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Abstract: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers
worldwide. We aimed to identify potential genetic markers that could predict the prognosis of
HNSCC. A total of 44 samples of GSE83519 from Gene Expression Omnibus (GEO) datasets and
546 samples of HNSCC from The Cancer Genome Atlas (TCGA) were adopted. The differently
expressed genes (DEGs) of the samples were screened by GEO2R. We integrated the expression
information of DEGs with clinical data from GES42743 using the weighted gene co-expression
network analysis (WGCNA). A total of 17 hub genes were selected by the module membership
(|MM| > 0.8), and the gene significance (|GS| > 0.3) was selected from the turquoise module. GOLM1
and FAM49B genes were chosen based on single-gene analysis results. Survival analysis showed
that the higher expression of GOLM1 and FAM49B genes was correlated with a worse prognosis of
HNSCC patients. Immunohistochemistry and multiplex immunofluorescence techniques verified
that GOLM1 and FAM49B genes were highly expressed in HNSCC cells, and high expressions of
GOLM1 were associated with the pathological grades of HNSCC. In conclusion, our study illustrated
a new insight that GOLM1 and FAM49B genes might be used as potential biomarkers to determine the
development of HNSCC, while GOLM1 and FAM49B have the possibility to be prognostic indicators
for HNSCC.

Keywords: HNSCC; bioinformatics; GEO; TCGA; signaling pathways; biomarker; GOLM1; FAM49B

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), which mainly encompasses can-
cers of the lips, oral cavity, nasal cavity, paranasal sinuses, oropharynx, larynx, and na-
sopharynx, is the most common type of head and neck cancer. HNSCC accounts for more
than 95% of the total incidence [1]. About 900,000 new cases of HNSCC occur each year, and
more than 400,000 people die from it [2]. HNSCC occurs mainly in the mucosal epithelium
of the pharynx and oral cavity. Currently, only physical examination can be relied on for
HNSCC diagnosis, and there is no effective screening strategy [1]. Patients are usually given
surgery, radiotherapy, chemotherapy, or treatment combining several kinds of intervening
measures. However, there are still about 40~60% of treated patients who are unable to
benefit from the treatment due to tumor local recurrence, metastasis to other parts of the
body, and treatment resistance [3,4]. Therefore, investigating the potential mechanism of
the occurrence and development of HNSCC and identifying specific molecular markers of
HNSCC are conducive to the early diagnosis and treatment as well as prognosis analysis
of HNSCC. It brings new possibilities for clinical treatment and ultimately improves the
survival rate and quality of patients’ lives.

Recently, the continuous development of big data technology, and the improvement
of computer and biological gene sequencing technology, have made it possible to analyze
cancer-related genes at the molecular level. Bioinformatics, a science combining molec-
ular biology and information technology, has been widely used in recent studies [5]. In
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addition to that, the continuous improvement of various medical research databases (GEO,
ArrayExpress, Oncomine) and the large number of sequencing data being explored have
triggered a global upsurge in the research on molecular evolution and gene function at
the genome level. These convenient approaches create opportunities to access new cancer
pathogenesis and potential therapeutic targets. Following high-throughput sequencing
technology, which has increased, and gene chips that are widely used, bioinformatics has
entered the stage of vigorous development to provide convenience for the study of diseases
at the gene level. Many differential genes associated with the occurrence and development
of tumors have been verified. The gene expression profiling chip has been widely applied
to explore differential genes related to tumor diagnosis, prognosis, and treatment [6].

In this study, bioinformatics methods and techniques were adopted to analyze and in-
tegrate the mRNA expression data of HNSCC from GEO and TCGA. Differently expressed
genes (DEGs) were screened by GEO2R and R software. The WGCNA was used to find
the key modules associated with clinical traits, and hub genes were selected according
to the correlation between the gene modules and clinical traits. Finally, Golgi membrane
protein 1(GOLM1/GOLPH2/GP73) and CYFIP-related Rac1 interactor B (FAM49B) were
selected out of the 17 hub genes. In addition, we conducted an immunohistochemistry
analysis to identify the expression of GOLM1 and FAM49B in the tumor samples. Our
study revealed that both FAM49B and GOLM1 expressed highly in HNSCC tissues and
predicted a worse prognosis.

2. Results
2.1. Identification of DEGs

Applying GEO2R and GEPIA2, 1876 DEGs of GSE83519 and2123 DEGs of the TCGA-
generated RNA-seq data of HNSCC were eliminated. Finally, 293 DEGs related to HNSCC
were obtained (Figure 1A).

2.2. WGCNA

The WGCNA was performed on 278 DEGs derived from the analysis of GSE83519
and TCGA databases to find the critical modules associated with clinical traits. Clinical
traits such as tumor stages, clinical stages, pathologic stages, and living statuses were
also retrieved from the GSE42743. By setting the soft-thresholding power at five (scale-
free R2 = 0.87, Figure 1B,C) and the cut height at 0.25, six modules (non-clustering DEGs
sorted into the grey module, Figure 1D) were identified. The dendrogram and heatmap
of the genes indicated no apparent interactions among different modules. Therefore,
the conclusion could be drawn that these modules had a high degree of independence
(Figure 1E). As the heatmap of the module–traits correlations indicated, the turquoise
module was most highly correlated with clinical traits, especially in the tumor stage
(module–trait correlation = −0.39, p = 5 × 10−4 < 0.01, Figure 1F). The turquoise module
consisted of 100 genes in total.

