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Abstract: Millions of nerves, immune factors, and hormones in the circulatory system connect
the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in
the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal
homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as
well as during brain development. Altering the gut microbiota could serve as a therapeutic target
for treating abnormalities associated with brain development. Neurophysiological development
and immune regulatory disorders are affected by changes that occur in gut microbiota composition
and function. The molecular aspects relevant to the GBA could help develop targeted therapies for
neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the
GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore,
we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential
signaling pathways and roles of posttranscriptional modifications in brain functions. Our review
summarizes the role of molecular GBA in early brain development and related disorders, providing
cues for novel therapeutic targets.
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1. Introduction

The human gut harbours trillions of commensal microbes crucial for maintaining
host immunity and cellular homeostasis [1]. “Gut microbiome” refers to the gut microbial
genome. This microbial genome encodes structural proteins and enzymes responsible for
cellular function in the gut. Microbes and their metabolic products help maintain nutrient
balance, regulate cellular metabolism and the immune system, build mucosal barriers, and
destroy pathogens [2]. Gut microbes regulate endocrine function by restoring insulin sensi-
tivity and decreasing intestinal inflammation [3]. Age-related disorders, such as obesity [4],
arthritis [5], type 2 diabetes [6], hypertension [7], metabolic disorders [8], and stroke [9],
are associated with the gut microbiota. Moreover, the gut microbiota regulate the two-way
communication between the gut and the brain. Visceral organs constantly communicate
with the brain to maintain the normal physiological functioning of the body and internal
homeostasis. The gut-brain axis (GBA) plays a crucial role in the interoceptive response
circle. The GBA is responsible for the bidirectional communication between the central
nervous system (CNS) and the enteric nervous system (ENS). The GBA is a mediator that
connects the emotional and cognitive areas of the brain to the gut [10]. Previous studies
have reported that the GBA regulates mood and cognitive function associated with the CNS
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and ENS. Therefore, recent studies have investigated the clinical applications of GBA for
treating neurodevelopmental disorders, such as autism spectrum disorder (ASD) [11]. This
GBA association involves immune, endocrine, and neural regulation. A previous study
reported that the GBA comprises several essential pathways, such as the neuroendocrine
system, autonomic nervous system, and immune regulation system, which are interlinked
by the vagus nerve (VN) [12]. The VN, a primary nerve in the parasympathetic nervous
system (PNS), regulates involuntary mechanisms such as immunity, digestion, respiratory
rate, and the cardiac cycle. Brain dysfunction occurs due to gut microbiota disruption,
resulting in abnormal behaviours. It has been reported that gut microbiota can regulate
brain activity by activating the hypothalamic-pituitary-adrenal (HPA) axis through the
synthesis and release of various neurotransmitters, neuroactive immune cells, and neu-
ropeptides [13], thereby influencing anxiety- and depression-like behaviours. These studies
establish the crucial role of gut microbiota in brain development. Our review provides an
overview of the existing evidence on the role of gut microbiota and their metabolites in
preventing and treating several neurological diseases. Furthermore, we have featured the
role that gut microbiota-related therapeutics could play in ameliorating these disorders.

2. Gut Microbiota and Metabolic Factors

The role of gut microbiota in several disorders, including obesity, neurodegeneration,
and cancer, has recently gained attention. The gut harbours various microorganisms that
can elicit considerable responses. Similarly, after the fetus’s birth, the initial microbiota
form and grow alongside the host [14]. Although the gut microbiota are easily agitated
during the initial years of postnatal development, consistent microbiota are observed over
time. Genetic and environmental factors, including food, antibiotics, and exposure to
other microbes, control the fetus’s early gut microbiota composition [15]. Thus, a healthy
adult gut microbiota is highly adapted to the host and the host’s environment. It transmits
biochemical and metabolic functionality critical to brain development (Table 1). The adult
gut microbiota are relatively stable but retain some tractability in response to internal and
external environmental factors. Food, antibiotics, infections, and anxiety affect the gut
microbiota and other human body parts [16]. The association between genetic manipulation,
immune system regulation, and aging requires additional research to obtain a more detailed
understanding [17].

Table 1. Roles of gut microbial metabolites on brain development.

