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Abstract: A number of highly efficient methods for the preparation of novel derivatives of 9-
selenabicyclo[3.3.1]nonane in high yields based on selenium dibromide and cis,cis-1,5-cyclooctadiene
are reported. The one-pot syntheses of 2,6-diorganyloxy-9-selenabicyclo[3.3.1]nonanes using various
O-nucleophiles including alkanols, phenols, benzyl, allyl, and propargyl alcohols were developed.
New 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonanes were obtained by the copper-catalyzed
1,3-dipolar cycloaddition of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with unsubstituted gaseous
acetylene and propargyl alcohol. The synthesis of 2,6-bis(vinylsulfanyl)-9-selenabicyclo[3.3.1]nonane,
based on the generation of corresponding dithiolate anion from bis[amino(iminio)methylsulfanyl]-9-
selenabicyclo[3.3.1]nonane dibromide, followed by the nucleophilic addition of the dithiolate anion
to unsubstituted acetylene, was developed. The glutathione peroxidase-like activity of the obtained
water-soluble products was estimated and compounds with high activity were found. Overall, 2,6-
Diazido-9-selenabicyclo[3.3.1]nonane exhibits the highest activity among the obtained compounds.

Keywords: selenium dihalides; alcohols; 9-selenabicyclo[3.3.1]nonane derivatives; glutathione
peroxidase-like activity

1. Introduction

Selenium and selenium-containing compounds were considered poisons for many
years, until this element was identified as a micronutrient for humans and mammals [1].
Since then, interest in the synthesis and properties of organoselenium compounds has
increased significantly [2–6].

Organoselenium compounds, and particularly selenium heterocycles, exhibit various
kinds of biological activity, including antitumor, antiviral, antibacterial, anti-inflammatory,
antiproliferative, antifungal, and glutathione peroxidase-like properties [7–33].

The glutathione peroxidase-like activity is perhaps the most important biological
property of organoselenium compounds. It is known that a number of organoselenium
compounds exhibit glutathione peroxidase-like activity and, in trace amounts, can po-
tentially act in the human body as catalysts for the reduction in peroxides and other
reactive oxygen species, preventing lipid peroxidation and other undesirable processes.
Some examples of known functionalized organoselenium compounds with glutathione
peroxidase-like activity, including selenides containing the hydroxyl group, are presented
in Figure 1 [26–33]. The presence of the hydroxyl group increases the solubility in water,
which is considered a desirable property of compounds with glutathione peroxidase-like
activity [29–33].
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Currently, selenium is recognized as an essential trace element for humans and 
plays an important role in the human body via selenium-containing enzymes. These 
enzymes (glutathione peroxidase, thioredoxin reductase, methionine sulfoxide reduc-
tase, etc.) are involved in redox regulation in the body, reducing hydrogen peroxide and 
lipid peroxide species and maintaining antioxidant activity [34–36]. Sufficient intake of 
selenium is very important for the human body. It is known that low or suboptimal levels 
of selenium intake are associated with a wide range of human diseases such as heart 
disease, stroke, arthritis, cystic fibrosis, and even several types of cancer [34–36]. Sele-
nium supplementation in the elderly is an important strategy for prevention of 
age-related diseases. 

A number of diseases and degenerative conditions are accompanied by particularly 
high levels of peroxide formation and oxidative stress, which suppresses the protective 
glutathione peroxidase effect. For example, ischemic reperfusion of infarction in stroke 
patients often results in cardiovascular and neurological injury from the damaging effects 
of peroxides and other reactive oxygen species released by neutrophils during the 
reperfusion process [33,37]. The well-known selenium heterocycle ebselen is used to treat 
cardiovascular diseases and to prevent ischemic stroke and acute stroke [23–27]. Ebselen 
is a novel anti-inflammatory drug exhibiting glutathione peroxidase-like and neuropro-
tective properties. This organoselenium compound has been studied in phase three clin-
ical trials for its cardiovascular and neuroprotective effects [23–27,33]. Moreover, ebselen 
has recently entered clinical trials in COVID-19 patients as this compound was found to 
inhibit CoV2 activity and viral replication [24,25].  

Figure 1. Examples of known functionalized organoselenium compounds with glutathione
peroxidase-like activity including selenides with the hydroxyl groups [26–33].

Currently, selenium is recognized as an essential trace element for humans and plays
an important role in the human body via selenium-containing enzymes. These enzymes
(glutathione peroxidase, thioredoxin reductase, methionine sulfoxide reductase, etc.) are
involved in redox regulation in the body, reducing hydrogen peroxide and lipid peroxide
species and maintaining antioxidant activity [34–36]. Sufficient intake of selenium is very
important for the human body. It is known that low or suboptimal levels of selenium intake
are associated with a wide range of human diseases such as heart disease, stroke, arthritis,
cystic fibrosis, and even several types of cancer [34–36]. Selenium supplementation in the
elderly is an important strategy for prevention of age-related diseases.

A number of diseases and degenerative conditions are accompanied by particularly
high levels of peroxide formation and oxidative stress, which suppresses the protective
glutathione peroxidase effect. For example, ischemic reperfusion of infarction in stroke
patients often results in cardiovascular and neurological injury from the damaging effects of
peroxides and other reactive oxygen species released by neutrophils during the reperfusion
process [33,37]. The well-known selenium heterocycle ebselen is used to treat cardiovascular
diseases and to prevent ischemic stroke and acute stroke [23–27]. Ebselen is a novel anti-
inflammatory drug exhibiting glutathione peroxidase-like and neuroprotective properties.
This organoselenium compound has been studied in phase three clinical trials for its
cardiovascular and neuroprotective effects [23–27,33]. Moreover, ebselen has recently
entered clinical trials in COVID-19 patients as this compound was found to inhibit CoV2
activity and viral replication [24,25].

Aging is an inevitable process and is always accompanied by age-related diseases.
Reactive oxygen species are important initial factors in aging and age-related diseases.
Selenium contributes to reducing inflammation mediated by reactive oxygen species,
reducing DNA damage, and plays an important role in the fight against aging and the
prevention of age-related diseases [38–40]. Thus, there is a growing need to discover new
classes of non-toxic water-soluble organoselenium GPx mimetics with high catalytic activity
and improved properties.
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Organoselenium compounds have proven themselves as versatile and efficient inter-
mediates and synthons for modern organic synthesis [1–11,41–50]. The selenium-containing
reagents and selenium-mediated reactions are used in the synthesis of many useful prod-
ucts, including the total synthesis of important biologically active molecules [1–11,41–50].

Earlier in this laboratory, selenium dichloride and dibromide were introduced for
the first time into the synthesis of organoselenium compounds [51]. The use of these
reagents in organic synthesis made it possible to obtain novel classes of organoselenium
and heterocyclic compounds [51–61].

The transannular addition of selenium dichloride and dibromide to cis,cis-1,5-
cyclooctadiene afforded 2,6-dichloro-9-selenabicyclo[3.3.1]nonane (1) and 2,6-dibromo-
9-selenabicyclo[3.3.1]nonane (2) in near quantitative yields [56–58]. The compound 1 was
used in studies of the anchimeric assistance effect of the selenium and sulfur atoms, quanti-
fied by the rates of nucleophilic substitution reactions. The anchimeric assistance effect of
the selenium atom was found to be approximately two orders of magnitude higher than
that of the sulfur atom [56]. Thus, the compounds 1 and 2 are very reactive in nucleophilic
substitution reactions and useful reagents for click chemistry.

A number of efficient syntheses of novel organoselenium compounds were developed
based on 2,6-dibromo-9-selenabicyclo[3.3.1]nonane (2) [56–61]. Inter alia, bis-pyridinium
salt 3 was obtained by the reaction of nonane 2 with pyridine at room temperature in
acetonitrile (Scheme 1).
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Scheme 1. Synthesis of bis-pyridinium salt 3 by the reaction of 
2,6-dibromo-9-selenabicyclo[3.3.1]nonane 2 with pyridine. 

Joint research of this laboratory with the Irkutsk research anti-plague institute es-
tablished that compound 3 is a promising drug for metabolic correction during the vac-
cination process [61]. The introduction of compound 3 into the body of experimental 
animals significantly decreases the development of pathological reactions under the ac-
tion of the tularemia vaccine and reduces the reactogenicity of the brucellosis vaccine by 
one order of magnitude [61]. Moreover, compound 3 does not show toxicity and may act 
as a catalyst for the decomposition of peroxides in the body, exhibiting glutathione pe-
roxidase-like activity. 

It is worthwhile to note that the undesirable post-vaccination reaction of the body is 
oxidative stress, which develops as a result of the increased generation of reactive oxygen 
species by cells [61]. It can also lead to inflammatory and allergic reactions, which are 
based on the process of lipid peroxidation. The development of new drugs with gluta-
thione peroxidase-like activity for metabolic correction is an urgent task, considering the 
need to vaccinate the population against coronavirus and other diseases. The use of 
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2 with pyridine.