2.3. KEGG and GO

To analyze the biological functions and KEGG pathways of turquoise modules, DAVID
accomplished GO and KEGG analyses. The top ten KEGG and GO results that were sig-
nificantly enriched by p-value screening are shown in Figure 2. Gene ontology analysis
indicated that the genes in turquoise modules were particularly enriched in an extracellular
matrix organization, extracellular matrix structural constituent, extracellular region, inte-
grin binding, and extracellular matrix. The KEGG pathway enrichment analysis indicated
that proteoglycans in cancer, human papillomavirus infection, focal adhesion, pathways in
cancer, and protein digestion and absorption were the most enriched pathways.
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Figure 1. Identification of key modules correlated with clinical traits through WGCNA. (A)Venn
diagram shows the intersecting DEGs from GEO and TCGA. A total of 293 DEGs are shared by
GSE83519 (blue) and TCGA-HNSC (red). (B) Analysis of the scale independence (left) and the mean
connectivity (right) for different soft-thresholding powers. Five was set as the soft-thresholding
power, meanwhile the scale free R2 was 0.87 > 0.85. (C) Clustering of module eigengenes. The
cut height (0.25) was indicated by the red line. (D) Dendrogram of 278 DEGs clustered based on
a dissimilarity measure (1-TOM), each module containing 10 genes at least. The merged dynamic
contained six modules after combining the green and blue modules which were under the cut
height (0.25). (E) Dendrogram and heatmap of DEGs. The color intensity varied positively with the
correlation of different DEGs according to the topological overlap matrix (TOM). (F) Heatmap of the
correlation between module eigengenes and clinical traits. The p value and module–trait correlation
were contained in each cell.
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Figure 2. Functional annotation of key modules and selection of hub genes. GO categories and
KEGG pathways annotation of the DEGs in HNSCC. Gene count is represented by dot size. p-value
is represented by color. (A) GO categories. (B) KEGG pathways. (C) The scatter plot of module
eigengenes in the turquoise module. The two red lines indicate the standards of the selection of the
hub genes (module membership (ABS) > 0.8 and gene significance (ABS) > 0.3). Each hollow circle
represents one gene in the turquoise module. (D) The heatmap of 17 selected hub genes is based
on their topological overlap matrix (TOM). Color intensity varies positively with the correlation of
hub genes.

2.4. Selection of Hub Genes

We selected 17 hub genes from the turquoise module based on the module membership
(|MM| > 0.8) and the gene significance (|GS| > 0.3) (Figure 2C). The hub genes were
listed as follows: CYP4F22, HOXC9, PXDN, PARVB, CD207, FADD, FBLIM1, CYP2C18,
SHOX2, COL1A2, ACPP, COL3A1, MAD2L1, CENPK, FAM49B, GOLM1, and CEACAM6.
A heatmap of the 17 hub genes was constructed according to their topological overlap
matrix. According to the heatmap, there were strong associations among all these hub
genes except for PARVB (Figure 2D). Based on the results of survival analysis, GSEA and
TIMER2.0, we selected two genes, namely GOLM1 and FAM49B, which we were most
interested in for subsequent analysis (the analysis results of all 17 genes are attached to the
Supplementary Files).

2.5. Prognostic Value of GOLM1 and FAM49B in HNSCC

To estimate the prognostic value of GOLM1 and FAM49B in HNSCC, we generated a
Kaplan–Meier curve based on the TCGA database. The optimal cutoff value was obtained
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by ROC analysis between the patients’ expression and survival time. Based on the cutoff
value of the expression, the patients were divided into high-expression and low-expression
groups. The high GOLM1 expression group (p = 0.05, Figure 3A) and high FAM49B
expression group (p = 0.039, Figure 3B) were significantly correlated with worse 10-year
overall survival, which indicated the predictive value of high GOLM1 expression and high
FAM49B expression for lower survival in HNSCC patients.
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Figure 3. The effect of different gene expressions on OS in HNSCC and PPI network of GOLM1 and
FAM49B. (A) K–M analysis of OS between the high FAM49B expression group and low FAM49B
expression group in HNSCC. (B) K–M analysis of OS between the high GOLM1 expression group
and low GOLM1 expression group in HNSCC. (C) Genes correlated with GOLM1 were shown.
(D) Genes correlated with FAM40B are shown.

2.6. PPI Analysis of GOLM1 and FAM49B

According to the ranks of the predicted functional partners, it was clear that GOLM1 is
mainly associated with Clusterin (CLU) (0.915), Golgi phosphoprotein 3 (GOLPH3) (0.820),
and the epidermal growth factor receptor (EGFR) (0.793). While FAM49B did not show
much correlation with the other genes, whose highest score of predicted functional partners
was 0.680 (Figure 3C,D), the combined score indicated the correlation between the genes
and proteins (Tables S3 and S4). The higher the score was, the greater the correlation was.