Metabolites Function Ref.

Short-chain fatty acids
(e.g., butyric acid, propionic acid, acetic acid, valeric

acid, isobutyric acid, isovaleric acid, and isocaproic acid)

Modulate BBB permeability;
regulate microglia activation and

neuroinflammation;
regulate the activity of histone deacetylase

[18]
[19]
[20]
[21]

Amino acid metabolites
(e.g., GABA, serotonin,
dopamine, “TRYP6”,

norepinephrine,
P-cresol)

Maintain normal neurotransmission and
neurodevelopment;

regulate the availability of vitamin B3 and NADP+ in
the brain;

regulate neurotoxicity and neurodegeneration;
regulate myelination and differentiation to

oligodendrocytes;
increase oxidative stress

[22]
[23]
[24]
[25]
[26]

Trimethylamine N oxide
Disturb mitochondria function;

increase synaptic damage;
promote neuroinflammation

[27]
[28]
[29]
[30]

Polyphenolic Metabolites Modulate neuronal receptors;antioxidation;
anti-inflammation

[31]
[32]

Bacterial Amyloid
Proteins

Induce α-syn-aggregates in the brain;
enhance neuroinflammation

[33]
[34]

Cholesterol
Steroids hormones

Decarboxylation; dihydroxylation
Deconjugations; oxidation reductions

[35]
[36]

BBB: blood-brain barrier; GABA: gamma-aminobutyric acid; NADP+: nicotinamide adenine dinucleotide phos-
phate; “trypsin-6”: six tryptophan metabolism pathways generating neuroactive metabolites, including kynure-
nine, quinolinate, indole, indole acetic acid, and indole propionic acid.
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3. The Roles of the VN in the GBA and Brain Development

The VN mediates the sixth sense and is an essential component of the PNS due to
its role in interceptive awareness. VN is the parasympathetic link between the gut and
the brain [37]. The VN serves as the neural axis establishing the GBA phenomena [37]. It
can identify microorganisms in the gut and transmit this information to the CNS, where
the information is integrated, following which it generates an adapted response. The VN
has the potential to alleviate eating disorders such as compulsive eating [38]. The VN is a
mixed nerve and transmits anti-inflammatory signals that are exhibited through its fibers
at the GBA interface. Targeting the VN could restore homeostasis in neuronal cells, thereby
controlling brain development and delaying age-related degenerative disorders [39]. VN
stimulation has been used in clinical settings to treat depression and epilepsy. Furthermore,
the anti-inflammatory and antiepileptic effects via stimulating the VN should be of interest
in the clinical applications. The VN helps control serotonin levels in the stomach and regu-
lates the response of serotonin to brain development under the influence of the GBA [37].
The tail suspension test confirmed that selective serotonin reuptake inhibitors (SSRIs) could
not treat depression in C57BL mice. This finding suggests that SSRIs are ineffective with-
out the support of the VN. VN functional abnormalities result in neurodevelopmental
disorders [40]. Therefore, the VN plays a crucial role in gut-brain interactions.

4. The Molecular Mechanisms of Gut Microbiota on Brain Development

A recent study on how mothers and fetuses interact evaluated various aspects such as
nutrition, gut metabolites, and factors that help improve the mother’s immune system [41].
Maternal gut metabolites cross the placenta and circulate in the fetal blood circulation.
The mother is hyperphagic and has fat deposits during the early stages of pregnancy.
Minimal fetal growth occurs in this instance. Optimal fetal growth occurs during the
third trimester of pregnancy when the maternal metabolism is at its peak [42]. During
pregnancy, the maternal gut microbiota serves as an essential catabolic regulator and
immune enhancer, which can break down carbohydrates to produce fatty acids, amino
acids, and vitamins. Amino acids and vitamins play a crucial role in metabolic activity,
immunity, and fetal development [43]. Metabolic dysregulations in the maternal gut
microbiota impede physiological and mental development in the fetus [44]. Nonetheless,
several studies have reported that maternal gut microbiota play a crucial role in regulating
the fetal immune system and postnatal brain development. Another reason for metabolic
dysregulations in maternal gut microbiota could be variations in the composition of the gut
microbiota [45], vaginal microbiota [46], and oral microbiota [47], along with gestational
diabetes. Pregnancy is a critical window for regulating the gut microbiota, and the factors
influencing the maternal microbiota involved in the intergenerational communication
between mother and offspring remain complex. Significant changes occur in various
microbial species during pregnancy, and specific microbe functions and their interactions
with the host brain must be carefully considered. It is important to understand the factors
that cause changes in the maternal microbiota to develop effective plans for monitoring
maternal and foetal health during pregnancy based on GBA intergenerational transmission
and its role in brain development [48].