Joint research of this laboratory with the Irkutsk research anti-plague institute estab-
lished that compound 3 is a promising drug for metabolic correction during the vaccination
process [61]. The introduction of compound 3 into the body of experimental animals
significantly decreases the development of pathological reactions under the action of the
tularemia vaccine and reduces the reactogenicity of the brucellosis vaccine by one order of
magnitude [61]. Moreover, compound 3 does not show toxicity and may act as a catalyst for
the decomposition of peroxides in the body, exhibiting glutathione peroxidase-like activity.

It is worthwhile to note that the undesirable post-vaccination reaction of the body is
oxidative stress, which develops as a result of the increased generation of reactive oxygen
species by cells [61]. It can also lead to inflammatory and allergic reactions, which are based
on the process of lipid peroxidation. The development of new drugs with glutathione
peroxidase-like activity for metabolic correction is an urgent task, considering the need
to vaccinate the population against coronavirus and other diseases. The use of metabolic
correction drugs can significantly reduce the side effects that occur during vaccination.

The recent award of the Nobel Prize to Sharpless, the founder of click chemistry,
demonstrates the great importance of this field of organic chemistry [62–89]. The term “click
chemistry” was introduced by Sharpless [62] and is widely used today. Click chemistry
reactions should give very high yields of desired products, be broad in scope, and produce
only harmless by-products. Available starting materials and reagents, simple reaction
conditions, high selectivity, and convenient product isolation procedures are also important
features of click chemistry. The classic example of click chemistry is the copper-catalyzed
azide-alkynes 1,3-dipolar cycloaddition reaction. The products of this reaction, the 1,2,3-
triazole derivatives, exhibit a variety of biological activities [62–89].
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The application of organoselenium compounds in click chemistry reactions and the
combination of the advantages of selenium-containing reagents with the copper-catalyzed
click chemistry of azide-alkynes 1,3-dipolar cycloaddition reactions can give a new im-
petus to the development of organoselenium chemistry and the synthesis of new useful
compounds with high biological activity [90,91].

We recently developed the efficient synthesis of bis-1,2,3-triazole derivatives of 9-
selenabicyclo[3.3.1]nonane in high yields, combining selenium dihalide click chemistry with
the click chemistry of copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition reactions [59].
The copper-catalyzed cycloaddition reaction of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with
terminal acetylenes proceeded in a regioselective fashion, affording a number of 2,6-bis(4-
organyl-1,2,3-triazole)-9-selenabicyclo[3.3.1]nonanes in high yields.

Thus, the development of efficient and selective methods for the synthesis of new classes
of non-toxic water-soluble organoselenium compounds with high glutathione peroxidase-like
activity based on the principles of click chemistry is an urgent task for chemists.

2. Results and Discussion

The aim of this research is to develop efficient syntheses of novel derivatives of
9-selenabicyclo[3.3.1]nonane by selenenylation/bis-functionalization reactions and nucle-
ophilic substitution with various O-centered nucleophiles (water, alkanols, phenols, benzyl,
allyl, and propargyl alcohols) and to estimate glutathione peroxidase-like activity of the
obtained water-soluble products.

A highly efficient synthesis of dihydroxyl derivative of 9-selenabicyclo[3.3.1]nonane
4 in 96% yield was developed through the selenenylation/bis-hydroxylation reaction of
selenium dibromide with cis,cis-1,5-cyclooctadiene in acetonitrile in the presence of water
and sodium bicarbonate at room temperature (Scheme 2).
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The process was carried out by the addition of selenium dibromide to 
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bicarbonate to the reaction mixture. The product 4 is an odorless, water-soluble, white 
crystalline compound that is easy to handle. 

Scheme 2. The synthesis of dihydroxy derivative of 9-selenabicyclo[3.3.1]nonane 4.

The process was carried out by the addition of selenium dibromide to cis,cis-1,5-
cyclooctadiene, followed by the addition of an aqueous solution of sodium bicarbonate
to the reaction mixture. The product 4 is an odorless, water-soluble, white crystalline
compound that is easy to handle.

The selenenylation/bis-methoxylation reaction proceeded very smoothly in a mixture
of acetonitrile and methanol at room temperature. The yield of the product, 2,6-dimethoxy-
9-selenabicyclo[3.3.1]nonane 5, was as high as 98% (Scheme 3).
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The process was carried out by adding a solution of selenium dibromide to a mixture
of acetonitrile and methanol containing cis,cis-1,5-cyclooctadiene, followed by stirring at
room temperature.

In the case of other alcohols (ethanol, propanol, butanol and isobutanol), the addi-
tion of sodium bicarbonate to the reaction mixture containing alcohols was necessary
for effectively conducting the selenenylation/bis-alkoxylation process and obtaining the
target products, 2,6-dialkoxy-9-selenabicyclo[3.3.1]nonanes 6–9, in high yields (91–96%,
Scheme 4).
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Unsaturated alcohols, allyl and propargyl alcohols, were successfully involved in
the selenenylation/bis-alkoxylation reaction. The nucleophilicity of allyl and propargyl
alcohols seems to be somewhat lower than that of the corresponding saturated alcohol,
propanol, and also methanol and ethanol. We found that heating (~40 ◦C) in methylene
chloride in the presence of sodium bicarbonate is preferable for obtaining allyloxy and
propargyloxy derivatives 10 and 11 in high yields (97% and 95%, respectively) (Scheme 4).

When using benzyl and 3,4,5-trimethoxybenzyl alcohols under the conditions similar
to reactions of alkanols (Scheme 3), as well as to reactions of allyl and propargyl alcohols
(Scheme 4), the product yields were not high enough. It was possible to obtain high yields
of benzyloxy derivatives by carrying out the reaction in a solvent with a slightly higher
boiling point than that of methylene chloride. Refluxing in chloroform in the presence of
sodium bicarbonate made it possible to obtain benzyloxy derivatives 12 and 13 in 94% and
92% yields, respectively (Scheme 5).
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When using benzyl and 3,4,5-trimethoxybenzyl alcohols under the conditions simi-
lar to reactions of alkanols (Scheme 3), as well as to reactions of allyl and propargyl al-
cohols (Scheme 4), the product yields were not high enough. It was possible to obtain 
high yields of benzyloxy derivatives by carrying out the reaction in a solvent with a 
slightly higher boiling point than that of methylene chloride. Refluxing in chloroform in 
the presence of sodium bicarbonate made it possible to obtain benzyloxy derivatives 12 
and 13 in 94% and 92% yields, respectively (Scheme 5). 
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Scheme 5. The synthesis of benzyloxy derivatives 12 and 13.

It is known that phenols are less reactive in nucleophilic reactions than alkanols and
usually, in this case, more stringent conditions are required. Indeed, under the conditions
of the reactions of alcohols shown in the Scheme 4, phenols gave low yields of the products.
The one-pot synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) derivatives
14 and 15 in 82–85% yields was developed through the addition of selenium dibromide to
cyclooctadiene in acetonitrile, followed by refluxing the reaction mixture in the presence of
potassium carbonate (Scheme 6).

The reaction with unsubstituted phenol under the same conditions, as indicated in
Scheme 6, was very sluggish. The use of dibromo derivative 2 as a starting material in the
nucleophilic substitution reaction with phenol was chosen as the better approach to the
target product. Heating (60–70 ◦C) compound 2 with phenol in a solution of DMF in the
presence of potassium carbonate allowed us to obtain bis-phenolic derivative 16 in 80%
yield (Scheme 7).



Int. J. Mol. Sci. 2022, 23, 15629 6 of 22

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 22 
 

 

Scheme 5. The synthesis of benzyloxy derivatives 12 and 13. 

It is known that phenols are less reactive in nucleophilic reactions than alkanols and 
usually, in this case, more stringent conditions are required. Indeed, under the conditions 
of the reactions of alcohols shown in the Scheme 4, phenols gave low yields of the prod-
ucts. The one-pot synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) de-
rivatives 14 and 15 in 82–85% yields was developed through the addition of selenium 
dibromide to cyclooctadiene in acetonitrile, followed by refluxing the reaction mixture in 
the presence of potassium carbonate (Scheme 6).  

15

SeBr2

14

K2CO3/CH3CN

Se

O
O

Reflux Reflux

OHMeO
OH

Me

Me

OMe

Se

O
O

OMe MeMe
Me Me

K2CO3/CH3CN

 
Scheme 6. The synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) derivatives 14 
and 15. 

The reaction with unsubstituted phenol under the same conditions, as indicated in 
Scheme 6, was very sluggish. The use of dibromo derivative 2 as a starting material in the 
nucleophilic substitution reaction with phenol was chosen as the better approach to the 
target product. Heating (60–70 °C) compound 2 with phenol in a solution of DMF in the 
presence of potassium carbonate allowed us to obtain bis-phenolic derivative 16 in 80% 
yield (Scheme 7).  

 
Scheme 7. The synthesis of bis(phenoxy) derivative 16 from compound 2 and phenol. 

It is known that the 1,2,3-triazole derivatives are available by the click chemistry 
reaction of copper-catalyzed azide-alkynes 1,3-dipolar cycloaddition and this class of 
organic compounds exhibit a variety of biological activities [62–89]. However, relatively 
few cycloaddition reactions with unsubstituted gaseous acetylene under atmospheric 
pressure have been described in the literature.  