2.7. Correlation Analyses between GOLM1 and FAM49B Expression and Immune Cell Infiltration

We used the gene module in the TIMER 2.0 database to perform the correlation
analyses between the GOLM1 and FAM49B expression and immune cell infiltration in
HNSCC (Figure S1). Using XCELL as the algorithm, it was shown that GOLM1 expression
was positively correlated with the infiltrating levels of the T cell CD8+ effector memory,
T cell CD8+ central memory, T cell CD4+ naive, T cell CD4+ memory, T cell CD4+ Th2,
regulatory T cells (Tregs), macrophages (M1 and M2), endothelial cell, myeloid dendritic
cell, and myeloid dendritic cell activated. Simultaneously, it was negatively correlated with
T cell CD4+ central memory, B cell plasma, and neutrophil (p < 0.05). Through the figure
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below, most of the immune cells mentioned were positively associated with GOLM1 levels,
which demonstrated that HNSCC patients with a high expression of GOLM1 might have
more infiltrating immune cells in the tumor tissues.

When it came to FAM49B, Figure S2 shows that FAM49B expression was positively
correlated to T cell CD4+ memory, T cell CD4+ Th2, B cell naïve, and Macrophage, while
also appearing negatively related to T cell CD4+ central memory, T cell CD4+ Th1, B cell, B
cell memory, and B cell plasma. Comparing the correlation level between the two genes,
FAM49B had a lower correlation level with immune infiltration cells than GOLM1.

2.8. GSEA

We further studied the mechanism of the GOLM1 and FAM49B on the prognosis of
HNSCC using GSEA v4.10 based on TCGA datasets. The results proved that GOLM1 and
FAM49B were significantly enriched in some pathways (Table 1).

Table 1. Top 10 pathways enriched by GSEA analysis in GOLM1 and FAM49B.

Name of Pathway NES NOM p-Val FDR q-Val

GOLM1 Cell adhesion molecules (CAMs) 2.19 0.000 0.003
Complement and coagulation cascades 2.12 0.000 0.008

TGF-beta signaling pathway 2.10 0.000 0.007
Focal adhesion 2.06 0.002 0.011

Vascular smooth muscle contraction 2.06 0.000 0.009
ECM–receptor interaction 2.05 0.000 0.010

Colorectal cancer 2.05 0.002 0.009
Systemic lupus erythematosus 2.01 0.004 0.015

Pathways in cancer 1.99 0.000 0.016
N-Glycan biosynthesis 1.96 0.004 0.020

FAM49B Antigen processing and presentation 2.33 0.000 0.000
Oocyte meiosis 2.31 0.000 0.000

RNA degradation 2.29 0.000 0.000
NOD-like receptor signaling pathway 2.28 0.000 0.000

Cytosolic DNA-sensing pathway 2.25 0.000 0.000
Ubiquitin mediated proteolysis 2.20 0.000 0.001

RIG-I-like receptor signaling pathway 2.16 0.000 0.002
Basal transcription factors 2.13 0.000 0.003

Proteasome 2.12 0.002 0.003
Pyrimidine metabolism 2.12 0.000 0.003

When GOLM1 was overexpressed, 36 gene sets were differentially enriched. The top
ten intersected gene-enriched pathways associated with GOLM1 upregulation included cell
adhesion molecules (CAMs), complement and coagulation cascades, the TGF-βsignaling
pathway, focal adhesion, vascular smooth muscle contraction, ECM–receptor interaction,
colorectal cancer, systemic lupus erythematosus, pathways in cancer, and Nglycan biosyn-
thesis (Figure S3A–E). When FAM49B was overexpressed, 41 gene sets were differentially
enriched. The top ten intersected gene-enriched pathways associated with FAM49B up-
regulation were antigen processing and presentation, oocyte meiosis, RNA degradation,
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, ubiquitin-mediated
proteolysis, RIG-I-like receptor signaling pathway, basal transcription factors, proteasome,
and pyrimidine metabolism (Figure S3F–J).

It is worth noting that some enriched pathways of GOLM1 and FAM49B are related to
immune surveillance, such as the Wnt and chemokine signaling pathways of GOLM1, the
p53 signaling pathway, and the Jak-STAT signaling pathway of FAM49B. These two genes
may participate in the inhibition of tumor progression and have a certain reference value
for finding new immune checkpoints.