4.1. The Dynamic Gut Microbiota and Brain Development

As previously stated, the oral, gut, and vaginal microbiota change over time [49], and
these changes are associated with several factors, such as food, antibiotics, stress, and host
genetics [50]. Romero et al. reported that the gut microbiota of healthy pregnant women are
more vulnerable than the gut microbiota of healthy nonpregnant women. Understanding
how the maternal intestinal microbiota impact fetal growth is fundamental to knowing
how maternal gut microbiota affect foetal physical and mental growth [51]. This allows
researchers to assess the maternal gut microbiota for evaluating fetal physiological growth
and brain development [52]. During pregnancy, the maternal gut microbiota disrupts
fetal brain development far more than vaginal, placental, uterine, and gastrointestinal
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microbiota. Molecular approaches, such as 16S ribosomal ribonucleic acid (RNA) gene
sequencing and metagenomics, have significantly increased our understanding of the
microbiome at the maternal-fetal interface during intrauterine life [53]. Abrupt exposure to
environmental and genetic factors after birth plays a role in establishing healthy growth
of foetal microbiota [54]. During the initial years of life, infant gut microbiota undergo
significant changes in their taxonomic composition [55]. With age, the infant is exposed to
new environments and is colonized by new microbes, increasing the infant’s gut microbial
diversity. In the initial stages, the infant microbiota is more diverse than the maternal
microbiota. Exposure to various environmental microbes and factors, such as diet, location,
and lifestyle, gradually decreases the variations found in infant microbiota. With age, the
gut microbiota are constantly changing along with synaptogenesis throughout the lifespan
(Figure 1), but here we only focus on the early developmental stages. The infant acquires a
new microbial family due to changes in the gut microbiota and brain developmental stages.
Recent study found that a lower gut microbial diversity was associated with a higher risk
of neurodevelopmental delay for the small for gestational age (SGA) infants compared
with the appropriate for gestational age (AGA) infants [56].
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junction proteins occludin and claudin-5, which are known to regulate barrier function in 
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development in the uterus. Moreover, evidence from germ-free mice showed that the ma-
ternal microbiome can influence the maturation of embryonic microglia, with microglia 
being more profoundly perturbed in male embryos and female adults [57]. Depletion of 
the maternal microbiome decreased the expression of genes involved in axonogenesis, 
resulting in deficient thalamocortical axons and impaired outgrowth of thalamic axons in 
response to cell-extrinsic factors in the offspring. Select microbiota-dependent metabolites 
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Figure 1. Evolution of the gut microbiota along with synaptogenesis throughout the lifespan. After
birth, infant gut microbiota are established, and they are exposed to multiple environmental factors
which influence the intestinal microbiota composition, thereby controlling physiological growth,
brain development, and behaviours via gut metabolites.

4.2. The Dynamic Gut Microbiota and Brain Structure Developments

Braniste et al. reported that germ-free mice displayed increased BBB permeability
that initiated with the fetus’s intrauterine life and was maintained after birth and during
adulthood. This BBB permeability was associated with reduced expression of the tight
junction proteins occludin and claudin-5, which are known to regulate barrier function
in endothelial tissues [19]. The results suggested that the maternal microbiota influences
BBB development in the uterus. Moreover, evidence from germ-free mice showed that the
maternal microbiome can influence the maturation of embryonic microglia, with microglia
being more profoundly perturbed in male embryos and female adults [57]. Depletion of
the maternal microbiome decreased the expression of genes involved in axonogenesis,
resulting in deficient thalamocortical axons and impaired outgrowth of thalamic axons in
response to cell-extrinsic factors in the offspring. Select microbiota-dependent metabolites
or maternal supplementation promoted axon outgrowth and rescued the deficiencies in
fetal thalamocortical axons [58]. These results suggest that the maternal microbiota is
important for the axonogenesis and neurodevelopment of the fetal brain.
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4.3. The Gut Microbiota-Derived Neurotransmitters in Brain Development

