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Abstract: Cold environments characterised by diverse temperatures close to or below the water
freezing point dominate about 80% of the Earth’s biosphere. One of the survival strategies adopted
by microorganisms living in cold environments is their expression of cold-active enzymes that enable
them to perform an efficient metabolic flux at low temperatures necessary to thrive and reproduce
under those constraints. Cold-active enzymes are ideal biocatalysts that can reduce the need for
heating procedures and improve industrial processes’ quality, sustainability, and cost-effectiveness.
Despite their wide applications, their industrial usage is still limited, and the major contributing
factor is the lack of complete understanding of their structure and cold adaptation mechanisms. The
current review looked at the recombinant overexpression, purification, and recent mechanism of
cold adaptation, various approaches for purification, and three-dimensional (3D) crystal structure
elucidation of cold-active lipases and esterase.

Keywords: cold adaptation; 3D structure; esterase; lipase; psychrophilic enzymes; purification

1. Introduction

Psychrophilic or extreme cold environments are usually characterised by diverse tem-
peratures close to or below the water freezing point of 0 ◦C. The cold biosphere dominates
about 80% of the Earth’s biosphere, and this environment could be a seasonal or permanent
cold [1,2]. These cold habitats include fridges and freezers, high altitude alpine regions [1],
permafrost areas [3], glaciers and deep seas [4], polar arctic and Antarctic regions [5]. The
psychrophilic environment is inhabited by all the domains of life: Archaea, Bacteria, and
Eukarya [6,7]. As cellular activities are disrupted at cold temperatures by high viscosity
and low thermal energy [8], psychrophilic microorganisms require adaptive strategies
to survive and thrive in such a harsh cold environment. Several adaptation strategies
employed by psychrophilic organisms include inhibition of ice-recrystallization, nucleation
of extracellular ice crystal by irreversibly binding to a particular plane of ice crystal, thereby
preventing it from further secondary nucleation and continued ice growth, overcoming
deficiencies in the uptake of carbon and nitrogen, and membrane fluidity maintenance [9].
One of the exciting survival strategies for cold-adapted environments that microbes use is
the expression of cold-active enzymes that allow them to make an efficient metabolic flux
at cold temperatures [3,10].
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Cold-active enzymes are produced by psychrophilic microorganisms that are often
heat-labile and perform a high catalytic activity at moderate to very low temperatures in con-
trast to their thermophilic and mesophilic orthologs [8,11]. The cold-active extremozymes
generally achieved their efficient biochemical reactions by lowering both the enthalpy of
activation and Gibbs free energy compared to their thermophilic and mesophilic counter-
parts [12]. Cold-active enzyme structures are homologous to their mesophilic counterparts.
They only differ by discrete changes in their amino acid and spatial polypeptide structures,
which are responsible for their distinct functions [3,13].

Cold-active enzymes have a high specific activity, low-affinity on the substrate at
low temperatures, and they are structurally more flexible at their active sites; this flexi-
ble nature is due to weak intermolecular forces and increased exposure of hydrophobic
residues [12,14,15]. Compared to their mesophilic and thermophilic counterparts, these
features of high catalytic efficiency at low temperatures make these extremozymes highly
attractive to the scientific community and provide potential applications in detergency,
bioremediation, biofuels, and food industries [11,16,17]. Cold-active hydrolases such as
protease, lipase, amylase, and cellulase were the most frequent enzymes characterised and
used for industrial purposes compared to other cold-active enzymes [18–21]. Cold-active
enzymes, in general, are ideal biocatalysts that can reduce the need for heating procedures,
which improves the sustainability, cost-effectiveness, energy consumption, and quality of
industrial production [11].

Esterase (carboxyl ester hydrolases, EC 3.1.1.1) and Lipases (triacylglycerol lipases, EC
3.1.1.3) are lipolytic enzymes that catalyse the synthesis and hydrolysis of acylglycerols, aryl,
and carboxylic ester linkages [22]. Lipases and esterase are members of the serine hydrolase
superfamily characterised with α/β hydrolase fold [23], made up of eight (8) β-strands
with and six (6) α-helices that accommodate a highly conserved catalytic triad capable of
nucleophilic reaction with their substrates [24,25]. Esterase catalyses the hydrolysis and
synthesis of short-chain and partly soluble aliphatic esters. In contrast, lipases catalyse the
hydrolysis and synthesis of long-chain fatty acid substrates that are water-insoluble [26].
These lipolytic enzymes were stable in organic solvents such as methanol, ethanol, DMSO,
and n-hexane [27,28]. Furthermore, they showed high Regio- and stereo-preferences on
diverse substrates, making them suitable biocatalysts for a wide range of industrial and
commercial applications [29].