We developed the synthesis of the new triazole derivative of selenabicy-
clo[3.3.1]nonane, 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 18, from diazide 
17 and unsubstituted acetylene by the copper-catalyzed azide-alkynes 1,3-dipolar cy-
cloaddition reaction (Scheme 8).  

Scheme 6. The synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) derivatives 14 and 15.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 22 
 

 

Scheme 5. The synthesis of benzyloxy derivatives 12 and 13. 

It is known that phenols are less reactive in nucleophilic reactions than alkanols and 
usually, in this case, more stringent conditions are required. Indeed, under the conditions 
of the reactions of alcohols shown in the Scheme 4, phenols gave low yields of the prod-
ucts. The one-pot synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) de-
rivatives 14 and 15 in 82–85% yields was developed through the addition of selenium 
dibromide to cyclooctadiene in acetonitrile, followed by refluxing the reaction mixture in 
the presence of potassium carbonate (Scheme 6).  

15

SeBr2

14

K2CO3/CH3CN

Se

O
O

Reflux Reflux

OHMeO
OH

Me

Me

OMe

Se

O
O

OMe MeMe
Me Me

K2CO3/CH3CN

 
Scheme 6. The synthesis of bis(4-methoxyphenoxy) and bis(3,5-dimethylphenoxy) derivatives 14 
and 15. 

The reaction with unsubstituted phenol under the same conditions, as indicated in 
Scheme 6, was very sluggish. The use of dibromo derivative 2 as a starting material in the 
nucleophilic substitution reaction with phenol was chosen as the better approach to the 
target product. Heating (60–70 °C) compound 2 with phenol in a solution of DMF in the 
presence of potassium carbonate allowed us to obtain bis-phenolic derivative 16 in 80% 
yield (Scheme 7).  

 
Scheme 7. The synthesis of bis(phenoxy) derivative 16 from compound 2 and phenol. 

It is known that the 1,2,3-triazole derivatives are available by the click chemistry 
reaction of copper-catalyzed azide-alkynes 1,3-dipolar cycloaddition and this class of 
organic compounds exhibit a variety of biological activities [62–89]. However, relatively 
few cycloaddition reactions with unsubstituted gaseous acetylene under atmospheric 
pressure have been described in the literature.  

We developed the synthesis of the new triazole derivative of selenabicy-
clo[3.3.1]nonane, 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 18, from diazide 
17 and unsubstituted acetylene by the copper-catalyzed azide-alkynes 1,3-dipolar cy-
cloaddition reaction (Scheme 8).  

Scheme 7. The synthesis of bis(phenoxy) derivative 16 from compound 2 and phenol.

It is known that the 1,2,3-triazole derivatives are available by the click chemistry
reaction of copper-catalyzed azide-alkynes 1,3-dipolar cycloaddition and this class of
organic compounds exhibit a variety of biological activities [62–89]. However, relatively
few cycloaddition reactions with unsubstituted gaseous acetylene under atmospheric
pressure have been described in the literature.

We developed the synthesis of the new triazole derivative of selenabicyclo[3.3.1]nonane,
2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 18, from diazide 17 and unsubsti-
tuted acetylene by the copper-catalyzed azide-alkynes 1,3-dipolar cycloaddition reaction
(Scheme 8).

The catalytic system of Cu(OAc)2·H2O and sodium ascorbate was used to carry out
cycloaddition reactions of diazide 17 with acetylene and propargyl alcohol. This system
was found to be very efficient in the reactions of selenium-containing organic azides with
terminal acetylenes [90,91]. The active Cu(I) catalyst is generated in situ from the Cu(II)
salt via the reduction in copper acetate with sodium ascorbate. The addition of a slight
excess of sodium ascorbate prevents the formation of oxidative homocoupling products.

We involved unsubstituted gaseous acetylene in the copper-catalyzed azide-alkyne
1,3-dipolar cycloaddition reaction with diazido derivative 17 (Scheme 8). The process was
carried out under atmospheric pressure by bubbling gaseous acetylene into the reaction
mixture. The target product 18 was obtained in 72% yield.

The efficient synthesis of 2,6-bis(4-hydroxymethyl-1,2,3-triazol-1-yl)-9-selenabicyclo
[3.3.1]nonane 19 in 90% yield was developed by the 1,3-dipolar cycloaddition reaction of
diazido derivative 17 with propargyl alcohol (Scheme 9).
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Along with the 1,3-dipolar cycloaddition reaction, unsubstituted acetylene was in-
volved in the nucleophilic addition reaction of dithiolate anion 21 generated from 
bis-isothiuronium salt 20. We previously obtained compound 20 by refluxing dibromo 
derivative 2 with a high excess of thiourea in acetonitrile [60]. Here, we report the prep-
aration of this compound in 95% yield, at room temperature, at a stoichiometric ratio of 
the reagents and the synthesis of bis(vinylsulfanyl) derivative of 
9-selenabicyclo[3.3.1]nonane 22 in 81% yield (Scheme 10). 

Scheme 8. The synthesis of 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 18 by the copper-
catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction of acetylene with diazido derivative 17,
which was obtained from compound 2 and sodium azide.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 22 
 

 

RT
MeOH/H2O

Cu(OAc)2 H2O/Na ascorbate

18

CHHC

17

Se

N
N

N
N

N
N

+   NaN3

Se

Br
Br

2

RT

CH3CN/H2O
Se

N
N

N
N

N
N

Se

N
N

N
N

N
N

+

17

 
Scheme 8. The synthesis of 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 18 by the cop-
per-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction of acetylene with diazido derivative 
17, which was obtained from compound 2 and sodium azide. 

The catalytic system of Cu(OAc)2·H2O and sodium ascorbate was used to carry out 
cycloaddition reactions of diazide 17 with acetylene and propargyl alcohol. This system 
was found to be very efficient in the reactions of selenium-containing organic azides with 
terminal acetylenes [90,91]. The active Cu(I) catalyst is generated in situ from the Cu(II) 
salt via the reduction in copper acetate with sodium ascorbate. The addition of a slight 
excess of sodium ascorbate prevents the formation of oxidative homocoupling products.  

We involved unsubstituted gaseous acetylene in the copper-catalyzed azide-alkyne 
1,3-dipolar cycloaddition reaction with diazido derivative 17 (Scheme 8). The process 
was carried out under atmospheric pressure by bubbling gaseous acetylene into the re-
action mixture. The target product 18 was obtained in 72% yield. 

The efficient synthesis of 
2,6-bis(4-hydroxymethyl-1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane 19 in 90% yield 
was developed by the 1,3-dipolar cycloaddition reaction of diazido derivative 17 with 
propargyl alcohol (Scheme 9). 

RT
MeOH/H2O

Cu(OAc)2 H2O/Na ascorbateCHC

17

Se

N
N

N
N

N
N

Se

N
N

N
N

N
N

+

HO

OH

OH

19  
Scheme 9. The synthesis of compound 19 by the copper-catalyzed azide-alkyne 1,3-dipolar cy-
cloaddition reaction of diazido derivative 17 with propagyl alcohol. 

Along with the 1,3-dipolar cycloaddition reaction, unsubstituted acetylene was in-
volved in the nucleophilic addition reaction of dithiolate anion 21 generated from 
bis-isothiuronium salt 20. We previously obtained compound 20 by refluxing dibromo 
derivative 2 with a high excess of thiourea in acetonitrile [60]. Here, we report the prep-
aration of this compound in 95% yield, at room temperature, at a stoichiometric ratio of 
the reagents and the synthesis of bis(vinylsulfanyl) derivative of 
9-selenabicyclo[3.3.1]nonane 22 in 81% yield (Scheme 10). 

Scheme 9. The synthesis of compound 19 by the copper-catalyzed azide-alkyne 1,3-dipolar cycload-
dition reaction of diazido derivative 17 with propagyl alcohol.

Along with the 1,3-dipolar cycloaddition reaction, unsubstituted acetylene was in-
volved in the nucleophilic addition reaction of dithiolate anion 21 generated from bis-
isothiuronium salt 20. We previously obtained compound 20 by refluxing dibromo deriva-
tive 2 with a high excess of thiourea in acetonitrile [60]. Here, we report the preparation of
this compound in 95% yield, at room temperature, at a stoichiometric ratio of the reagents
and the synthesis of bis(vinylsulfanyl) derivative of 9-selenabicyclo[3.3.1]nonane 22 in 81%
yield (Scheme 10).

Thiourea is a sulfur-centered nucleophile. In the same period of the periodic table
is phosphorus, the compounds of which are more nucleophilic than their sulfur coun-
terparts. We carried out the reaction of dibromo derivative 2 with triphenyl phosphine,
which proceeded smoothly with the formation of water-soluble bis-phosphonium salt 23 in
quantitative yield (Scheme 11).

Of the products obtained, compounds 3, 4, 17, 20 and 23 were well water-soluble.
These compounds were used for the estimation of glutathione peroxidase-like activity.