Several neurotransmitters derived from gut microbiota are known to modulate pe-
ripheral and central sensitization and, in turn, mediate neurodevelopment (Table 2). In the
CNS, gut microbiota-derived mediators may trigger neuroinflammation, which involves in-
filtrating immune cells and activating cells in the BBB. Catecholamines, such as dopamine
and norepinephrine, regulate several central and peripheral nervous system functions,
including cognitive ability, emotion, and intestinal movement [59]. In the gut, dopamine
and norepinephrine are mainly present in the colon cavity. It has been found that the
catecholamine level of germ-free mice is lower than that of mice without specific pathogens;
a previous study showed that certain bacteria in Staphylococcus can produce dopamine
through staphylococcus aromatic amino acid decarboxylase [60]. In addition, dopamine
is also found in the biomasses of Staphylococcus aureus, Bacillus cereus, Proteus vulgaris,
Serratia marcescens, and Escherichia coli [61]. Dopamine regulates the function of immune
cells and activates cytokines produced by T cells [62]. In the CNS, dopamine regulates nitric
oxide synthesis and microglial cell migration [63,64]. Decreased norepinephrine levels are
associated with depression, anxiety, and post-traumatic stress disorder [65]. Noradrenaline
is found in the biomasses of intestinal microbiota, including Escherichia coli, Bacillus subtilis,
Bacillus mycoides, Proteus vulgaris, and Serratia marcescens, which indicates that these species
may be able to produce noradrenaline [66]. In the brain, noradrenaline has the neuro-
protective effects of inhibiting infant gene transcription and enhancing the production of
brain-derived neurotrophic factor (BDNF) by microglia and astrocytes, which can further
promote neuronal survival [67,68]. In addition, norepinephrine can regulate excitability
and neuronal responses [68]. Lactic acid bacteria (LAB) can produce γ-aminobutyric acid
(GABA) from GABA-rich fermented foods and beverages. LAB, such as Lactobacillus,
Bifidobacterium, and Streptococcus, produce glutamate decarboxylase, which is used to pro-
duce GABA [69,70]. Among the 91 culturable bacteria in the human intestine,
Lactobacillus brevis and Bifidobacterium denticola were found to be the most effective GABA-
producing bacteria [69]. GABA is the main inhibitory neurotransmitter in the CNS, which
plays an inhibitory role in the immune system through two specific receptors, GABAA and
GABAB. Several studies have shown evidence that GABA can traverse the BBB, such as
through simple diffusion, solute transport via endocytosis, or carrier-mediated transport,
which may allow a small amount of GABA to cross the BBB [71–73]. GABA plays a role in
regulating the inhibition-excitation balance required for brain function, downregulating cy-
tokines released by primary immune cells, as well as endogenous and exogenous intestinal
nerve-secreted neuropeptides [74–76]. GABA also plays a role in the development of inter-
stitial neurons of the white matter, as well as in oligodendrocyte development. However,
the underlying cellular mechanisms are not yet fully understood [74]. Serotonin is another
important neurotransmitter that transmits signals between neurons throughout the body.
Results from germ-free mice showed that the level of serotonin in the blood and colon
decreased [77], and the turnover rate of serotonin in the brain increased [78]. Depleted sero-
tonin levels can be recovered by recolonizing with several bacteria, such as the association
of spores-forming species. In addition, some bacterial genera, such as Candida, Streptococcus,
Escherichia coli, Enterococcus, and Pseudomonas, can produce serotonin [79]. In mammals,
serotonin derived from intestinal microbiota can play a role in the local intestine or enter
the blood circulation, but it will not cross the BBB. However, it is reported that serotonin
can increase the permeability of the BBB, thereby indirectly affecting brain function [80].
Serotonin regulates various immune cell functions through a variety of mechanisms and is
an effective immune cell regulator in known autoimmune diseases. For example, serotonin
can inhibit major histocompatibility complex class 11 (MHC class II) expression and antigen
presentation in macrophages [81]. Serotonin may also reduce proinflammatory cytokines
produced by macrophages and lymphocytes, such as interleukin (IL-6) and tumor necrosis
factor—α (TNF- α) [82]. Serotonin produced by the gut microbiota may have a greater
impact on the CNS than initially expected because the intestinal epithelium interacts with
5-HT receptor afferent fibers in vagus or dorsal root neurons [83]. Studies performed in
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mice have shown a dramatic increase in the development of enteric neurons after two to
three weeks of treatment with serotonin 5-HT4 agonists [84]. The authors also showed
that GF mice that were unable to synthesize serotonin had less neuronal development. A
separate study [85] showed that neuronal dysfunction in GF mice could be reversed by
recloning of the gut microbiota.