In recent years, there have been many articles published on cold-active enzymes [30–32].
Previous studies on cold-active lipases and esterases focused on their isolation from various
sources, overexpression, and biochemical characterisation [33–36]. Still, their purification
and three-dimensional (3D) structures have received little attention. This review focused
on recent information recombinant overexpression, purification, 3D structure elucidation,
and their mechanism of cold adaptation of cold-active esterase and lipases. Their isolation
methods were also considered. Although only articles that reported on cold-active lipase
and esterase were examined, most of the issues we came across were not specific to cold-
active lipase and esterase but were valid to all enzymes. The summary of various sections
of this review is depicted in Figure 1.
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2. Approaches for Isolation of Genes Encoding Cold-Active Lipase and Esterase

The increasing industrial need for enzymes with high biochemical activity at low
temperatures capable of synthesising biodiesel, biopolymers, chiral intermediates, and
fine chemicals has led to the discovery of novel sources and screening methods for such ex-
tremozymes [16,37,38]. The cold-active esterase and lipase sources were reviewed [14,17,31,39].
The sources for these cold-active lipolytic enzymes were microbes of different life domains
and species originating in diverse cold environments such as permafrost soil, polar regions,
glaciers, and high-altitude mountain regions [40,41]. Although numerous cold-active es-
terases and lipases have been isolated and characterised, lipase from Candida antarctica
B is currently employed in the industries [42–44]. Over the last few decades, the classic
method of culture-dependency is used to isolate, screen, and discover cold-active lipases
and esterases from the psychrophilic environment [45]. The standard way also involved
isolation of microbes from natural surroundings, culturing or growing in the laboratory to
determine the presence of the microbes, and gene sequencing to determine the order of
nucleotides in DNA of the microbe.

The conventional culture-dependent approach is the backbone for many microbio-
logical discoveries in academia and industry. The method is easy to handle and relatively
cheaper. Examples in which this approach is applied include GBPI_Hb61 cold-active li-
pase [46], alkaliphilic cold-active esterase from arctic marine bacterium Rhodococcus sp [47],
cold-active esterase (EstN7) from a Bacillus cohnii strain [48], cold-active lipase and esterase
from Siberian permafrost Psychrobacter [49]. Furthermore, traditional laboratory methods
of discovering and isolating novel lipases and esterases are time-consuming, and about
99% of microorganisms cannot be cultured through this conventional approach [46,50].
This setback is being addressed towards the application of metagenomics built upon
the community or environmental genomics of uncultured microbes using experimental

BioRender.com
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high-throughput sequencing technologies and bioinformatics tools that cover sequencing,
metagenomic assembly, binning, domain prediction and pathway databases [40,51,52].

The metagenomic approach uncovered novel enzymes that often play a vital role in the
biotechnology [53]. Metagenomics is often described as studying and analysing genomes
found in natural habitats. Metagenomic libraries are DNA fragments extracted from envi-
ronmental or community samples and cloned into specific vectors; the smaller fragments
less than 15 Kb are constructed into plasmids, whereas larger inserts (25 to 200 Kb) are built
in vectors such as cosmids and fosmids [54]. Functional metagenomics and sequence-based
metagenomics provide information on enzymes’ evolutionary profiles, genomic linkages,
and their functions [55]. Chauhan [56] and Dhanjal, Chopra [57] reviewed several novel
enzymes discovered using a metagenomic approach, including lipases and esterases ob-
tained from different environmental samples. Recently, a cold-active esterase PMGL3 was
obtained from the metagenomic DNA library of Siberian permafrost, and other lipase genes
have also been isolated and identified from various metagenomic libraries [36,58,59]. These
studies showed that metagenomics is an effective technique for identifying, extracting, and
discovering novel lipolytic enzymes. Despite the inspiring feature of the metagenomics
technique in expanding our understanding of the evolution, ecology, diversity, and function
of the microbial communities previously thought uncultivable, the method still encounters
numerous challenges.

Dhanjal, Chopra [57] reviewed the significant challenges and solutions of the metage-
nomic approach; the issues of concern include the presence of fewer genes encoding
enzymes of interest in metagenomic DNA, substrate scarcity for functional screening, low
efficiency and enzyme performance in the artificial or induced approach, low screening
efficiency of rare activities, a limited number of enzymes that perform efficiently in in-
dustrial, limited access to reliable bioinformatics tools to analyse large quantities of data
sequence conditions robustly, and shorter reliable prediction tools for predicting enzyme
activity on their coding sequence. Other issues include the bias associated with employing
a heterologous host, usually E. coli, the host’s ability to express, fold, and produce the
active enzyme [60]. These challenges need to be addressed to harness the power of these
technologies and understand the biodiversity in our environmental samples.