Previously, the glutathione peroxidase-like activity of compound 3 was not es-
timated. It is important that compound 3 is non-toxic [61] (and probably some other
9-selenabicyclo[3.3.1]nonane derivatives as well). It is also worth noting that
9-selenabicyclo[3.3.1]nonane derivatives have a relatively rigid configuration with a highly
sterically accessible selenium atom that can act as an active center for the glutathione
peroxidase-like catalysis.
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The glutathione peroxidase-like activity of the obtained products was estimated using
the model reaction of dithiothreitol oxidation by tert-butyl hydroperoxide in D2O, in the
presence of synthesized compounds as a catalysts (10% mol, Scheme 12) [28–33]. The
progress of this reaction was monitored by 1H NMR spectroscopy at room temperature
(tert-butyl hydroperoxide, dithiothreitol, 0.025 mmol; tested product, 0.0025 mmol; D2O,
0.5 mL). The control experiment was conducted under the same reaction conditions, but in
the absence of the catalyst.
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Scheme 12. The model reaction of dithiothreitol oxidation by tert-butyl hydroperoxide in D2O in the
presence of synthesized compounds as catalysts (10% mol).

It was found that diazido derivative 17 showed the best activity among the tested
products (Figure 2). This compound is considerably superior to other products in activity.
The second most active product is bis-pyridinium salt 3, which is considered a promising
drug for metabolic correction during the vaccination process [61]. Compound 4, with two
hydroxyl groups, is the third in activity. Isothiuronium and phosphonium salts 20 and 23
exhibit less activity than compounds 17, 3 and 4.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 22 
 

 

highly sterically accessible selenium atom that can act as an active center for the gluta-
thione peroxidase-like catalysis. 

The glutathione peroxidase-like activity of the obtained products was estimated 
using the model reaction of dithiothreitol oxidation by tert-butyl hydroperoxide in D2O, 
in the presence of synthesized compounds as a catalysts (10% mol, Scheme 12) [28–33]. 
The progress of this reaction was monitored by 1H NMR spectroscopy at room temper-
ature (tert-butyl hydroperoxide, dithiothreitol, 0.025 mmol;, tested product, 0.0025 mmol; 
D2O, 0.5 mL). The control experiment was conducted under the same reaction conditions, 
but in the absence of the catalyst.  

HS
SH

OH

OH
S

S
t-BuOOH t-BuOH++ + H2O

HO

HO

Catalyst

Catalyst: compounds 3, 4, 17, 20, 23

D2O

 
Scheme 12. The model reaction of dithiothreitol oxidation by tert-butyl hydroperoxide in D2O in 
the presence of synthesized compounds as catalysts (10% mol). 

It was found that diazido derivative 17 showed the best activity among the tested 
products (Figure 2). This compound is considerably superior to other products in activi-
ty. The second most active product is bis-pyridinium salt 3, which is considered a prom-
ising drug for metabolic correction during the vaccination process [61]. Compound 4, 
with two hydroxyl groups, is the third in activity. Isothiuronium and phosphonium salts 
20 and 23 exhibit less activity than compounds 17, 3 and 4.  

 
Figure 2. The evaluation of the glutathione peroxidase-like activity of the obtained water-soluble 
compounds 3, 4, 17, 20 and 23. 

Compound 17, which is superior to other products in activity, has two very polar 
azido groups that have a linear configuration and are located in the relatively rigid mol-
ecule on the opposite side of the selenium atom, i.e., the azido groups do not sterically 

0

10

20

30

40

50

60

70

80

90

100

15 30 45 60 75 90 105 120
Reaction Time (min)

Co
nv

er
sio

n 
(%

)

17

3

4

23

20

Control

Figure 2. The evaluation of the glutathione peroxidase-like activity of the obtained water-soluble
compounds 3, 4, 17, 20 and 23.

Compound 17, which is superior to other products in activity, has two very polar azido
groups that have a linear configuration and are located in the relatively rigid molecule on
the opposite side of the selenium atom, i.e., the azido groups do not sterically interfere with
reactions at the selenium atom and the manifestation of glutathione peroxidase-like activity.

A supposed catalytic cycle to explain the catalytic effect of the obtained compounds
with the regeneration of the catalyst is presented in Scheme 13. The reaction of the catalyst
with tert-butyl hydroperoxide leads to corresponding selenoxides A, which form the hetero-
cyclic intermediate B with dithiothreitol. The intermediate B undergoes conversion to the
oxidized form of dithiothreitol with the regeneration of the catalyst. The intermediates with
the sulfur−selenium bond are often considered as intermediates in the oxidation reactions
of thiols with peroxides, catalyzed by organoselenium compounds [28–33].
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The catalytic cycle of glutathione peroxidase in the human body also involves the
formation of intermediates with the S−Se bond [92]. Glutathione peroxidase (GPx) contains
a selenocysteine residue with the selenol function. The catalytic cycle involves oxidation
of the selenol group of the selenocysteine residue by hydrogen peroxide. This process
gives selenenic acid derivative (RSeOH), which reacts with glutathione (GSH) to form
the intermediate with the S−Se bond (GS−SeR). A second glutathione molecule reduces
the GS−SeR intermediate back to the selenol derivative, releasing the disulfide form of
glutathione (GS−SG) [92].

Previously, we studied the exchange reactions of dialkyl disulfides with dialkyl dise-
lenides [93]. It was found that the ease of the exchange reaction of dialkyl dichalcogenides
(dialkyl disulfides, diselenides and ditellurides) generally rises with the increasing atomic
number of the chalcogen and with the decreasing bulk of the alkyl moiety [93]. The equi-
librium constants of the exchange reaction of dialkyl disulfides and dialkyl diselenides
decrease with the increasing bulk of the alkyl moiety. A number of alkylselenenyl alkyl
sulfides have been isolated from the exchange reaction and described for the first time [93].

Selenoxides A are considered to be intermediates in the catalytic cycle (Scheme 13).
We attempted to obtain corresponding selenoxides from the compounds, which were
used for studies of glutathione peroxidase-like activity (Figure 2). It is known that some
organic selenoxides are unstable compounds. Pure selenoxides 24 and 25 were obtained in
92–94% yields by oxidation of bis-pyridinium salt 3 in water and dihydroxyl derivatives
4 in methylene chloride with tert-butyl hydroperoxide (Scheme 14).
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The structural assignments of the synthesized compounds were made using 1H, 13C,
77Se and 31P-NMR spectroscopy, including two-dimensional HMBC experiments, and were
confirmed by elemental analysis.

The signals of the carbon atoms of the CH group, which are bonded to the oxygen
atom, are observed in the 79–81 ppm region in the 13C-NMR spectra of 2,6-diorganyloxy-
9-selenabicyclo[3.3.1]nonanes 5–16. The 13C-NMR spectra of products 18 and 19 contain
signals in the olefin region, which correspond to the C=C group of the triazole ring.

The obtained values of the 77Se-NMR chemical shifts for alkoxy, allyloxy and propar-
gyloxy derivatives 5–13 and aryloxy products 14–16 are very close (~287–293 ppm). The
selenium atom in azido compound 17 and the triazole derivatives 18 and 19 resonates at
331.1, 344.7, and 334.2 ppm, respectively. A high downfield shift of the selenium signals is
observed for compounds containing positively charged atoms (382.2, 415.1 and 521.4 ppm
for bis-isothiuronium 20, bis-pyridinium 3, and bis-phosphonium 23 salts, respectively). The
obtained values of the 77Se-NMR chemical shifts for selenoxides (851.6 and 841.5 ppm for the
products 24 and 25, respectively) are typical for this class of organoselenium compounds.

Characteristic fragment ions [M−R]+ in the mass spectra of all products and molecular
ions in the mass spectra of organyloxy derivatives 5–11 are observed. The mass spectra of
bis-aryloxy derivatives 14–16 show intense ions, which correspond to the elimination of
one aryloxy fragment from the molecule.

3. Materials and Methods
3.1. General Information

The 1H (400.1 MHz), 13C (100.6 MHz), and 77Se (76.3 MHz) NMR spectra (the spec-
tra can be found in the Supplementary Materials) were recorded on a Bruker DPX-400
spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) and referred to the residual
solvent peaks of CDCl3 (δ = 7.27 and 77.16 ppm in 1H- and 13C-NMR, respectively), DMSO
(δ = 2.50 and 39.50 ppm for 1H- and 13C-NMR, respectively) or D2O (δ = 4.79 ppm for
1H-NMR) and dimethyl selenide (77Se-NMR).

The mass spectra were recorded on a Shimadzu GCMS-QP5050A (Shimadzu Corpo-
ration, Kyoto, Japan) with electron impact (EI) ionization (70 eV). The elemental analysis
was performed on a Thermo Scientific Flash 2000 Elemental Analyzer (Thermo Fisher
Scientific Inc., Milan, Italy). The melting points were determined on a Kofler Hot-Stage
Microscope PolyTherm A apparatus (Wagner and Munz GmbH, München, Germany). The
distilled organic solvents and degassed water were used in syntheses.