2.9. Expression of GOLM1 and FAM49B in HNSCC Tissues

As the immunohistochemistry (IHC) results indicated, the GOLM1 protein was found
to be expressed in most HNSCC. The GOLM1 protein was localized in the cytoplasm of
tumor cells (Figure 4), with higher levels in poorly differentiated HNSCC tissues. The
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GOLM1 protein was negative in the normal squamous epithelium (Figure 4A) but positive
in the normal glandular epithelial cells (Figure 4B) and fibroblast cells. The FAM49B protein
was mainly detected in the cytoplasm, the nuclear of tumor cells and immune cells, but a
negative signal was in the normal squamous epithelium (Figure 5A–F). Interestingly, the
positive signal of GOLM1 protein expression was a punctiform staining pattern, while
the FAM49B showed the patched signal. Cytokeratin (CK) can label the tumor cells of
HNSCC and normal epithelial cells, which can discriminate from the immune cells of
the tumor microenvironment, such as CD3 labeling T lymphocytes, CD20 meaning B
lymphocytes, and CD68 labeling macrophages. These interesting results demonstrated that
the co-expression of GOLM1 and CK, GOLM1 and FAM49B, GOLM1 and CD3, FAM49B
and CD3, GOLM1 and CD68, and FAM49B and CD20 were observed in the multiplex
immunofluorescence (mIF) results (Figure 6A–P).
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Figure 4. Representative photomicrographs of GOLM1 expression in the normal oral epithelium and
HNSCC tissues. (A) Shows negative expression of GOLM1 protein in the normal oral squamous
epithelium, hair follicle, and sebaceous glands. (B) Shows strong positive staining of GOLM1
protein in the normal gland (green arrow), and weak staining of GOLM1 in the SCC (orange arrow).
(C) Shows negative staining of GOLM1 protein in the well-differentiated SCC, and positive staining
of GOLM1 protein in the fibroblast cells. (D) Shows positive staining of GOLM1 protein in the
tumor cells of moderately differentiated SCC and immune cells (green arrowhead); (E,F) Shows
positive staining of GOLM1 protein in the tumor cells of poorly differentiated SCC. ((A–E), original
magnification ×200; (F), original magnification ×400).
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Figure 5. Representative photomicrographs of FAM49B expression in the normal oral epithelium and
HNSCC tissues. (A) Shows negative expression of FAM49B protein in the normal oral squamous
epithelium, hair follicle, and sebaceous glands; (B) Shows positive staining of FAM49B protein in
the tumor cells around the nest of well-differentiated SCC; (C) Shows focal staining of FAM49B
protein in the moderately differentiated SCC and immune cells (green arrow). (D) Shows positive
staining of FAM49B protein in the immune cells of SCC (green arrow), which were localized in the
cytoplasm and nuclear; (E,F) Shows positive staining of FAM49B protein in the tumor cells of poorly
differentiated SCC. ((A–E), original magnification ×200; (F), ×400).

2.10. Clinicopathological Significance of GOLM1 and FAM49B Expression in HNSCC

The association between the GOLM1 and FAM49B expression and clinicopathological
characteristics in HNSCC tissues was investigated. A total of 81 valid results from the TMAs
were selected to perform the Chi-squared analysis. The results of IHC were evaluated. We
defined the levels ≤2 of GOLM1 expression as low expression while the levels >2 were
defined as high expression. As for the expression of FAM49B, we used absolute positive
(score = 1) and negative (score = 0) scores to sort the results.

The correlation between the expression of GOLM1 and FAM49B in tumor cells and
clinicopathological characteristics was first studied. Then, we performed the Chi-squared
analysis to find whether there was a potential linkage between the levels of GOLM1
expression in the tumor cells and clinicopathological characteristics. As listed in Table S2,
our results show that GOLM1 alone in the tumor cells was associated with the pathological
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grade in HNSCC (p = 0.004). While no significant correlations were found between FAM49B
expression in the tumor cells and clinicopathological factors.

As Table 2 indicates, a high expression of the GOLM1 protein was significantly associ-
ated with a higher pathological grade (p < 0.01) in HNSCC, though more evidence should
be taken into account.
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Figure 6. CK, GOLM1, FAM49B, CD3, CD20, and CD68 proteins were detected by mIF in the HNSCC
tissues. (A): CK; (B): GOLM1; (C): FAM49B; (D): CD3; (E): CD20; (F): CD68; (G): Co-expression of CK,
GOLM1, and FAM49B (green arrow showed). (H): Co-expression of GOLM1 and CD3 (yellow arrow).
(I): Co-expression of FAM49B and CD3 (red arrow). (J): Co-expression of GOLM1 and CD68 (green
arrow), the red signal is VISTA, and the pink signal is CD68. (K): Co-expression of FAM49B and
CD68 (green arrow). (L): Merged images of all markers. (M): CD3; (N): FAM49B; (O): Co-expression
of FAM49B and CD20 (green arrow). (P): Merged images of all markers. (Original magnification
(A–L) ×200, (M–P) ×400).

Table 2. High expression of GOLM1 protein was associated with clinicopathological parameters of
HNSCC tissues.

Parameters Cases (n = 81)
GOLM1 in Tumor Cells

High Low p Value

Gender 1.000 *
Male 73 10 63

Female 8 1 7
Age 0.965 *
≤64 63 8 55
>64 18 3 15

Depth of invasion (T) 1.000 *
T1, T2 45 6 39
T3, T4 36 5 31
Lymph-node metastasis (N) 0.648

N0 42 5 37
N1, N2 39 6 33
Grade <0.001 *

I, II 58 2 56
III 23 9 14

TNM stage 0.272
I + II 24 1 23

III 41 7 34
IVA 16 3 13

* Continuity correction p value.