3. Cold-Active Lipase and Esterase Overexpression in Recombinant
Heterologous Hosts

The most common strategy for obtaining large quantities of desired proteins is re-
combinant overexpression in a heterologous host [61,62]. Although the technique is often
used in producing cold-active lipases and esterases, it is not specific to even cold-adapted
enzymes but all recombinant proteins. When expressed in the cytosol, recombinant proteins
are often produced at a greater yield, but they may also be regulated to be released into
the culture media [61]. The overexpression of recombinant cold-active lipase and esterase
is often achieved using mesophilic expression systems such as E. coli [63], yeast [64], and
insects [65]. The production of large quantities of such enzymes at high concentrations
remains challenging. As for other cold-active enzymes, the temperatures that cold-active
lipase and esterase require for proper folding is inconsistent with the optimal growth
temperature of these expression hosts [11]. The typical approach to mitigate folding prob-
lems in E. coli is to reduce the post-induction temperature below 20 ◦C. However, this
slows down the host growth rate and the heterologous enzyme’s synthesis rate. Table 1
summarises some recently reported overexpression of cold-active lipase and esterase in a
recombinant heterologous host.

E. coli was selected as the preferred expression host, and just one of the enzymes was
produced in Saccharomyces cerevisiae (S. cerevisiae). However, the E. coli Rosetta TM strain
was reported to be used once [66], BL21 (DE3), was the most popular. Other Gram-negative
bacteria, such as Pseudomonas and Burkholderia, lack suitable promoters and require foldase
(a special chaperon) and extracellular fatty acids to induce their expression, a mechanism
that is primarily unclear [67,68]. The two most common yeasts used for expression systems
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were S. cerevisiae (Baker’s yeast) and Pichia pastoris (P. pastoris). Its major drawback is its
strong natural tendency of S. cerevisiae to ferment carbohydrates to ethanol, which is
toxic at low culture density. However, P. pastoris lacks the problem of harmful ethanol
synthesis, but it cannot express any gene of interest. While specific proteins may have
no issues with being expressed, others may have problems associated with glycosylation,
secretion, and folding [69,70]. A recent study on recombinant overexpression by Xue,
Yao [64] found excellent expression of cold-active esterase in the S. cerevisiae heterologous
host, which was attributed to similarities between the yeast family to which the wild gene
and S. cerevisiae belongs. Since the carbon source was n-propanol and isobutanol and not
sugars, the limitation of using S. cerevisiae was not mentioned. Another heterologous host
for recombinant proteins is insect cell culture systems, which are well-known for their use
in creating vaccines and viral insecticides [71,72]. Compared to other eukaryotic expression
systems, high levels of heterologous gene expression are frequently achieved, especially
for intracellular proteins [73]. In several instances, the recombinant proteins are soluble
and easily collected from infected cells [73,74]. In one study, a Yarrowia lipolytica (LIPY8)
extracellular lipase gene was expressed using a baculovirus expression system in insect
cells, and it was interesting that the best pH and temperature for cold-active lipase LipY8p
expressed in insect cells were very different from those for the same enzyme expressed
in P. pastoris [65]. Moreover, it is too early to conclude how the change in heterologous
host from yeast to insect increases the cold activeness of a particular enzyme. On the other
hand, adaptability to a wide range of culture broths and its rapid growth and high enzyme
yield were the major favourable characteristics that allowed the utilisation of E. coli for
recombinant overexpression of heterologous proteins [75,76]. The major disadvantage of
using E. coli host is the production of bodies [77].

Inclusion bodies are insoluble protein aggregates that lack biological function [78];
their formation often occurs when eukaryotic proteins are overexpressed in a heterologous
host such as E. coli [79]. Inclusion bodies have been considered a significant obstacle
to producing soluble and active recombinant proteins [80,81]. In Table 1, most of the
cold-active lipase and esterase were overexpressed in soluble forms, and only five (5)
were produced as insoluble or soluble but in inactive forms. It is difficult to explain why
most articles we examined in this review reported more soluble expression than insoluble
inclusion bodies. Furthermore, there has been a great success not only in using biochemical
and molecular techniques to prevent their formation or to address various challenges
during their isolation, solubilisation, refolding, and purification [80], but their biological
activity is also emerging [82,83] contrary to the previous notion that they lack activity [78].