3.2. Synthesis of Compounds 4–9

2,6-Dihydroxy-9-selenabicyclo[3.3.1]nonane (4). A solution of selenium dibromide was
prepared from elemental selenium (158 mg, 2 mmol) and bromine (320 mg, 2 mmol) in
methylene chloride (1 mL). The solution of selenium dibromide was added dropwise to a
solution of cyclooctadiene (216 mg, 2 mmol) in CH3CN (10 mL). The mixture was stirred
for 4 h at room temperature and a solution of NaHCO3 (0.3 g, 3.6 mmol) in water (2 mL)
was added. The reaction mixture was stirred overnight (18 h) at room temperature. The
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solvent was removed on a rotary evaporator, the residue was extracted with methylene
chloride (3 × 10 mL). The organic phase was dried over CaCl2, the solvent was removed
by a rotary evaporator and the residue was dried in vacuum giving the product (424 mg,
96% yield) as white crystals, mp 249–250 ◦C.

1H NMR (400 MHz, CDCl3) δ 1.73–1.81 (m, 2H, CH2), 1.85–1.92 (m, 2H, CH2), 2.04–2.14 (m,
2H, CH2), 2.62–2.70 (m, 4H, CH2, OH), 3.59–3.63 (m, 2H, SeCH), 4.29–4.34 (m, 2H, OCH).

13C NMR (100 MHz, CDCl3) δ 25.91, 29.50, 30.45, 69.43.
77Se NMR (76.3 MHz, CDCl3): 278.1.
MS (EI): m/z (%) = 222 (52, M+), 205 (5), 178 (20), 149 (15), 133 (17), 123 (27), 95 (58), 79

(69), 71 (49), 67 (41), 57 (31), 55 (58), 41 (100), 39 (51).
IR (KBr): λ = 873, 982, 1017, 2899, 2932, 3340 cm−1.
Found: C, 43.74; H, 6.56; Se, 35.49. Calc. for C8H14O2Se: C, 43.45; H, 6.38; Se 35.70.
2,6-Dimethoxy-9-selenabicyclo[3.3.1]nonane (5). A solution of selenium dibromide was

prepared from elemental selenium (158 mg, 2 mmol) and bromine (320 mg, 2 mmol) in
methylene chloride (1 mL). The solution of selenium dibromide was added dropwise
to a solution of cyclooctadiene (216 mg, 2 mmol) in acetonitrile (10 mL). The mixture
was stirred for 4 h at room temperature and methanol (2 mL) was added. The mixture
was stirred overnight (20 h) at room temperature. The solvent was removed on a rotary
evaporator and the residue was dried in vacuum giving the product (488 mg, 98% yield) as
a light-yellow oil.

1H NMR (400 MHz, CDCl3) δ 1.78–1.82 (m, 2H, CH2), 2.00–2.04 (m, 2H, CH2),
2.17–2.19 (m, 2H, CH2), 2.60–2.64 (m, 2H, CH2), 3.02–3.03 (m, 2H, SeCH), 3.36 (s, 6H,
CH3), 3.88–3.92 (m, 2H, OCH).

13C NMR (100 MHz, CDCl3) δ 27.87, 28.05, 28.87, 55.86, 81.04.
77Se NMR (76.3 MHz, CDCl3): 288.7
MS (EI): m/z (%) = 250 (30, M+), 218 (10), 179 (18), 137 (64), 105 (50), 79 (100), 71 (89), 45

(78), 41 (90).
IR (film): λ = 1086, 1153, 1186, 2817, 2922, 2977 cm−1.
Found: C, 47.89; H, 7.41; Se, 31.43. Calc. for C10H18O2Se: C, 48.20; H, 7.28; Se 31.68.
2,6-Diethoxy-9-selenabicyclo[3.3.1]nonane (6). A solution of selenium dibromide was

prepared from elemental selenium (158 mg, 2 mmol) and bromine (320 mg, 2 mmol) in
methylene chloride (1 mL). The solution of selenium dibromide was added dropwise to a
solution of cyclooctadiene (216 mg, 2 mmol) in methylene chloride (10 mL). The mixture
was stirred for 8 h at room temperature and ethanol (2 mL) and NaHCO3 (0.3 g, 3.6 mmol)
were added. The mixture was stirred overnight (18 h) at room temperature. The mixture
was filtered and the solvent was removed from the filtrate on a rotary evaporator. The
residue was dried in vacuum giving the product (532 mg, 96% yield) as a light-yellow oil.

1H NMR (400 MHz, CDCl3): 1.20 (t, 6H, CH3), 1.80–1.91 (m, 2H, CH2), 1.96–2.03 (m,
2H, CH2), 2.14–2.24 (m, 2H, CH2), 2.64–2.69 (m, 2H, CH2), 2.98–3.01 (m, 2H, CHSe),
3.43–3.51 (m, 2H, CH2O), 3.57–3.65 (m, 2H, CH2O), 3.97–4.03 (m, 2H, CHO).

13C NMR (100 MHz,CDCl3): 15.9 (CH3), 28.2 (CH2), 28.9 (CHSe), 29.5 (CH2), 63.6
(CH2O), 79.5 (CHO).

77Se NMR (76.3 MHz, CDCl3): 288.9.
MS (EI): m/z (%) = 278 (40, M+), 232 (14), 193 (30), 151 (36), 123 (35), 105 (50), 85 (48), 79

(60), 57 (100), 41 (86).
IR (film): λ = 1020, 1082, 1159, 2887, 2922, 2971 cm−1

Anal. calcd for C12H22O2Se (277.26): C 51.98, H 8.00, O 11.54, Se 28.48%. Found: C
51.89, H 7.96, Se 28.64%.

2,6-Dipropoxy-9-selenabicyclo[3.3.1]nonane (7) was obtained under the same conditions
as compound 6 in 94% yield using propanol.

1H NMR (400 MHz, CDCl3): 0.86 (t, 6H, CH3), 1.48–1.58 (m, 4H, CH2), 1.74–1.86 (m, 2H,
CH2), 1.90–1.97 (m, 2H, CH2), 2.07–2.17 (m, 2H, CH2), 2.58–2.64 (m, 2H, CH2), 2.92–2.95 (m,
2H, CHSe), 3.29–3.38 (m, 2H, CH2O), 3.41–3.49 (m, 2H, CH2O), 3.89–3.94 (m, 2H, CHO).
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13C NMR (100 MHz,CDCl3): 10.7 (CH3), 23.4 (CH2), 28.1 (CH2), 28.8 (CHSe), 29.3 (CH2),
69.9 (CH2O), 79.5 (CHO).

77Se NMR (76.3 MHz, CDCl3): 289.2.
MS (EI): m/z (%) = 306 (12, M+), 246 (10), 207 (11), 123 (30), 105 (34), 79 (36), 57 (50),

43 (100).
IR (film): λ = 1038, 1082, 1165, 2873, 2932, 2959 cm−1

Anal. calcd for C14H26O2Se (305.31): C 55.08, H 8.58, O 10.48, Se 25.86%. Found: C
54.98, H 8.56, Se 26.06%.

2,6-Dibutoxy-9-selenabicyclo[3.3.1]nonane (8) was obtained under the same conditions
as compound 6 in 93% yield using butanol.

1H NMR (400 MHz, CDCl3): 0.91 (t, 6H, CH3), 1.33–1.41 (m, 4H, CH2), 1.50–1.57 (m,
4H, CH2), 1.81–1.89 (m, 2H, CH2), 1.94–2.01 (m, 2H, CH2), 2.13–2.21 (m, 2H, CH2),
2.62–2.68 (m, 2H, CH2), 2.97–2.99 (m, 2H, CHSe), 3.37–3.43 (m, 2H, CH2O), 3.50–3.55 (m,
2H, CH2O), 3.93–3.98 (m, 2H, CHO).

13C NMR (100 MHz,CDCl3): 14.0 (CH3), 19.5 (CH2), 28.2 (CH2), 28.9 (CHSe), 29.4
(CH2), 32.4 (CH2), 68.1 (CH2O), 79.7 (CHO).

77Se NMR (76.3 MHz, CDCl3): 288.9.
MS (EI): m/z (%) = 334 (8, M+), 260 (5), 221 (8), 165 (13), 123 (32), 105 (27), 79 (41),

57 (92), 41 (100).
IR (film): λ = 1047, 1087, 1148, 2868, 2931, 2966 cm−1.
Anal. calcd for C16H30O2Se (333.37): C 57.65, H 9.07, O 9.60, Se 23.69%. Found: C

57.67, H 9.09, Se 23.85%.
2,6-Diisobutoxy-9-selenabicyclo[3.3.1]nonane (9) was obtained under the same conditions

as compound 6 in 91% yield using isobutanol.
1H NMR (400 MHz, CDCl3): 0.87–0.93 (m, 12H, CH3), 1.77–1.91 (m, 4H, CH2, CH),

1.96–2.03 (m, 2H, CH2), 2.12–2.22 (m, 2H, CH2), 2.64–2.69 (m, 2H, CH2), 2.97–3.00 (m, 2H,
CHSe), 3.16–3.20 (m, 2H, CH2O), 3.26–3.30 (m, 2H, CH2O), 3.92–3.97 (m, 2H, CHO).