Int. J. Mol. Sci. 2022, 23, 15433 10 of 17

2.11. Correlation between GOLM1 and FAM49B Expression in Tumor Cells

HNSCC tumor cores from TMAs were selected as cases and divided into four groups
according to the expression of GOLM1 and FAM49B. Eighty-one valid results from the
TMAs were selected. From the results of SPSS, we found that the continuity correlation
p-value was 0.518 (>0.05), which meant there was no definite correlation between the
expression of GOLM1 and FAM49B in HNSCC.

3. Discussion

The incidence of HNSCC is still increasing year by year [1]. Due to the limited
improvement in the patient’s prognosis with traditional treatments, the epidermal growth
factor receptor, tyrosine kinase inhibitors, and immune checkpoint inhibitors represented
by cetuximab undoubtedly provide significant progress in the treatment of HNSCC when
it comes to the clinical application [7,8]. Early diagnosis and therapy can improve the
prognosis of patients, but there is still a lack of effective biomarkers for cancer screening and
the prognosis of HNSCC. Therefore, it is necessary to find valuable biomarkers in HNSCC.

WGCNA has been widely applied in various biological contexts and has attained
significant progress. Using the module eigengene, WGCNA can identify different clusters
(modules) of genes with similarities in expression. In addition, it explores the correlation
between modules and clinical traits, making a tremendous difference in the selection of
hub genes. However, in our study, the amount of our 273 DEGs may decrease the stability
of the WGCNA network compared to using all genes without the criterion we chose.

In this study, 44 samples of GSE83519 from GEO datasets and 546 samples of HNSCC
from TCGA were adopted, and DEGs were screened by GEO2R and R software. As a result,
293 DEGs related to HNSCC were obtained. RNA-seq data and clinical information of
GSE42743 were applied. After performing WGCNA analysis, the hub genes were selected
based on the correlation between the gene modules and clinical traits, according to the
criteria of |MM|>0.8 and |GS|>0.3. Four different analyses were utilized to screen our
interesting genes: GOLM1 and FAM49B. We conducted single-gene analyses to determine
their potential clinical meanings using TIMER2.0 and GSEA. Finally, we performed IHC
and mIF to explore the correlation between protein expression and clinicopathological
characteristics in HNSCC tissues.

FAM49B has been confirmed to modulate cellular actin assembly through the RAC-Pak
Axis, drive cytoskeletal remodeling, and regulate pseudopod complexity [9–11]. Simultane-
ously, FAM49B can inhibit TCR signal transduction and negatively manage T cell activation
through modulating cytoskeletal remodeling [11]. The overexpression of FAM49B has been
identified in pancreatic ductal adenocarcinoma (PDAC), early pancreatic intraepithelial
neoplasia (PanIN), and breast cancer. Furthermore, high expression of FAM49B can predict
a worse prognosis [12–14], which was consistent with the results of our study in HNSCC.
We found positive staining for the FAM49B protein in the tumor cells of HNSCC, and
the co-expression of FAM49B and CD3, CD20, and CD68 demonstrates that FAM49B can
express in the T cells, B cells, and macrophages around SCC.

Previous studies have found different mechanisms of tumor invasion and proliferation
mediated by FAM49B in different cancers. Taspase 1 (TASP1) promotes the proliferation
and migration of gallbladder cancer cells by targeting the upregulation of FAM49B through
the TASP1-PI3K/Akt-FAM49B axis [12]. FAM49B can also stimulate breast cancer cell pro-
liferation and migration through the Rab10/TLR4 pathway [13]. In colorectal cancer (CRC)
and hepatocellular carcinoma (HCC), FAM49B, as a downstream target of the Zinc Finger
RNA binding protein (ZFR), may be a potential tumor suppressor [15]. However, the study
of FAM49B on the invasiveness of HNSCC cells is still blank, and the specific mechanism
of FAM49B mediating in HNSCC remains to be further explored and demonstrated.

GOLM1 is a membrane protein located on the Golgi apparatus, which is mainly ex-
pressed by cells of the epithelial lineage and upregulated by virus infection [16]. Our study
found that compared with normal tissues, the expression of GOLM1 was increased in tumor
tissues, and the degree of increase may be correlated with the differentiation degree of the
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tumor. Early studies have shown that increased GOLM1 expression in hepatocytes seems
to be a general feature of advanced liver disease [17]. Simultaneously, the high expression
of GOLM1 is associated with a variety of cancers, including prostate cancer, non-small cell
lung carcinoma (NSCLC), and HCC, and GOLM1 has been considered an early diagnostic
marker of HCC [18–21]. In HCC, GOLM1 upregulates the expression of PD-L1 in cancer
cells through the deubiquitination of PD-L1, which is mediated by the enzyme deubiquiti-
nation, thereby benefiting cancer cells to escape from immune cells [22]. It has also been
shown that deoxycholic acid (DCA) can upregulate the expression and release of GOLM1 by
activating the nuclear factor-Kappa B (NF-κB) pathway and destroying the Golgi apparatus
in chronic liver disease (CLD) and HCC [22]. Thus, GOLM1, a multifunctional protein,
plays an essential role in facilitating cancer cells’ epithelial-mesenchymal transition (EMT)
and inducing cancer metastasis [23]. However, according to the current research results,
GOLM1 may be a kind of housekeeping gene according to its expression in most normal
tissues. In past studies, the intracellular and extracellular interaction between GOLM1 and
secretary clusterin (sCLU) has been found. The intracellular colocalization of GOLPH2
and sCLU in Golgi has also been confirmed. According to the role of each protein in this
protein–protein association, it is speculated that GOLM1 might participate in the sCLU
post-translational modification, transportation, and secretion [24]. Applying GSEA analysis,
we discovered that GOLM1 was markedly enriched in the TGF-β signaling pathway and
Wnt signaling pathway in HNSCC. Some previous researchers have elaborated on the
connection between GOLM1 and the TGF-β1/Smad2 signaling pathway in bladder cancer
and HCC [25,26]. GOLM1’s effect via the Wnt/β-catenin signaling pathway has also been
shown in human glioblastoma, which can promote its proliferation and motility [27]. Our
study was the first to discover the potential function of GOLM1 with the TGF-β signaling
pathway and Wnt signaling pathway in HNSCC. The specific biological function and
related molecular mechanism of GOLM1 in HNSCC have not been determined.