Table 1. Cold Active Lipase and Esterase Overexpressed in Heterologous Host.

Organisms/Enzymes Source Host Vector Localization of
Expressed
Enzyme

Optimum
Temp./Residual

Activity

References

Alkalibacterium sp.
SL3/esterase

Uncultured E. coli BL21
(DE3)

pET-28a (+) Soluble 30 ◦C and 68%
at 0 ◦C

[84]

Chitinophaga
pinensis-like/esterase

Uncultured E. coli
RosettaTM
(Novagen)

pGEX-6P-2 Insoluble
inclusion body

20 ◦C and NA [66]

Lactobacillus plantarum/
LpLp_2631/esterase

Microbiological
Culture

E. coli BL21
(DE3)

pURI3TEV
vector

Soluble 20 ◦C and 90%
at 5 ◦C

[85]

Burkholderia
pyrrocinia/BpFae

esterase

Microbiological
Culture

E. coli BL21
(DE3)

pET28a
pCold-TF and

pGEX-4T-1.

Insoluble/soluble
non inactive

form

NA [86]

Candida
parapsilosis/esterase

Cultured S. cerevisiae pYES2 Soluble NA and at
20 ◦C

[64]
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Table 1. Cont.

Organisms/Enzymes Source Host Vector Localization of
Expressed
Enzyme

Optimum
Temp./Residual

Activity

References

Monascus ruber
M7/esterase

Cultured E. coli
BL21(DE3)

pET-30a (+) Soluble 40 ◦C and 50%
at 4–10 ◦C

[87]

Alcanivorax
dieselolei/lipase

Cultured E. coli
BL21(DE3)

pGEX-6p-1
(GE)

Soluble 20 ◦C and 95%
at 10 ◦C

[88,89]

Pseudomonas fluorescens
KE38/lipase

Uncultured E. coli
BL21(DE3)

pET28a Insoluble
inclusion body

25 ◦C and NA [90]

Aphanizomenon
flos-aquae/esterase

Uncultured E. coli
BL21(DE3)

pET28a Insoluble
inclusion body

5–15 ◦C [91]

Bacillus halodurans/lipase Uncultured E. coli BL21
(DE3)

pET-28a (+) Soluble 30 ◦C [92]

Bacillus
licheniformis/esterase

Cultured E. coli BL21
(DE3)

pET-28a (+) Soluble 30 ◦C and 35%
at 0 ◦C

[63]

G. antarctica
PI12/esterase

Expressed
sequence tag

BL21 (DE3) pET200_GaDlh Soluble 10 ◦C
and 50% at

0–30 ◦C

[93]

Paenibacillus sp.
R4/esterase

Cultured BL21 (DE3) pET-22b (+) Soluble 35 ◦C and 45%
at 10 ◦C

[94]

Pseudomonas sp./lipase Uncultured BL21(DE3) pET32b (+) Insoluble
inclusion body

35 ◦C and 50%
at 15–40 ◦C

[27]

Yarrowia
lipolytica(LIPY8)/lipase

Cultured Insect (Sf9) pFastBac1 Soluble 17 ◦C and 70%
at 8–30 ◦C

[65]

NA—not available.

4. Purification of Cold-Active Lipolytic Enzymes

Purification is critical in determining an enzyme’s structure and function. Purifying an
enzyme not only isolates the target enzyme from other proteins and materials that comprise
the crude cell extract but also improves its shelf life and stability. Conformational and struc-
tural studies can also be performed after the homogenous purification of the enzymes, and
only this homogenous enzyme can be used to establish structure-function relationships [84].
For several decades, protein scientists were into developing screening and optimisation of
different combinations of variables during pre-purification and purification experiments
Shepard and Tiselius [85] as cited by [86]. The chromatographic pre-purification screening
parameters, including resin, ligand, and column screening, are targeted in the experimental
design and analytical phases [87]. One example is a high-throughput process development
(HTPD) that saves time and cost while harmonising purification procedures through in-
creased automation, miniaturisation, and practical data analysis [88]. A similar format with
miniaturised columns enables a high-throughput selection of adsorbent and separation pa-
rameters during binding and elution purification experiments. Integrated robot platforms
are also employed for choosing a suitable adsorbent in 96-well plates or microcolumn that
is essential for determining the success or failure of the purification step [89]. In addition,
functionalised microchips, combined with mass spectrometry, are used for protein solu-
tion binding, subsequent elution, and analysis. It is possible to determine the optimum
binding conditions, the ionic strength for binding, and the lowest ionic strength for the
elution [87,90].