13C NMR (100 MHz,CDCl3): 19.5 (CH3), 19.6 (CH3), 28.2 (CH2), 28.9 (CHSe), 29.0
(CH2), 29.4 (CH2), 75.4 (CH2O), 79.8 (CHO).

77Se NMR (76.3 MHz, CDCl3): 286.9.
MS (EI): m/z (%) = 334 (7, M+), 260 (6), 221 (5), 165 (14), 123 (29), 105 (23), 79 (37), 57

(91), 41 (100).
IR (film): λ = 1043, 1085, 1139, 2863, 2934, 2959 cm−1.
Anal. calcd for C16H30O2Se (333.37): C 57.65, H 9.07, O 9.60, Se 23.69%. Found: C

57.74, H 9.11, Se 23.72%.

3.3. Synthesis of Compounds 10–13

2,6-Diallyloxy-9-selenabicyclo[3.3.1]nonane (10). A solution of selenium dibromide was
prepared from elemental selenium (158 mg, 2 mmol) and bromine (320 mg, 2 mmol) in
methylene chloride (1 mL). The solution of selenium dibromide was added dropwise to a
solution of cyclooctadiene (216 mg, 2 mmol) in a mixture of methylene chloride (10 mL).
The mixture was stirred for 4 h at room temperature and allyl alcohol (2 mL) and NaHCO3
(0.3 g, 3.6 mmol) were added. The mixture was refluxed for 8 h. The mixture was filtered
and the solvent was removed from the filtrate on a rotary evaporator. The residue was
dried in vacuum, giving the product (584 mg, 97% yield) as a light-yellow oil.

1H NMR (400 MHz, CDCl3): 1.78–1.90 (m, 2H, CH2), 1.94–2.00 (m, 2H, CH2), 2.11–2.18 (m,
2H, CH2), 2.62–2.67 (m, 2H, CH2), 2.93–2.96 (m, 2H, CHSe), 3.92–4.06 (m, 6H, CHO, CH2O),
5.10–5.25 (dd, 4H, CH2=CH), 5.82–5.92 (m, 2H, CH2=CH).

13C NMR (100 MHz,CDCl3): 28.1 (CH2), 28.7 (CHSe), 29.1 (CH2), 69.2 (CH2O), 79.0
(CHO), 116.6 (CH2=CH), 135.3 (CH2=CH).

77Se NMR (76.3 MHz, CDCl3): 291.6.
MS (EI): m/z (%) = 302 (14, M+), 245 (22), 205 (12), 187 (16), 121 (21), 93 (31), 79 (45), 55

(39), 41 (100).
IR (film): λ = 1049, 1069, 1126, 1645, 2850, 2917, 2984 cm−1.
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Anal. calcd for C14H22O2Se (301.28): C 55.81, H 7.36, O 10.62, Se 26.21%. Found: C
55.78, H 7.32, Se 26.31%.

2,6-Dipropargyloxy-9-selenabicyclo[3.3.1]nonane (11) was obtained under the same condi-
tions as compound 10 in 95% yield using propagyl alcohol.

1H NMR (400 MHz, CDCl3): 1.80–1.91 (m, 2H, CH2), 1.99–2.06 (m, 2H, CH2), 2.16–2.26 (m,
2H, CH2), 2.42 (t, 2H, CCH), 2.65–2.71 (m, 2H, CH2), 3.01–3.04 (m, 2H, CHSe), 4.19 (d, 4H,
OCH2C), 4.21–4.26 (m, 2H, CHO).

13C NMR (100 MHz,CDCl3): 28.3 (CH2), 28.4 (CH2), 29.0 (CHSe), 55.6 (CH2O), 74.2
(CCH), 79.0 (CHO), 80.3 (CCH).

77Se NMR (76.3 MHz, CDCl3): 295.8.
MS (EI): m/z (%) = 298 (21, M+), 259 (6), 243 (10), 203 (11), 161 (18), 133 (21), 107 (22),

91 (41), 79 (37), 55 (42), 39 (100).
IR (film): λ = 1017, 1069, 1160, 2115, 2851, 2918, 2984 cm−1.
Anal. calcd for C14H18O2Se (297.25): C 56.57, H 6.10, O 10.76, Se 26.56%. Found: C

56.63, H 6.06, Se 26.61%.
2,6-Dibenzyloxy-9-selenabicyclo[3.3.1]nonane (12) was obtained under the same condi-

tions as compound 10 in 94% yield using benzyl alcohol and chloroform.
1H NMR (400 MHz, CDCl3): 1.94–2.09 (m, 4H, CH2), 2.18–2.25 (m, 2H, CH2), 2.73–2.79 (m,

2H, CH2), 3.05–3.08 (m, 2H, CHSe), 4.11–4.16 (m, 2H, CHO), 4.52–4.57 (m, 2H, CH2O),
4.58–4.66 (m, 2H, CH2O), 7.28–7.39 (m, 10H, CHAr).

13C NMR (100 MHz,CDCl3): 28.3 (CH2), 28.8 (CHSe), 29.4 (CH2), 70.3 (CH2O), 79.3
(CHO), 127.7 (CHAr), 127.7 (CHAr), 128.5 (CHAr), 139.0 (CAr).

77Se NMR (76.3 MHz, CDCl3): 291.3.
MS (EI): m/z (%) = 402 (5, M+), 203 (10), 105 (8), 91 (100), 79 (45), 65 (12), 41 (7).
IR (film): λ = 1027, 1063, 1087, 1363, 1454, 2860, 2919 cm−1.
Anal. calcd for C22H26O2Se (401.40): C 65.83, H 6.53, O 7.97, Se 19.67%. Found: C

65.88, H 6.54, Se 19.72%.
2,6-Bis(3,4,5-trimethoxybenzyloxy)-9-selenabicyclo[3.3.1]nonane (13) was obtained under

the same conditions as compound 10 in 92% yield using 3,4,5-trimethoxybenzyl alcohol
and chloroform.

1H NMR (400 MHz, CDCl3): 1.93–2.09 (m, 4H, CH2), 2.17–2.27 (m, 2H, CH2), 2.72–2.77 (m,
2H, CH2), 3.02–3.05 (m, 2H, CHSe), 3.82 (s, 6H, OCH3), 3.84 (s, 12H, OCH3), 4.08–4.14 (m,
2H, CHO), 4.42–4.48 (m, 2H, CH2O), 4.52–4.58 (m, 2H, CH2O), 6.55 (s, 4H, CHAr).

13C NMR (100 MHz,CDCl3): 28.3 (CH2), 28.7 (CHSe), 29.3 (CH2), 56.1 (OCH3), 60.8
(OCH3), 70.4 (CH2O), 79.2 (CHO), 104.6 (CHAr), 134.5 (CAr), 137.5 (CAr), 153.3 (CAr).

77Se NMR (76.3 MHz, CDCl3): 292.8.
MS (EI): m/z (%) = 293 (7), 195 (6), 181 (100), 79 (41), 65 (8), 41 (7).
Anal. calcd for C26H38O8Se (557.53): C 56.01, H 6.87, O 22.96, Se 14.16%. Found: C

55.94, H 6.81, Se 14.22%.

3.4. Synthesis of Phenol Derivatives 14–16

2,6-Bis(4-methoxyphenoxy)-9-selenabicyclo[3.3.1]nonane (14). The solution of selenium di-
bromide (1 mmol) was added dropwise to a solution of cyclooctadiene (108 mg, 1 mmol) in
acetonitrile (5 mL). The mixture was stirred for 4 h at room temperature and 4-methoxyphenol
(310 mg, 2.5 mmol) and powdered potassium carbonate (300 mg, 2.1 mmol) were added and
the mixture was refluxed for 16 h. The mixture was cooled, diluted with cold water (20 mL)
and extracted with ethyl acetate (3 × 15 mL). The combined organic phase was washed
with water, dried over Na2SO4, and the solvent was removed on a rotary evaporator. The
residue was subjected to column chromatography on silica gel (eluent: hexane/chloroform
7:1→ hexane/chloroform 1:5) giving the product (355 mg, 82% yield).

1H NMR (400 MHz, CDCl3): 2.17–2.34 (m, 6H, CH2), 2.82–2.87 (m, 2H, CH2), 3.06–3.10 (m,
2H, CHSe), 3.78 (s, 6H, OCH3), 4.87–4.93 (m, 2H, CHO), 6.82–6.86 (s, 4H, CHAr), 6.88–6.93 (m,
4H, CHAr).
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13C NMR (100 MHz,CDCl3): 28.16(CH2), 28.48 (CHSe), 28.99 (CH2), 55.82 (OCH3),
79.36 (CHO), 114.89 (CHAr), 118.33 (CHAr), 151.20 (OCAr), 154.51 (OCAr).