What is more, by utilizing TIMER2.0, our study identified that GOLM1 was correlated
to T cell CD8+ effector memory, T cell CD8+ central memory, T cell CD4+ naive, T cell
CD4+ memory, T cell CD4+ Th2, Tregs, macrophages (M1 and M2), myeloid dendritic
cells, myeloid dendritic cell activated, T cell CD4+ central memory, B cell plasma, and
Neutrophils. Moreover, GOLM1 has a close correlation with cancer immunosuppression,
which can promote PD-L1 stabilization, and with the transportation of PD-L1 into the tumor-
associated macrophages with exosome dependence [28]. On the other hand, FAM49B was
associated with CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils, and dendritic
cells. Immune-related mechanisms in HNSCC and immunization strategies may provide
a potential direction to the diagnosis, treatment, and prognosis. TIMER2.0 indicated that
GOLM1 and FAM49B had something to do with the regulation of immune infiltrating cells
in HNSCC. Our mIF results also confirmed the co-expression of GOLM1 and FAM49B with
T cells, B cells, and macrophages. However, we need further analysis and experiments to
determine how the two genes functionally work and how many pathways participate in
the regulation.

Our study is the first to systematically report that the hub genes GOLM1 and FAM49B
are associated with the prognostic value of HNSCC throughout the process of data analysis
and experimental verification. These findings demonstrated that GOLM1 and FAM49B
genes might be used as potential biomarkers to determine the development of HNSCC;
moreover, GOLM1 and FAM49B can possibly be verified as prognostic indicators of
HNSCC patients.

However, limited by the finite data of HNSCC cases and experiments, our findings
may not be applied to all HNSCC patients. Differences in different geographical regions
and pathogenic factors can result in diverse prognostic biomarkers of HNSCC, on which
we will further focus. As for now, the specific biological function and related molecular
mechanism of GOLM1 and FAM49B remain undiscovered in HNSCC. Further research
is essential to reveal the function of GOLM1 and FAM49B in HNSCC cells, explore the



Int. J. Mol. Sci. 2022, 23, 15433 12 of 17

interaction among GOLM1, FAM49B, and other genes, and build mouse tumor-bearing
models to find potential drugs for HNSCC treatment.

4. Materials and Methods
4.1. Microarray Datasets

GENE EXPRESSION OMNIBUS (http://www.ncbi.nlm.nih.gov/geo/ accessed on 21
January 2021), commonly referred to as GEO, is a created gene expression database retained
by the National Center for Biotechnology Information (NCBI) in the United States. Studies
from the GEO database were considered eligible and satisfactory based on the following
criteria: (1) studies with HNSCC tissue samples, (2) studies including adjacent normal
tissues as the control, (3) all HNSCC tissues and normal tissues confirmed by histopathology
and (4) datasets containing more than 20 pairs of HNSCC tissues and normal tissues.
According to the above criteria, we downloaded and collected 22 normal mucosal tissues
and 22 HNSCC tissues through a high-throughput gene expression dataset numbered
GSE83519. The RNA-seq data and clinical information of GSE42743 were applied.

The Cancer Genome Atlas (TCGA) project is a multi-center institutional effort sup-
ported by the National Institute of Health to provide a comprehensive genetic analysis of
different cancers and establish correlations with clinical outcomes [29]. We downloaded the
RNA sequencing datasets (TCGA-HNSC) of 502 HNSCC tissues and 44 adjacent normal
tissues, including clinical information and gene expression from TCGA. Incomplete data
were deleted before analysis.

4.2. Identification of DEGs

GEO2R conducts comparisons on original submitter-supplied processed data tables
utilizing the GEOquery and limma R packages from the Bioconductor project (http://www.
ncbi.nlm.nih.gov/geo/geo2r, accessed on 21 January 2021). Using GEO2R, we compared
and analyzed the 22 HNSCC tissues with 22 corresponding normal tissues. Fold-change
(FC) and p-values were the standard parameters to screen differentially expressed genes
(DEGs), which were set as the criteria of |log(FC)| > 1, p-value < 0.01.