Cold-active lipolytic enzymes were purified like other enzymes and proteins sequen-
tially depending on the purity required. For instance, the recommended purity level for
structural and functional studies is greater than 98% [91]. Conventional methods include
ammonium sulfate precipitation, affinity chromatography, size exclusion (gel filtration),
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and hydrophobic interaction [84,92–94]. Table 2 summarises the various methods used to
purify recombinant cold-active lipolytic enzymes. In most cold-active lipase and esterase
purification procedures, affinity chromatography is either employed in a one-step or a
double-step purification strategy. One-step purification using affinity chromatography
generally reduces the time and cost of purification. Even so, the prominent double-step
procedure uses ammonium sulfate precipitation with size exclusion and hydrophobic
interaction; however, this strategy is suitably employed if the enzymes are produced extra-
cellularly. The affinity chromatography technique is highly specific, while size exclusion,
hydrophobic interaction, and ammonium sulphate precipitation are less-specific methods.
Sometimes the purpose of using affinity chromatography or ammonium sulphate precipi-
tation in single or first-step purification is to concentrate the recombinant proteins, while
less-specific procedures are used to polish the purification. The double-step purification
strategy using ammonium sulfate precipitation and nickel affinity has not been utilised
much, despite having been reported [95]. In general, obtaining high-purity recombinant en-
zymes in their stable and active form is expensive, time-consuming, and complex. One-step
purification using ammonium sulfate is usually term as partial purification; a well-designed
ammonium sulfate precipitation is regarded as a gold standard among several purification
strategies [96].

Affinity chromatography is usually achieved by fusing tags at an enzyme’s C or N
terminal before its expression [97]. Several affinity tags have been known to facilitate the
expression, solubility, detection, and purification of proteins [98,99]. Poly-histidine tagging,
also known as His6 or His-tag, is widely employed to express and purify most recombi-
nant proteins, including cold-active lipases and esterase [100]. Despite the high affinity,
specificity, and size of His-tag, the technique possesses some disadvantages, including (1)
co-purification of other histidine-rich microbial host proteins and (2) negative impact on
enzyme stability, activity, binding affinity, and structure [101]. The latter is subject to much
contrasting opinion and is still debated because some authors observed that its presence
is mainly tolerated for enzymes such as lipase; this cannot be ignored due to its effect on
reaction specificity. In a study on the thermal stability of some selected proteins conducted
by Booth, Schlachter [102], cleavage of the his-tag can be neutral to some of the proteins
while influencing the stability of other protein molecules. In general, the his-tag has an
effect (positive or negative) or neutral on proteins.

As shown in Table 2, several scholars have reported a single-step purification of cold-
active esterase and lipase using nickel Sepharose or agarose affinity chromatography with
good fold and recovery. Furthermore, Noby, Saeed [48] have purified a cold-active esterase
EstN7 from Bacillus cohnii strain with 94.5% yield and 5-fold, adopting Tris–HCl (pH 8.0)
in the lysis buffer and potassium phosphate (pH 7.5) in the binding buffer differentiate
the study from others that utilised the same buffer in both the purification processes.
Kim, Park [103], and Lee, Yoo [104] have purified cold-active esterase using a double-step
purification that incorporates nickel-affinity and size exclusion chromatography. Another
cold-active lipase, B8W22 from Bacillus aryabhattii, was purified in a greater fold of 59.03
using nickel Sepharose affinity and ion-exchange chromatography [105].

Table 2. Purification of Cold-adapted Esterase and Lipase.

Enzymes Type of
Purification

Purification Steps Buffer Column/Resin Fold/Yield Molecular
Mass

References

GaDlh Complete Single-step/Ni-
affinity

chromatography

Tris–HCl Ni–NTA
column

1.9/7.7% 28 kDa [106]

AMBL-20 Partial Single
step/ammonium

sulfate precipitation

Tris–HCl NA NA NA [107]
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Table 2. Cont.