Table 2. Gut microbiota-derived neurotransmitters and their potential functions in brain development.

Gut Microbiota Neurotransmitters Functions Ref

Staphylococcus Bacillus
cereus, Proteus vulgaris,

Serratia marcescens,
Escherichia coli

Dopamine

Affect immune cells,
cytokines productions

by activated T cells;
regulate microglial

cell migration

[60–63,65]

Escherichia coli,
Bacillus subtilis,

Bacillus mycoides,
Proteus vulgaris,

Serratia marcescens

Norepinephrine

Neuroprotective
effects by suppressing
inflammatory genes;
modulate excitatory
and interneuronal

responses

[66–68]

Lactobacillus
Bifdobacterium,
Streptococcus

GABA

Modulate the
inhibitory balance;

cytokine
downregulations by

proinflammatory
immune cells

[69–74]

Candida, Streptococcus,
Escherichia,

Enterococcus,
Pseudomonas

Serotonin

Suppress MHC class
II expression; reduce

proinflammatory
cytokines generated
by macrophages and

lymphocytes;
development of
enteric and CNS

neurons

[79–82,84–86]

4.4. The Effects of Gut Microbiota on Epigenetic Modifications and Brain Development

Epigenetic modifications affect gene expression but not base pair sequencing. The
epigenetic modifications include microRNA changes, histone modifications, and deoxyri-
bonucleic acid (DNA) methylations. DNA methylation involves the addition of a methyl
group to cytosine [87]. Enzymes (methyltransferases) play a crucial role in the addition of
the methyl group to DNA. Hypermethylation and hypomethylation indicate an increase
and decrease in methyl group integration at the DNA level, respectively. Hypomethylation
in the DNA promoter region upregulates genes [88]. It is assumed that microbiota modify
DNA methylation in a genome-specific or non-genome-specific manner. For instance, the
microbiota can induce oxidative stress by generating mitochondrial reactive oxygen species
(ROS) via autophagy [89]. Oxidative stress modulates DNA methylation, thereby changing
gene expression. The DNA base pair structural changes caused by ROS mainly comprises
deletions. These structural changes inhibit DNA methylation, resulting in hypomethylation.
From a bacterium-induced inflammatory response perspective, high transcription factor
activity would cause altered inflammatory gene methylation [90]. Similarly, maternal
gut microbiota influence epigenetic modifications during pregnancy and contribute to
late fetal life. A genomic study reported that the similarity between placental and neu-
ronal DNA methylation profiles is associated with neural development. Thus, placental
DNA methylation might contribute to infant brain development and influence cognitive
behaviours [91]. Experimental studies have recently reported a link between placental
genes and DNA methylation patterns in fetuses using the Neonatal Intensive Care Unit
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Network Neurobehavioural Scale (NNNS) approach. The NNNS evaluates an infant’s
neurological, social, and stress-related measures to control cognitive behaviour. The NNNS
also assesses early fetal life behavioural responses and indicates brain development and
cognitive functionality [92].