Gene expression profiling interactive analysis (GEPIA2) provides customizable func-
tions such as tumor/normal differential expression analysis, profiling according to cancer
types or pathological stages, and patient survival analysis [30]. It was applied to identify
the DEGs of 502 HNSCC tissues and 44 adjacent normal tissues from TCGA according to
the criteria of |log(FC)| > 1, adjusted p-value < 0.01.

4.3. Weighted Gene Co-Expression Network Analysis

The weighted gene co-expression network analysis (WGCNA) is a systematic biologi-
cal method. WGCNA analyzes the interaction patterns among genes and separates genes
into various modules. It also plays a significant role in exploring the correlation between
gene modules and clinical traits. The probe information of the 15 DEGs we selected was
not found in the samples in GSE42743. Therefore, we selected the expression of the other
278 DEGs and clinical traits (tumor stages, etc.) from 74 oral cavity cancer samples in
GSE42743 to perform WGCNA analysis using the R package WGCNA [31].

Hub genes were selected based on the correlation between the gene modules and
clinical traits. Module membership (MM) and gene significance (GS) were also taken
into consideration.

4.4. GO and KEGG Pathway Analysis

Gene ontology (GO) is specifically designed to support the computational representa-
tion of biological systems, providing a framework to describe the functions of gene products
from all organisms [32]. KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/,
accessed on 24 February 2022 ) is an encyclopedia of genes and genomes aimed at as-
signing functional meanings to genes and genomes at both the molecular and higher
levels [33]. The Database for Annotation, Visualization, and Integrated Discovery (DAVID)

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.kegg.jp/
http://www.genome.jp/kegg/
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6.8 (https://david.ncifcrf.gov, accessed on 24 February 2022) provides a comprehensive set
of functional annotation tools that can be applied to gene functional enrichment analysis.
The Ggplot2R package was used to visualize GO terms and KEGG pathways information
by implementing high-quality figures [34].

4.5. Survival Analysis of Hub Genes

Receiver operating characteristic (ROC) curves were plotted with SPSS 22.0 software
to assess the optimal cutoff value for survival analyses. To evaluate the prognostic value
of the screened candidate genes, the overall survival rate (OS) was determined by the
Kaplan–Meier curve with the log-rank test and was conducted and plotted by the survival
R package. All clinical information used for survival analysis was derived from TCGA.

4.6. PPI Analysis of Two Single Genes

The interaction between proteins is crucial to find out the metabolic and molecular
mechanisms of tumors. The String database (http://string-db.org, accessed on 27 February
2022) provides a critical assessment of protein interactions. The single-gene analysis
of GOLM1 and FAM49B, which were selected from the hub genes, was performed on
the website.

4.7. GSEA

To identify the intersected genes enriched pathways, we employed Gene Set En-
richment Analysis (GSEA, http://software.broadinstitute.org/gsea/index.jsp, accessed
on 10 February 2022) to run KEGG gene sets of GOLM1 and FAM49B [35]. The gene
expression data of 502 samples of HNSCC extracted from TCGA were divided into the
upper and the lower group according to the levels of gene expression. Additionally,
“c2.cp.kegg.v7.5.symbols.gmt gene sets” of the MSigDB collection were chosen as the gene
set database, with the following parameters: p-value cutoff = 0.05, false discovery rate
(FDR) = 0.25, |NES| > 1.5, and gene size ≥ 25. The number of permutations was set at
1000 during the Gene Set Enrichment Analysis process.

4.8. TIMER2.0 Database Analysis

The correlations between hub genes and infiltrated immune cells were explored in the
TIMER2.0 database (http://timer.cistrome.org/, accessed on 20 October 2021). It has access
to visualized functions and comprehensively analyzes tumors infiltrating into immune cells,
including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells
(DCs). Instead of just utilizing one algorithm, TIMER2.0 provided a more robust estimation
of immune infiltration levels for The Cancer Genome Atlas (TCGA) or user-provided tumor
profiles using six state-of-the-art algorithms [36].

4.9. Tissue Microarrays

Two separate HNSCC tissue microarrays (TMAs) were purchased and used in this
study (Guilin Fanpu Biotechnology Co., Guilin, China). The TMA slides consisted of
83 HNSCC tissues and 5 noncancerous tissues. All 88 cores with a 1.5 mm diameter were
arranged in paraffin blocks in TMAs. Detailed clinicopathological features, such as gender,
age, tumor grades, depth of tumor invasion (T), lymph node metastasis (N), and distant
metastasis (M), are given in Table S1.

All procedures involving human participants were in accordance with the ethical
standards of the Guilin Fanpu Biotechnology Co. All research was in compliance with the
terms of the 1964 Declaration of Helsinki and its later amendments or comparable ethical
standards. Because of this type of retrospective study, informed consent was not required.