Enzymes Type of
Purification

Purification Steps Buffer Column/Resin Fold/Yield Molecular
Mass

References

HaSGNH1 Complete Single-step/Ni2+-
affinity

Tris–HCl HisTrap HP 2.5/~5
mg/g

24 kDa [108]

LSK25 Complete Single-step/Ni-
Sepharose

affinity

Tris–HCl Ni Sepharose®

6Fast Flow
column

1.3/44% 65 kDa [27]

AaSGNH1 Complete Single-step/Ni-
Sepharose

affinity

Tris–HCl Ni-NTA
agarose

0.6–0.7
mg/mL

43.9 kDa [109]

B8W22 Complete Double-step/Ni-
Sepharose
affinityand

ion-exchange

Tris–HCl DEAE FF
column/Octyl
Sepharose FF

column

59.03/20% 35 kDa [110]

ERMR1:04 Complete Triple-
step/ammonium

sulfate precipitation,
Size exclusion, and

hydrophobic
interaction

Tris–HCl Sephadex
G-100 column,

Octyl-
Sepharose fast
flow column

21.3/NA 250 kDa
(hexameric)

39.8 kD
(monomeric)

[111]

estHIJ Complete Single-step/Ni-
affinity

Phosphate
buffer

Ni-NTA
affinity
column.

3.5/47.5% 29 kDa [112]

ZY124 Complete Double
step/ammonium

sulfate precipitation
and hydrophobic
chromatography

Tris–HCl Phenyl
Sepharose FF

column andmi-
crocolumn

reversed-phase
LC-1MS

1.34/NA 37.9 kDa. [105]

AMS8 Complete Reverse Micelle
Extraction

Sodium
phosphate

NA NA/58.84% NA [113]

KM12 Complete Double-
step/ammonium

sulfate precipitation
and ion-exchange

Tris–HCl Q-Sepharose
FF column

15.63/36.0% 33 kDa [114]

KCTC
22881

Complete Double-step/affinity
chromatography and

size-exclusion
chromatography

Tris–HCl HisTrap FF,
PD-10 and

Sephacryl S200
HR

NA 31.0 kDa [104]

EstN7 Complete Single-step/Ni-
affinity

Potassium
Phosphate

Ni–NTA
affinity column

5/94.5% 37.0 kDa [48]

GlaEst12-
like

Complete Single-step/Ni-
sepharose

affinity

Sodium
Phosphate

Nickel-
Sepharose

HP

1.7/40% 63 kDa [115]

RSAP17 Complete Double-
step/ammonium

sulfate precipitation
and ion-exchange

Tris–HCl DEAE-
cellulose anion

exchanger

NA 103.8 kDa [116]

PsEst3 Complete Double-step/nickel-
affinity and

size-exclusion
chromatography

Tris–HCl Ni-affinity and
HiLoad 16/60
Superdex 200

column

NA 29 kDa [103]

NA—not available.
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In another double-step purification that used ammonium sulfate and ion-exchange
chromatography, Malekabadi, Badoei-dalfard [114] purified a cold-active KM12 from
Bacillus licheniformis using Q-Sepharose Fast Flow column. Uddin, Roy [116] purified
a cold-active RSAP17 from Ceanisphaera sp. using a DEAE-cellulose Anion Exchanger.
Kumar, Mukhia [111] purified a cold-active ERMR1:04 with 21.3-fold from Chryseobacterium
polytrichastri by a triple-step with ammonium sulfate precipitation, size-exclusion and
hydrophobic interaction using Sephadex G-100 and Octyl-Sepharose Fast Flow columns.
Other purification approaches other than conventional approaches were employed for the
purification of cold-active lipolytic enzymes, for example, Salleh and Mohamad Ali [113]
purified in medium-scale a cold-active AMS8 lipase using reverse micelle extraction (RME)
technology. In addition, Zhong, Tian [117] recently purified an esterase Est906 using
one-step purification by nucleic acid aptamers with a higher specific activity. Most pre-
purification or fractionation steps were done through trial-and-error protocols [118,119].

5. Three-Dimensional (3D) Structure and Functional Mechanisms of Cold-Active
Lipase and Esterase

Cold-active lipases and esterase have been studied for decades, but few 3D structural
data were available for these cold-active lipolytic enzymes. The Crystal three-dimensional
(3D) structures are crucial in understanding their biochemical functions toward a cold
adaptation. Table 3 summarises the crystal structures of cold-active lipases and esterases.
Feller [13] reviewed some experimental methods used in the determination of the psy-
chrophilic enzymes crystal structures and reported that only one structure was determined
using NMR: most of the published crystal structures utilised X-ray diffraction as their
experimental method. For years this has stayed the same compared to their mesophilic and
thermophilic counterparts.

Table 3. Summary of resolved crystal structures of cold-active lipases and esterase.

Enzymes PDB Code Organism Expression
System

Experimental
Method

Resolution
(Å)

Ligand References

Esterase 4V2I Thalassospira
sp.

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

1.69 Magnesium ion [50]

Esterase 4AO8 Arctic
Intertidal
Metage-
nomic

Library.