77Se NMR (76.3 MHz, CDCl3): 293.2.
MS (EI): m/z (%) = 311 (79, M+–MeC6H4O), 205 (23), 187 (32), 161 (15), 137 (12),

123 (100), 105 (47), 79 (58), 67 (19), 41 (37).
IR (film): λ = 1017, 1037, 1103, 1215, 1442, 1453, 1504, 2851, 2918 cm−1.
Anal. calcd for C22H26O4Se (433.40): C 60.97, H 6.05, O 14.77, Se 18.22%. Found: C

61.02, H 6.04, Se 18.31%.
2,6-Bis(3,5-dimethylphenoxy)-9-selenabicyclo[3.3.1]nonane (15) was obtained under the

same conditions as compound 14 in 85% yield.
1H NMR (400 MHz, CDCl3): 2.20–2.26 (m, 4H, CH2), 2.28–2.36 (m, 2H, CH2), 2.31 (s,

12H, CH3), 2.83–2.88 (m, 2H, CH2), 3.14–3.16 (m, 2H, CHSe), 5.00–5.05 (m, 2H, CHO), 6.59
(s, 4H, CHAr), 6.64 (s, 2H, CHAr).

13C NMR (100 MHz,CDCl3): 21.6 (CH3), 28.2 (CH2), 28.5 (CHSe), 28.9 (CH2), 77.7
(CHO), 114.3 (CHAr), 121.1 (CHAr), 139.5 (CAr), 157.3 (CAr).

77Se NMR (76.3 MHz, CDCl3): 291.5.
MS (EI): m/z (%) = 309 (97, M+–Me2C6H4O), 227 (8), 187 (48), 159 (21), 135 (32), 105

(92), 101 (52), 79 (100), 67 (25), 41 (33).
IR (film): λ = 1049, 1147, 1187, 1292, 1318, 1472, 1593, 2850, 2919, 2844 cm−1.
Anal. calcd for C24H30O2Se (429.45): C 67.12, H 7.04, O 7.45, Se 18.39%. Found: C

67.24, H 7.01, Se 18.55%.
2,6-Diphenoxy-9-selenabicyclo[3.3.1]nonane (16). Powdered potassium carbonate (300 mg,

2.1 mmol) was added to a mixture of compound 2 (248 mg, 1 mmol), phenol (282 mg,
3 mmol), and DMF (4 mL) and the mixture was heated at 60–70 C for 8 h. The mixture was
cooled, diluted with cold water (20 mL) and extracted with ethyl acetate (3 × 15 mL). The
combined organic phase was washed with water, dried over Na2SO4, and the solvent was
removed on a rotary evaporator. The residue was subjected to column chromatography on
silica gel (eluent: hexane/chloroform 9:1→ hexane/chloroform 1:5) giving the product
(299 mg) in 80% yield.

1H NMR (400 MHz, CDCl3): 2.20–2.35 (m, 6H, CH2), 2.82–2.88 (m, 2H, CH2), 3.12–3.15 (m,
2H, CHSe), 5.02–5.07 (m, 2H, CHO), 6.93–6.99 (m, 6H, CHAr), 7.30 (t, 4H, CHAr).

13C NMR (100 MHz,CDCl3): 28.2 (CH2), 28.4 (CHSe), 28.8 (CH2), 78.0 (CHO), 116.7
(CHAr), 121.4 (CHAr), 129.8 (CHAr), 157.3 (CAr).

77Se NMR (76.3 MHz, CDCl3): 294.8.
MS (EI): m/z (%) = 281 (87, M+–C6H5O), 187 (41), 157 (15), 145 (28), 105 (73), 79 (100),

67 (50), 39 (58).
IR (film): λ = 1017, 1168, 1226, 1491, 1597, 2853, 2926 cm−1.
Anal. calcd for C20H22O2Se (373.35): C 64.34, H 5.94, O 8.57, Se 21.15%. Found: C

64.42, H 5.91, Se 21.20%.

3.5. Synthesis of Compounds 17–19

2,6-Diazido-9-selenabicyclo[3.3.1]nonane (17). A solution of sodium azide (1.8 g, 2.7 mmol)
in water (14 mL) was added dropwise to a mixture of compound 2 (1 g, 2.87 mmol) and
acetonitrile (24 mL) with stirring at room temperature. The reaction mixture was stirred
overnight (20 h) at room temperature. Acetonitrile was removed by a rotary evaporator
and the residue was extracted with methylene chloride (3 × 20 mL). The organic phase
was dried over Na2SO4, methylene chloride was removed by a rotary evaporator and
the residue was dried in vacuum giving a compound 3 (763 mg, 98% yield) as a grey oil.
Spectral characteristics and elemental analysis data were reported [49].

77Se NMR (76.3 MHz, CDCl3): 331.1.
2,6-Bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane (18). A solution of sodium ascor-

bate (84 mg, 0.42 mmol) in water (2 mL) was added to Cu(OAc)2·H2O (42 mg, 0.21 mmol)
and the mixture was stirred for 5 min. A solution of compound 3 (189 mg, 0.7 mmol) in
methanol (3 mL) was added to the reaction mixture. The reaction mixture was saturated
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with acetylene by bubbling for 8 h at room temperature with stirring. Then the bubbling of
acetylene was stopped, the flask was closed and the mixture was stirred overnight (18 h) at
room temperature. The reaction mixture was diluted with H2O (8 mL) and extracted with
methylene chloride (3 × 10 mL). The organic phase was dried over Na2SO4, the solvent
was removed by a rotary evaporator. The residue was subjected to column chromatography
on silica gel (eluent: hexane→ hexane/chloroform 1:1→ hexane/chloroform 1:9) giving
the product (163 mg) in 72% yield as a white powder; mp 155–157 ◦C.

1H NMR (400 MHz, CDCl3): 2.28–2.36 (m, 2H, CH2), 2.46–2.58 (m, 4H, CH2), 3.09–3.19 (m,
2H, CH2), 3.35–3.40 (m, 2H, CHSe), 5.49–5.55 (m, 2H, CHN), 7.68 (s, 2H, CHCH), 7.77 (s,
2H, CHCH).

13C NMR (100 MHz,CDCl3): 27.43(CH2), 29.21 (CHSe), 30.36 (CH2), 63.04 (CHN),
122.41 (CHCH), 133.60 (CHCH).

77Se NMR (76.3 MHz, CDCl3): 344.7.
MS (EI): m/z (%) = 324 (5, M+), 255 (50), 186 (44), 145 (12), 105 (100), 79 (61), 67 (38),

41 (67).
IR (KBr): λ = 1025, 1070, 1113, 1486, 1562, 2851, 2921 cm−1.
Anal. calcd for C12H16N6Se (323.26): C 44.59, H 4.99, N 26.00, Se 24.43%. Found: C

44.82, H 5.18, N 25.76, Se 23.15%.
2,6-Bis(4-hydroxymethyl-1H-1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonane (19). A solu-

tion of sodium ascorbate (84 mg, 0.42 mmol) in water (3 mL) was added to Cu(OAc)2
.H2O

(42 mg, 0.21 mmol) and the mixture was stirred for 5 min. A solution of compound 2
(189 mg, 0.7 mmol) and propargyl alcohol (136 mg, 2 mmol) in methanol (3 mL) was
added dropwise for 10 min. The reaction mixture was stirred for 24 h at room temperature.
Methanol was distilled off by a rotary evaporator. The residue was extracted with methy-
lene chloride (3 × 15 mL). The organic phase was dried over Na2SO4, the solvent and an
excess of propargyl alcohol was removed by a rotary evaporator and by drying in vacuum.
The product (241 mg, 90% yield) was obtained as a grey powder, mp 181–183 ◦C.

1H NMR (400 MHz, CDCl3): 2.14–2.31 (m, 6H, CH2), 2.80–2.87 (m, 2H, CH2), 3.07–3.11 (m,
2H, CHSe), 3.75 (s, 6H, OCH3), 4.86–4.93 (m, 2H, CHO), 6.83–6.92 (m, 8H, CHAr).

13C NMR (100 MHz,CDCl3): 26.3 (CH2), 28.7 (CHSe), 29.9 (CH2), 55.2 (CH2OH), 62.2
(CH2CHN), 121.6 (CHAr), 147.6 (CAr).

77Se NMR (76.3 MHz, CDCl3): 334.2.
MS (EI): m/z (%) = 384 (2, M+), 229 (16), 202 (18), 186 (20), 120 (36), 105 (68), 49 (41), 93

(70), 79 (68), 67 (78), 57 (73), 41 (100).
IR (KBr): λ = 1019, 1046, 1130, 1556, 2863, 2922 cm−1.
Anal. calcd for C14H20N6O2Se (383.31): C 43.87, H 5.26, N 21.92, O 8.35, Se 20.60%.

Found: C 43.74, H 5.24, N 21.98, Se 20.76%.

3.6. Synthesis of Compounds 20–23

2,6-Bis[amino(iminio)methylsulfanyl]-9-selenabicyclo[3.3.1]nonane dibromide (20). A so-
lution of compound 2 (0.348 g, 1 mmol) in methylene chloride (5 mL) was added to a
mixture of thiourea (0.152 g, 2 mmol) in acetonitrile (5 mL). The mixture was stirred at
room temperature overnight (20 h). The formation of white precipitate was observed.
Precipitated product was filtered, washed with cold hexane and dried in vacuum, giving
bis-isothiouronium salt (0.475 g, 95% yield) as a white powder; mp 219–220 ◦C. Spectral
characteristics and elemental analysis data were reported [50].