4.10. Immunohistochemistry Analysis

IHC analysis was conducted to detect GOLM1 and FAM49B expression in HNSCC
tissues. TMA sections were firstly deparaffinized and rehydrated. The antigen retrievals of

https://david.ncifcrf.gov
http://string-db.org
http://software.broadinstitute.org/gsea/index.jsp
http://timer.cistrome.org/
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GOLM1 and FAM49B were applied in citrate acid buffer (10 mM, pH 6.0) for 15 min by
a microwave. The sections were incubated with a rabbit anti-human GOLM1 polyclonal
antibody (1:400 dilution, NBP1-88775, Novus Biologicals, Centennial, CO, USA) and rabbit
anti-human FAM49B polyclonal antibody (1:50 dilution, NBP1-88582, Novus Biologicals,
USA) at 4 ◦C overnight. Subsequently, horseradish peroxidase (HRP) conjugated to the
goat anti-mouse/rabbit secondary antibody was added to the slides at 37 ◦C for 30 min
of incubation. 3,3′-diaminobenzidine (DAB) chromogen (DAKO, Santa Clara, CA, USA)
and nuclear counterstaining with hematoxylin were executed afterward. Human stomach
tissue for GOLM1 and human lymph node for FAM49B were regarded as the positive
control. Primary antibodies replaced by PBS were regarded as the negative control.

4.11. Evaluation of Immunohistochemistry

Immunostaining reactivity was observed using light microscopy (Olympus BX-53
with CCD DP74, Shinjuku, Japan). The results were analyzed by two pathologists (Xi Y and
Chen H) who acted independently and were blind to the clinicopathological characteristics
of the study. The analyses of the two pathologists were compared, and any discrepancies
were reassessed to arrive at a consensus. The expressions of GOLM1 and FAM49B in tumor
and immune cells were recorded for further research.

4.12. Evaluating Results of GOLM1 and FAM49B Expression

The GOLM1 expression in the tumor cells was graded as four levels ranging from
0 to 3. The levels were determined by the ratio of positive cells to the total cells in the
percentage as follows: 0 (0%), 1 (0–10%), 2 (10–50%), and 3 (>50%). On the other hand,
FAM49B expression in tumor cells was graded in absolute figures, with 0 in the case of
negative expression and 1 for positive expression.

4.13. Multiplex Immunofluorescence Staining

We accomplished manual mIF staining using the Opal 7-Color IHC Kit (Akoya,
Waltham, MA, USA) in a section obtained from Formalin-fixed paraffin-embedding (FFPE)
HNSCC tissues. We used a Vectra 3.0 multispectral imaging system (Akoya, Waltham, MA,
USA) to scan the stained slides.

The immunofluorescence markers consisted of GOLM1 (1:800 dilution, NBP1-88775,
Novus Biologicals, USA), FAM49B (1:100 dilution, NBP1-88582, Novus Biologicals, USA),
CK (AE1/AE3), CD3 (F7.2.38), CD20 (L26), and CD68 (PG-M1). The last four were ready-
to-use antibodies from Agilent/DAKO, Santa Clara, CA, USA.

The antigen retrievals were performed before attaching each primary antibody to
the section using a Meidi microwave (M1-L213C, Meidi, Beijiao, China). The primary
antibodies were incubated and visualized using tyramide signal amplification linked
to specific fluorochrome from the mIF Kit for each primary antibody. The whole mIF
procedure was executed according to the manufacturer’s instructions. To create the spectral
library, the uniplex IF was used with each antibody. This multispectral analysis also
adopted the same fluorochrome used in the mIF in human FFPE HNSCC tissues. HNSCC
tissues were also analyzed in the same mIF procedure, respectively, with or without the
primary antibodies, to establish the positive and negative (autofluorescence) controls.

A Vectra 3.0 multispectral microscope system and InForm2.6 software were used to
scan the mIF and uniplex IF-stained slides under fluorescent illumination. From each
slide, the Vectra automatically captured the fluorescent spectra from 420 nm to 720 nm at
20 nm intervals with the most appropriate exposure time. Next, the captured images were
combined to create a single stack image that retained the particulate spectral signature of
all the IF markers.

4.14. Statistical Analysis

Statistical analyses were fulfilled with R software (Version 4.1.2) and SPSS 22.0 software
(Chicago, IL, USA). The correlation between GOLM1 and FAM49B expression in the tumor
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cells and the potential relationship between their expression and the clinicopathological
parameters of the HNSCC tissues were explored by the χ2 test. p < 0.05 was considered
statistically significant in all analyses.

5. Conclusions

In conclusion, our experiment screened out GOLM1 and FAM49B in relation to the
development of HNSCC through the bioinformatics method. We indicated that the high
expression of both FAM49B and GOLM1 in HNSCC tissues predicted a worse prognosis,
possibly as a result of the regulation of immune infiltrating cells in the tumor environment.
IHC and mIF revealed special spatial expression patterns of GOLM1 and FAM49B in
the HNSCC; moreover, a high expression of GOLM1 might be associated with a higher
pathological grade. These results improve our understanding of the differential expression
of GOLM1 and FAM49B in HNSCC and also indicate that GOLM1 and FAM49B may be
used as bioinformatics markers for the assessment of HNSCC prognosis and as potential
targets for HNSCC treatment, which is conducive to the development of personalized
immunotherapy for HNSCC in the future.
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