Escherichia
coli K-12

X-ray
Diffraction

1.61 Dihydroxyethyl Ester [120]

Esterase 5DWD Pelagibacterium
halotolerans

PE8

Escherichia
coli

X-ray
Diffraction

1.66 2-(2-{2-[2-(2-Methoxy-
Ethoxy)-Eth0xy]-Ethoxy}-

Ethoxy)-Ethanol

[121]

Esterase 3I6Y Oleispira
antarctica

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

1.75 Dihydroxyethyl Ester [122]

Lipase 6ISP Laboratory
Evolution of
Moesziomyces

antarcticus

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

1.88 N, N-Bis(3-D-
Gluconamidopropyl)
Deoxycholamide and

Calcium Ion

[123]

Lipase 6ISR Laboratory
Evolution of
Moesziomyces

antarcticus

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

2.60 Tetraethylene Glycol [123]
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Table 3. Cont.

Enzymes PDB Code Organism Expression
System

Experimental
Method

Resolution
(Å)

Ligand References

Lipase 6ISQ Laboratory
Evolution of
Moesziomyces

antarcticus

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

1.86 1,2-Ethanediol [123]

Lipase 5GV5 Moesziomyces
antarcticus

Aspergillus
niger

X-ray
Diffraction

2.89 [(1s)-2-
(Methoxycarbonylamino)-
1-Phenyl-Ethoxy]-Propyl-

Phosphinic
Acid

[124]

Lipase 5A6V Moesziomyces
antarcticus

Aspergillus
oryzae

X-ray
Diffraction

2.28 Xenon [125]

Lipase 5A71 Moesziomyces
antarcticus

Aspergillus
oryzae

X-ray
Diffraction

0.91 Isopropyl alcohol [125]

Lipase 5CH8 Penicillium
cyclopium

Komagataella
pastoris

X-ray
Diffraction

1.62 Glycerol [126]

Esterase 7B1X uncultured
bacterium

Escherichia
coli

X-ray
Diffraction

2.30 None [36]

Esterase 7DDY Arcticibacterium
luteifluviista-

tionis

Escherichia
coli

BL21(DE3)

X-ray
Diffraction

2.50 None [127]

EsteraseD 6JZL Shewanella
frigidimarina

Escherichia
coli

X-ray
Diffraction

2.32 None [40]

The studies on cold-active lipase and esterase were not limited to the isolation and
characterisation of these novel enzymes, but also developed a theoretical model regarding
their low-temperature adaptation mechanism. The need to establish the specific features
that aid their catalytic functions at low temperatures compared to their mesophilic and
thermophilic counterparts makes it necessary to analyse the available data on these lipolytic
enzymes. The general catalytic mechanism of lipase and esterase is that of serine hydrolases
enzyme that involves a nucleophilic attack on the substrate during the acylation step, which
forms a covalent complex of enzyme and substrate, followed by the diacylation step in
which the enzyme-substrate complex is hydrolysed by a molecule of water [128,129].

The mechanism of the transesterification reaction of lipases is similar to their hy-
drolysis reaction mechanism as reviewed by Jegannathan, Abang [130]; the biocatalytic
process involves a catalytic triad that serves as a charge-relay system, followed by the
creation of an oxyanion hole and formation of tetrahedral intermediates. The catalytic triad
of lipases and esterase is highly conserved regardless of whether they are of mesophilic,
thermophilic, or psychrophilic origin [131,132]. Therefore, the focus is not on how they
catalysed their reaction but on how they performed it in low temperatures in the case
of cold-active enzymes. The mechanisms of psychrophilic protein adaptation have been
widely reviewed [9,133,134].

The higher local (localised to the catalytic regions) and global dynamics of cold-active
enzymes allow them to act in a more disordered lowest energy state [1,135]. De Maayer,
Anderson [1], described the structural modifications such as extended surface loops, in-
creased mobility and glycine clustering at the catalytic site, and increased number and size
of enzyme cavities were common in cold-active enzymes where they increased their specific
activities and flexibilities while decreasing their thermal stability. Hashim, Mahadi [106]
further demonstrated that the cold-active esterase-like exhibits several properties of cold-
adapted enzymes, such as glycine clustering in the binding pocket, low hydrophobicity of
the enzyme core, and the lack of proline residues in the loops. Noby, Auhim [135] described
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the dominant cold adaptation mechanism as likely to be dealing with two independent
mechanisms: the tolerance to changes in water entropy, which is low in the solid phase and
higher in the gaseous phase [136]. Water molecules will be more ordered and viscous as
the temperature drops, diminishing the hydrophobic effect essential for keeping protein
in its folded state [137]. An increased surface negative charge is thought to play a role
in addressing water entropy through the retention of stable hydrophobic interactions by
increasing the interactions of surface residues with water, despite fluctuations in entropy
and viscosity [137]. Adjustment to shift in water entropy of cold-active enzymes has been
postulated earlier [138,139]. In esterase with an active site located at the end of molecular
tunnels, it was noticed that cold activity was related to improved substrate accessibility
to the active site by forming additional tunnels to access the active site and increasing the
volume of the active-site cavity. This was noticed by comparing cold-active esterases with
other mesophilic or thermophilic closest homologues [140,141].

