]

In vitro/in vivo animal
study

Hippocampal slice
cultures from

Sprague–Dawley rats
exposed to ischemia

Resveratrol 75 and 100 µM
Reduction of neuronal death in CA1

region of the hippocampus by activation
of SIRT1 pathway

[143]

Experimental
animal study

APP/PS1
transgenic mice Hydroxytyrosol 5 mg/kg/day Improves the cognitive function in

ERβ-dependent manner [144]

Animal study C57BL/6 mice Hydroxytyrosol 10 mg/kg per day
Attenuation of the spatial-cognitive

deficits induced by oligomeric Aβ1–42
plus ibotenic acid

[145]

Animal study Sprague–Dawley rats Hydroxytyrosol 10 and 50 mg/kg
per day

Restoration of learning capacity and
memory performance, promoting

cognitive function
[146]

Animal study
wild-type and B-cell
translocation 1 gene

knockout mice
Hydroxytyrosol 100 mg/kg/day

Stimulates neurogenesis in aged dentate
gyrus by enhancing stem and progenitor

cell proliferation and neuron survival
[147]

In vitro and ex vivo Hypoxia-reoxygenation
in rat brain slices Hydroxytyrosol 5 or 10 mg/kg per day Reduction in brain cell death [148]
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Table 1. Cont.

Study Type Subject Component Dose Main Findings Ref.

Neuroinflammation

Detoxification

Animal study Piglets Hydroxytyrosol 1.5 mg/kg per day

Maternal supplementation with
hydroxytyrosol during pregnancy

affects the neurotransmitters profile in a
brain-area-dependent mode and

accelerates cell differentiation in the
hippocampal CA1 and GD areas.

[149]
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to brain aging: hydroxytyrosol and resveratrol (see Table 1 for the evidence on neuropro-
tective and cognitive role of resveratrol and hydroxytyrosol and Figure 3 for a graphic 
description of the resveratrol and hydroxytyrosol molecular mechanisms of action). 

 
Figure 3. Resveratrol and hydroxytyrosol molecular mechanisms of action. Resveratrol and hy-
droxytyrosol demonstrated to be able to improve cognitive performance and protect the brain from
neurodegenerative and age-related diseases, mostly thanks to their role in regulating oxidative
stress, neuroinflammation, cerebral blood flow, and autophagy, as well as because of their capacity
of detoxifying the blood from those neuro-damaging compounds. Most of the mechanisms are
still under study, but it seems that both resveratrol and hydroxytyrosol target the AMPK and the
subsequent pathway leading to SIRT1 and Akt/mTOR to reduce neuroinflammation and oxidative
stress, and stimulating autophagy. Oxidative stress reduction also inhibits inflammatory responses
and stimulates cerebrovascular function, leading to better cerebral blood flow and brain function-
ing. These compounds are also important detoxicants. Resveratrol mechanisms are clearer and its
role in reducing neuroinflammation has been also related to the capacity of lowering mRNA134,
GSK3β, ERK1/2 phosphorylation and cerebral levels of TNF-α, PG, NO, interleukin-1β and NF-κB.
Resveratrol also increases SOD-2 protecting functions and inhibits COX-2 to reduce ROS production.
AMPK—AMP-activated protein kinase; COX—cyclooxygenase; ERK—extracellular signal-regulated
kinase; LPS—lipopolysaccharide; MMP9—matrix metalloproteinase 9; NF-κB—nuclear factor κB;
NO—nitric oxide, PGES-1—prostaglandin E synthase-1; ROS—reactive oxygen species; TNF—tumor
necrosis factor; SOD—superoxide dismutase. Images have been created by using the functionalities
of Microsoft PowerPoint 365 Version 2112. https://www.microsoft.com/microsoft-365 (accessed on
30 November 2022). Used with permission from Microsoft.

https://www.microsoft.com/microsoft-365
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3.7. Hydroxytyrosol

As the Mediterranean diet entered the spotlight for its many beneficial properties, over
the years, researchers have made an attempt to find which foods and food components
are responsible for the beneficial effects on health. One of these components and currently
the most actively investigated natural phenol is hydroxytyrosol, a phenolic phytochemical
with antioxidant properties that can be found in olive leaves and oil [150].

This molecule gained particular interest for its role in various diseases due to its
anti-inflammatory, antimicrobial, antiviral, antifungal, cardioprotective, neuroprotective,
antitumoral, and chemo-modulating effects. The interest in this molecule has led to wide
research on its biological activities, its beneficial effects on humans and in how to synthesize
new molecules from hydroxytyrosol. In particular, due to its bioavailability, chemical
properties and easy formulation along with its lack of toxicity, hydroxytyrosol is considered
an excellent food supplement by the nutraceutical and food industries [151].