The Rhode Island Child Health Study technique analyzed epigenetic studies in fetuses
and mothers. Using NNNS, the hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2) gene and
several other genes are identified to evaluate the DNA methylation status [93]. HSD11B2
genes regulate glucocorticoids in the HPA axis and the placenta. A previous study reported
that decreased HSD11B2 expression in the placenta causes fetal HPA axis dysfunction.
Epigenetic analysis of 185 newborn offspring placentas revealed that the promoter region of
HSD11B2 was hypermethylated in newborns with a lower quality of movement score [94].
Similar studies reported an association between methylation configuration in the promoter
region of nuclear receptor subfamily 3 group C member 1 (NR3C1) with improved fetal move-
ment, self-regulation, attention, and exhaustion. The DNA methylation interface of both
genomic traits (NR3C1 and HSD11B2) is associated with distinct neurobehavioural and
neurodevelopmental phenotypes; however, further research is required [95].

4.5. The Pathways of Gut Microbiota in Brain Development

Gut microbiota dysbiosis contributes to allergy [96], asthma [97], obesity [98], inflam-
matory bowel diseases [99], celiac disease [99], irritable bowel syndrome [100], metabolic
syndrome [101], and cardiovascular disorders [102]. Several microbial species (Firmicutes)
have enzymes that catabolize carbohydrates from food for energy production. Thus, a
higher frequency of Firmicutes might increase calorie absorption, resulting in gut inflamma-
tion and subsequent weight gain [103]. Evidence confirms the involvement of microbiota
in nervous system disorders and other behavioural diseases [104]. The health and disease
theory describes how prenatal environmental factors influence health in adulthood [105].
Overnutrition or malnutrition result in gut microbiota disbalances, causing an imbalance in
microbial metabolites and neurological dysregulation, such as deficiencies in brain reward
circuitry and behavioural abnormalities in fetuses. Another possibility is stress as a result
of changes in the gut microbiota. Previous research has reported that stress influences
changes in the microbiota structure in pregnant mice (C57BL) and in humans [106]. Certain
strains of Bifidobacterium and Lactobacillus secrete gamma-aminobutyric acid (GABA), a key
inhibitory transmitter in the CNS [107]. Changes in the GABA signaling pathway have
been associated with anxiety- and depression-like disorders [108], whereas disruption of
the gut microbiota affects the CNS stress response pathway. In studies of C57BL mice and
the human gut microbiota model, this stress pathway has been shown to be associated
with neurodevelopmental diseases [109,110]. However, observational epidemiological
studies have sought to demonstrate a direct interaction link between gestational obesity
and neurological disorders in the progeny [111]. Other studies in germ-free mice have
reported a direct link between intestinal microbiota composition and obesity during preg-
nancy [112]. Reportedly, the absence of intestinal microbes protects against diet-induced
obesity, and intestinal microbiota regulates prenatal brain development via interleukin
(IL)-17A [113]. Mouse studies revealed that common bacteria in the ileum and caecum
regulate IL-17A [114,115]. IL-17A is associated with maternal pregnancies and protects the
fetus from neurodevelopmental and behavioural disorders [116]. Therefore, IL-17A could
serve as an emerging therapeutic target for treating pregnancy complications.

In conclusion, gut microbiota and their metabolites are directly associated with prena-
tal growth. However, further research is required to confirm the role of microbiota and its
metabolites as novel therapeutic targets in older women with pregnancy complications and
prenatal fetal neuronal development. Nevertheless, scientific questions in this area deserve
further research.
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5. The Role of the Molecular GBA in Postnatal Brain Development and Mental Disorders

Gut microbiota regulate several biologically active molecules in extraintestinal organs,
serum, and other fluids [117]. Maternal gut microbiota-induced axon outgrowth synchro-
nises the metabolites of an infant’s brain [118]. The mechanisms by which metabolites
affect an infant’s brain remain unknown [39]. Metabolites such as N, N, N-trimethyl-5-
aminovalerate, trimethylamine-N-oxide, 3-indoxyl sulphate, imidazole propionate, and
hippurate significantly impact infant brain development. Malnourished infants’ brains
are depicted with structural changes of less white matter [119]. Therefore, early- to mid-
gestation is critical because, during this period, maternal gut microbiota stimulate fetal
brain development [58]. During synaptic remodelling, fetal brain changes, such as synap-
togenesis, axonal growth alterations, and myelination, modify brain development [120].
Substantial synaptic and neuronal changes indicate the dynamic association and support of
newly established neural circuits in early infancy [121]. Breast milk is the primary source
of microbes in the infant’s gut after birth. However, the origin of the bacteria found in
milk is yet to be elucidated. It is assumed that the infant’s mouth serves as the transition
point from where the milk reaches the intestine via deglutition and suction, wherein the
transfer of microbial colonies from the mother’s milk duct occurs. This could play a role
in assembling the gut microbiota [122]. These changes in the gut microbiota and their
metabolites might have long-term effects on early childhood brain activity, motor symp-
toms, social interactions, and cognitive behaviour [123]. It is an energy-intensive procedure
that could strongly influence various environmental factors, including nutrition, social
interaction, stress, and infection. After birth, infants obtain nutrients and energy from
breast milk, formula milk, solid food, or metabolites in food [124]. Remarkably, several
factors that impact the age-related progression of gut microbiota are majorly involved in
brain development and function via the GBA [125]. However, metabolites in food might
moderate these effects, influencing brain development and functions directly or indirectly
(Figure 2).