In contrast to the well-established notion that metal ions hinder the structural flexibility
of enzymes [142], a study revealed that metal ions, either directly or indirectly, contribute
to the improvement of the cold activity of a psychrophilic enzyme. The enzyme’s active site
had two manganese ions (Mn2+-Mn2+) with a significant weak exchange coupling in the
absence of a substrate, which rearranged and formed a well-tuned structure upon substrate
binding. The di-Mn2+ ions maintained the ‘loose’ structure responsible for keeping the
enzyme active site flexible and further enhanced its performance at low temperatures [143].
Another role of Manganese Mn2+ on the low-temperature adaption of a cold-active esterase
was recently described by Marchetti, Orlando [144]; as with other psychrotolerant and
psychrophilic homologues, the Mn2+ binding site was discovered on the surface of the
enzyme close to the active region and the esterase’s interaction with the Mn2+ ion only
results in a local conformational shift near its active site, which unexpectedly improves
both its catalytic efficiency and thermal stability [144].

In a recent study on the structural basis of cold-adaptation of two orthologous
mesophilic-psychrophilic bacterial lipases, van der Ent, Lund [128] observed a limited
number of mutations (34 out of 181 residues) that were responsible for their thermal adap-
tation. Only single amino acid was found close to the substrate binding site, and the
remaining mutations were found farther away on the enzyme surface. They further suggest
that a combined effect of the mutations might likely change the activation enthalpy and
entropy as in other cold-adapted enzymes. Further experiments, such as more crystal
structures, functional studies, and effective computer simulations, are needed to unveil
different novel cold-adaptation strategies. While investigating the origins of enzyme func-
tions through the sequence, structure, and reaction mechanism, Furnham, Dawson [145]
made the surprising discovery that a large number of enzyme domain superfamilies share
at least one catalytic residue, which suggests that enzyme functions have originated from a
common ancestor with generic functionalities. Rizzello, Romano [146] identified a specific
area of seven amino acids contributing to cold adaptation. Therefore, knowledge of evolu-
tionary traits such as domain or motif sharing between other cold-active enzymes from
the same organism could also answer their cold adaptation. The specific cold adaptation
process of cold-active enzymes, such as lipases and esterases, needs to be better understood.
To adapt to low temperatures, cold-active enzymes use a combination of strategies, some of
which might have unintended consequences during enzyme evolution. Although several
cold-adaptation techniques have been identified, there is still much more to learn about
how organisms adapt to the cold.

6. Conclusions and Future Perspectives

Despite their unique characteristics and enormous potential applications of cold-active
enzymes, there are still obstacles from laboratory to large-scale industrial applications. In
this review article, we have examined cold-active lipases and esterases that have been
studied primarily from 2018 to the present, focusing on their recombinant overexpression,
purification, three-dimensional structural elucidation, and molecular mechanism towards
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cold adaptation, which has recently not been reviewed otherwise, although most of the
areas discussed were not specific to cold-active esterases and lipases, but still relevant. The
lack of universal analyses as the status quo due to the dynamic nature of proteins is the
greatest challenge facing separation and purification aspects. Focusing on a quick and
efficient purification process will increase 3D structure elucidations quickly to improve our
understanding of this cold-active lipolytic enzyme. We could not answer how purification
relates to the cold activity of lipase and esterase. Previous studies have shown that cold-
adaptation processes of cold-active enzymes, such as lipases and esterases, do not indicate
any directional trend; a wide range of solutions evolved, during enzyme evolution, some
of which had counterproductive consequences such as activity-stability trade-offs [147]
characterised by increase cold activity with consequent poor stability. The resolved crystal
structures were reviewed in Table 3. This gap is only very slowly being filled. This is
expected to significantly impact understanding nearly all aspects of enzyme function, such
as stability, catalysis, substrate binding, and regulation.
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