Furthermore, hydroxytyrosol has great pharmaceutical potential in cognitive and
aging disorders because it improves endothelial dysfunction, decreases oxidative stress
and has neuroprotective properties [152,153]. Unfortunately, most of the evidence comes
from animal model-based experiments, but hydroxytyrosol seems to be able to stimulate
neurogenesis by enhancing stem and progenitor cell proliferation and neuron survival [147].

It has been demonstrated that a diet rich in purified olive polyphenols has positive
long-term effects on cognition and energy metabolism in the brains of aged mice [154,155].
Furthermore, recent studies demonstrated that hydroxytyrosol protects from the aging
process by modulating the AMP-activated protein kinase (AMPK) signaling and autophagy,
while the AMPK dysregulation has been associated with accelerated aging and promotion
of inflammation, cancer, and metabolic pathologies such as diabetes and obesity [156].

Interestingly, in TgCRND8 mouse models, it has been demonstrated that hydroxy-
tyrosol diet supplementation results in substantial neuroprotection improving cognitive
functions and leading to significant changes in the brain cortex and hippocampal areas
with also a marked reduction of the TNF-α expression and astrocyte reaction [144,157].
Furthermore, hydroxytyrosol is able to ameliorate neuronal impairment via modulat-
ing mitochondrial oxidative stress, neuronal inflammation, and apoptosis [121,158]. In
Caenorhabditis elegans models, it has been demonstrated that an olive-derived extract 20%
rich in hydroxytyrosol is able to prevent the β-amyloid aggregation and oxidative stress
associated to Alzheimer’s disease [124,159]. These effects have been associated with the
increased gene expression of the SKN-1/NRF2 transcription factor and the overexpression
of HSP-16.2. In swine models, hydroxytyrosol prevented DNA hypomethylation associated
with oxidative stress [160]. Interestingly, hydroxytyrosol can reduce hypoxia-mediated
cell damage through activating the PI3K/AKT/mTOR-HIF-1 α signal pathway [161]. As
ischemic events are more common in older people and are an important cause of neurologi-
cal impairment, it is of interest noting that the hydroxytyrosol-enriched diet could serve as
a beneficial therapeutic approach to attenuate ischemic stroke-associated damage [162,163].

3.8. Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural non-flavonoid phenol and
a phytoalexin with antioxidant and cytoprotective effects led by pleiotropic actions [80].
It is produced by several plants in response to injury or when these are under attack by
pathogens (bacteria, fungi, etc.) and as such, it interacts with gut microbiota, inducing
modifications in bacterial composition associated with beneficial effects.

The major food sources of resveratrol are grapes, blueberries, raspberries, mulberries,
and peanuts. Resveratrol has neuroprotective and antiaging properties preventing the
effects related to oxidative stress, reducing DNA damage and regulating molecular changes
such as mitochondrial dysfunction, inflammation reaction, apoptosis, and epigenetic modi-
fications, among others [164–167].

Recent evidence demonstrated that resveratrol mediates epigenetic changes (methy-
lation and acetylation) that persist across generations and that are involved in aging and
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the function of the nervous system [168–171]. The study of key markers involved in senes-
cence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated
that resveratrol is also able to modulate the changes in these cellular metabolic pathways.
Interestingly, resveratrol may exert neuroprotective effects also by regulating autophagy
and apoptosis mediated by the Akt/mTOR pathway [134,135]. Unfortunately, most of the
evidence on resveratrol is based on animal experiments and the effects on human cognition
are likely to be smaller [94,172].

On the other hand, recent clinical evidence, derived from randomized clinical trials,
suggests that in humans, resveratrol is able to improve cerebral blood flow, cerebral va-
sodilator responsiveness to hypercapnia, some cognitive tests, perceived performances,
and the Aβ40 plasma and cerebrospinal fluid level, modulates neuroinflammation, and
induces adaptive immunity [109,128,173–175]. In particular, resveratrol causes a dose-
dependent increase in cerebral blood flow and enhanced oxygen extraction, but its role
in ameliorating cognitive performance is still under study [127,129]. Despite the lack of
definite evidence, the role of resveratrol on the cerebral blood flow is important especially
considering the vascular alterations found in most of the age-related diseases [176]. Interest-
ingly, recent findings demonstrated that cis- and trans-resveratrol have the opposite effects
on histone serine-ADP-ribosylation and tyrosine-induced neurodegeneration, so that the
age-associated increase in serum tyrosine levels may affect neurocognitive and metabolic
disorders, offering a plausible explanation for divergent results obtained in clinical trials
using resveratrol [177].