77Se NMR (76.3 MHz, CDCl3): 382.2.
2,6-Bis(vinylsulfanyl)-9-selenabicyclo[3.3.1]nonane (22). A solution of sodium hydroxide

(80%, 1 g, 20 mmol) and sodium borohydride (0.38 g, 10 mmol) in ethanol (10 mL) was
added dropwise to a solution of bis-isothiouronium salt (1 g, 2 mmol) in ethanol (20 mL).
The mixture was heated at in a 1 L steel rotating autoclave at temperature 110–120 C for 5 h.
Methylene chloride (20 mL) and cold water (120 mL) were added to the reaction mixture.
The mixture was transferred to a separatory funnel and the organic layer was separated.
The mixture was additionally extracted with methylene chloride (2 × 20 mL), the organic
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phase was dried over Na2SO4 and the solvent was removed by a rotary evaporator. The
residue was subjected to column chromatography on silica gel (eluent: hexane → hex-
ane/chloroform 15:1→ hexane/chloroform 2:1) giving the product (0.495 g, 81% yield).

1H NMR (400 MHz, CDCl3): 1.90–2.02 (m, 2H, CH2), 2.08–2.15 (m, 2H,CH2), 2.26–2.36
(m, 2H, CH2), 2.74–2.80 (m, 2H, CH2), 3.10–3.12 (m, 2H, CHSe), 3.94–4.00 (m, 2H, CHS),
5.22–5.29 (m, 4H, CH2=CHS), 6.30–6.38 (m, 2H, CH2=CHS).

13C NMR (100 MHz, CDCl3): 29.1 (CH2) 29.3 (CHSe), 30.0 (CH2), 49.8 (CHS), 114.5
(CH2=CH), 131.1 (CH2=CH).

77Se NMR (76.3 MHz, CDCl3): 285.3.
Anal. calcd for C12H18S2Se (305.36): C 47.20, H 5.94, S 21.00, Se 25.86%. Found: C

47.32, H 5.99, S 21.12, Se 26.04%.
2,6-Bis(triphenylphosphonium)-9-selenabicyclo[3.3.1]nonane dibromide (23). A solution of

compound 2 (0.348 g, 1 mmol) in methylene chloride (5 mL) was added to
A solution of triphenyl phosphine (0.525 g, 2 mmol) in acetonitrile (5 mL) was added

to a mixture of compound 2 (0.348 g, 1 mmol) in acetonitrile (5 mL). The mixture was
refluxed for 8 h. The formation of white precipitate was observed. The precipitated product
was filtered, washed with cold hexane and dried in vacuum, giving the product (0.837 g,
96% yield) as a white powder; mp 216–218 ◦C.

1H NMR (400 MHz, CDCl3): 1.43–1.55 (m, 2H, CH2), 1.82–1.91 (m, 4H, CH2), 2.60–2.71
(m, 2H, CH2), 3.59–3.66 (m, 2H, CHSe), 4.88–4.98 (m, 2H, CHP), 7.57–7.71 (m, 30H, CHAr).

13C NMR (100 MHz,CDCl3): 22.9 (CH2), 24.8 (CH2), 29.6 (CHSe), 29.7 (CHSe), 38.4
(CHP), 38.8 (CHP), 115.7 (CAr), 116.6 (CAr), 130.7 (CHAr), 130.9 (CHAr), 133.8 (CHAr), 133.9
(CHAr), 135.1 (CHAr), 135.2 (CHAr). 31P NMR (100 MHz, CDCl3): 23.86.

77Se NMR (76.3 MHz, CDCl3): 521.4.
MS (EI): m/z (%) = 384 (2, M+), 229 (16), 202 (18), 186 (20), 120 (36), 105 (68), 49 (41), 93

(70), 79 (68), 67 (78), 57 (73), 41 (100).
IR (KBr): λ = 521, 693, 1104, 1436, 1480, 2895, 2992, 3038 cm−1.
Anal. calcd for C44H42P2Br2Se (895.54): C 61.69, H 4.73, P 6.92, Br 17.84, Se 8.82%.

Found: C 61.79, H 4.69, P 6.98, Br 17.99, Se 8.94%.

3.7. Synthesis of Selenoxides

2,6-Dipyridinium-9-selenobicyclo[3.3.1]nonane-9-oxide dibromide (24). A solution of tert-
butyl hydroperoxide (70%, 2 mmol) was added dropwise to 0.505 g (1 mmol) 2,6-dipyridinium
9-selenobicyclo[3.3.1]nonane dibromide 3. The reaction mixture is stirred for 2 h at room
temperature. The reaction mixture was washed with acetonitrile (10 mL), the precipitate
was filtered off and dried under vacuum. The product was isolated as a light-yellow
powder (0.49 g, 94% yield), mp 96–98 ◦C (decomp.).

1H NMR (400 MHz, CDCl3) δ 2.41–2.59 (m, 4H, OCHCH2, SeCHCH2), 2.66–2.79 (m, 2H,
OCHCH2, SeCHCH2), 3.27–3.46 (m, 2H, SeCHCH2), 3.95–4.01 (m, 2H, SeCH), 5.69–5.76 (m, 2H,
NCHCH2), 8.27–8.32 (m, 4H, CHAr), 8.72–8.78 (m, 2H, CHAr), 9.18–9.23 (m, 4H, CHAr).

13C NMR (100 MHz, CDCl3) δ 18.75, 22.02, 25.46, 26.15, 47.41, 49.36, 66.94, 70.57, 130.17,
144.56, 144.94, 148.16, 148.35.

77Se NMR (76.3 MHz, CDCl3): 851.6.
Found: C, 41.27; H, 4.36; N, 5.66; Br, 31.03; Se, 15.44. Calc. for C18H22N2Br2OSe: C,

41.48; H, 4.25; N, 5.38; Br, 30.66; O, 3.07; Se 15.15.
2,6-Dihydroxy-9-selenobicyclo[3.3.1]nonane-9-oxide (25). A solution (0.25 mL) of tert-

butyl peroxide (70%, 2 mmol) was added dropwise to a solution of 0.221 g (1 mmol) of
2,6-hydroxy-9-selenobicyclo[3.3.1]nonane 4 in methylene chloride (10 mL). The reaction
mixture was stirred for 12 h at 0 ◦C. The mixture was washed with water (5 × 10 mL),
dry with CaCl2, and the solvent was removed on a rotary evaporator. The residue was
dried in vacuum. The product was isolated as a white powder (0.218 g, 92% yield), mp
86–88 ◦C (decomp.).

1H NMR (400 MHz, CDCl3) δ 1.56–1.64 (m, 1H, SeCHCH2), 1.72–1.87 (m, 4H, OCHCH2,
SeCHCH2) 2.14–2.17 (m, 2H, SeCHCH2), 2.31–2.37 (m, 1H, OCHCH2), 2.96–2.98 (m, 1H,
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SeCH), 2.99–3.01 (m, 1H, SeCH), 3.92 (s, 1H, OH), 4.22 (s, 1H, OH), 4.89–4.91 (m, 1H, OCH),
5.24–5.26 (m, 1H, OCH).

13C NMR (100 MHz, CDCl3) δ 16.53, 19.23, 29.56, 30.09, 46.66, 50.15, 62.44, 67.92.
77Se NMR (76.3 MHz, CDCl3): 841.5.
Found: C, 40.64; H, 6.01; Se, 32.79. Calc. for C8H12O3Se: C, 40.52; H, 5.95; O, 20.24;

Se 33.30.

4. Conclusions

A set of highly efficient syntheses of novel derivatives of 9-selenabicyclo[3.3.1]nonane
in high yields based on selenium dibromide and cis,cis-1,5-cyclooctadiene were developed.
Various oxygen-centered nucleophiles were involved in the selenenylation/bis-oxylation
reactions including alkanols, benzyl, allyl, and propargyl alcohols, and phenols. The
copper-catalyzed 1,3-dipolar cycloaddition of 2,6-diazido-9-selenabicyclo[3.3.1]nonane
with unsubstituted gaseous acetylene and propargyl alcohol was used for the preparation
of novel 1,2,3-triazole derivatives of selenabicyclo[3.3.1]nonane.

Bis-isothiuronium salt was obtained in 95% yield, at room temperature, at a stoichio-
metric ratio of compound 2 and thiourea. This salt was used for the generation of the
corresponding dithiolate anion under the action of sodium hydroxide, followed by the
nucleophilic addition of the dithiolate anion to unsubstituted acetylene with the formation
of bis(vinylsulfanyl) derivative of 9-selenabicyclo[3.3.1]nonane. The synthesis of water-
soluble bis-phosphonium salt in quantitative yield was developed from dibromo derivative
2 and triphenyl phosphine.

The obtained water-soluble products were used for the estimation of glutathione
peroxidase-like activity. It was found that diazido derivative 17 is considerably superior to
other products in activity. The second most active product is bis-pyridinium salt 3, which
is considered a promising drug for metabolic correction during vaccination process [61].
The selenoxides 24 and 25, which are supposed to be the catalytic cycle intermediates, were
synthesized by the oxidation of compounds 3 and 4 with tert-butyl hydroperoxide.
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