3.9. The Limitation of the Blood–Brain-Barrier

In recent years, many compounds and drugs that affect the brain have been re-
garded for their potential role in the therapeutic management of various age-related
diseases [178–180]. Regrettably, the administration of therapy that is able to reach the
brain has inherent problems because of the blood–brain-barrier (BBB), which prevents the
brain uptake of most pharmaceuticals, so that not every product that demonstrated to be
able to reduce aging progression is capable of influencing the more specific brain aging.

This BBB property comes from the epithelial-like tight junctions within the brain
capillary endothelium. Providing the drug has a molecular weight under 400 Da and
forms less than eight hydrogen bonds, small molecules acting as agonists, modulators or
enhancers targeting the associated receptors may cross the BBB via lipid-mediated free
diffusion, but these chemical properties are lacking in the majority of small molecule drugs,
as well as all large molecule drugs [181]. In fact, many solutions have been suggested, for
example, the protein could be infused directly, produced by viral constructs, secreted from
implanted protein-secreting cells or actively transported across the brain.

Drugs can be reengineered for BBB transport: small molecule drugs can be synthe-
sized to be able to access carrier-mediated transport (CMT) systems within the BBB; large
molecule drugs can be modified using molecular Trojan horse delivery systems to access
receptor-mediated transport (RMT) systems within the BBB. Peptide and antisense radio-
pharmaceuticals can also guarantee made brain-penetrating properties by combining the
use of RMT-based delivery systems and avidin–biotin technology.

Many studies suggested that the early disruption of the BBB to large molecules is
mediated by ROS [182,183]. As the brain is exposed throughout life to damages due to
ROS, various endogenous antioxidant defense mechanisms physiologically exist, including
the removal of O2, scavenging of reactive oxygen/nitrogen species or their precursors, inhi-
bition of ROS formation, binding of metal ions needed for the catalysis of ROS generation,
and up-regulation of endogenous antioxidant defenses.

However, since our endogenous antioxidant defenses are not always completely
effective, and since exposure to damaging environmental factors is increasing, it has
been suggested that exogenous antioxidants could be very effective in diminishing the
cumulative effects of oxidative damage. Unfortunately, the therapeutic use of most of the
studied antioxidant compounds is limited, since they do not cross the blood–brain barrier.
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Novel antioxidant molecules designed as potential neuroprotective treatments in
neurodegenerative and age-related disorders are focusing on this limitation to be able to
cross the BBB after systemic administration; furthermore, gender differences have been
identified [184,185]. A recent study suggested that resveratrol is well tolerated and seems
to be able to penetrate the blood–brain barrier to produce its neuroprotective effects [141].
Unfortunately, most of the evidence comes from pre-clinical and animal-based studies; so,
further research is required before most of these therapies can be safely applied clinically.

4. Discussion

This report aims to provide a summary and a subsequent review of literature ev-
idence on the role of antioxidants in preventing and improving cognition in the aging
brain. As endogenous antioxidants are linked to antidegenerative mechanisms, exogenous
antioxidant supplementation could play a major role in inhibiting oxidative damage and
compensating for the decreased level of endogenous antioxidants. Conceivably, dietary
supplementation with antioxidant polyphenolic agents such as hydroxytyrosol, resver-
atrol and curcumin reduces the development of aging-related cognitive diseases, their
signs, and symptoms. Among others, dietary antioxidants play a major role in preventing
and reducing DNA damage, mitochondrial dysfunction, inflammation, apoptosis, and
transgenerational epigenetic modifications.

These products have numerous properties with antimicrobial, antiviral, antifungal,
cardioprotective, neuroprotective, antitumor, and chemo-modulating effects. These re-
sults demonstrate that numerous pathways, mostly still unknown, are concerned, with
pleiotropic actions involved [186]. Recently, an association of epigenetic, DNA methylation-
based, clocks in brain tissue with brain pathologies and common aging phenotypes has
been demonstrated [187]. It has also been suggested that these clocks may play an impor-
tant role in age prediction to age reversion [188]. Since antioxidants seem to cause adaptive
epigenetic changes (in part by reducing oxidative stress), their role in age prediction to age
reversion is even more plausible [189].

In conclusion, the manipulation of endogenous cellular defense mechanisms through
nutritional antioxidants or pharmacological compounds represents an innovative approach
to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.
Consistent with this notion, antioxidants may delay and/or modulate the cognitive brain
aging processes and decrease the occurrence of their devastating effects on the brain.
All compounds aiming to influence brain aging must be able to surpass the limitation
represented by the BBB after systemic administration.

The potential preventive activity of antioxidants should be further evaluated in long-
term exposure clinical trials, using preparations with high bioavailability and that are
well standardized.
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