The most compelling evidence for gut microbiota involvement in host psychology and
physiology came from germ-free mouse experimental studies, wherein a lack of microbe-
host interactions was observed since birth [126]. Lack of microbiota in these animals results
in various physiological changes, including changes in gut sensory-motor functions, access
to the gastric cavity via the blood-brain barrier (BBB), and enhanced immune function.
Germ-free mice demonstrated significant changes in brain functionality, similar to hu-
mans [127]. Changes in neurotrophic factors, neurogenesis, serotonin levels, and amygdala
neuron structure and activity explain changes in stress responses, anxiety and depression
traits, and social behaviours observed in germ-free animals [128]. Several biomedical stud-
ies have demonstrated that patients with increased modifications in the gut microbiota are
at a higher risk of schizophrenia, ASD, depression, and anxiety, thereby indicating an associ-
ation between gut microbiota and nervous system disorders [129]. Moreover, an imbalance
in the gut microbiota causes ASD in children. Several gut metabolites, including indoles,
short-chain fatty acids, and lipopolysaccharides, many of which were of bacterial origin,
were found in the blood samples of children with ASD. These metabolites pass through
the BBB in children and cause oxidative stress, mitochondrial dysfunction, and structural
changes in the amygdala, cortex, hippocampus, and cerebellum. Although the cause-effect
relationship between ASD and gut microbiota is not elucidated, the diagnostic and ther-
apeutic value of gut microbial metabolites as potential targets warrants research [130].
Similarly, it is hypothesized that gut microbiota play a role in the pathogenesis of epilepsy.
The gut microbiota provide new insights into the pathogenesis and treatment of epilepsy
and new therapeutic options [131]. Surprisingly, when the gut microbiota of a patient with
epilepsy were transferred to germ-free animals, symptoms similar to those of epilepsy were
observed in the animals, adding an epidemiological element to the GBA microbiota [132].
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Figure 2. Feeding patterns influence the human gut microbiota via the fermentation of carbohydrates
and proteins in early breast milk. Breast milk contains human oligosaccharides (HMOs), which pass
undigested through the upper gastrointestinal (GI) tract to the colon. Here, they are digested by
specific HMO-degrading microbial species (Lactobacillus, Bifidobacterium, and Firmicutes) into various
useful metabolites. Upon ingestion, formula milk with excess proteins reaches the colon via the GI
tract. Proteins, peptides, and individual amino acids are catabolized by gut microbiomes such as
Enterobacteriaceae and Clostridium species. From breastfeeding to formula feeding, the infant is exposed
to gut microbiota and metabolites, which contribute to immune regulation and neural development.

6. The Role of the GBA in the Intergenerational Effects of Brain Development

Preliminary research on pregnant women with depression and anxiety has identified a
strong link between modified bacterial abundance in the gut microbiota and inflammatory
responses [133]. An equal association was observed with gestational diabetes mellitus [134],
preeclampsia [135], maternal obesity [136], and fetal physical and mental developmental
problems [137]. Therefore, the gut microbiota and the GBA play a crucial role during the
prenatal period, when the maternal and fetal microbiota are sensitive, and any changes
in the microbiota could affect fetal brain development. Diet, infection, antibiotic use, and
stress, particularly during the prenatal period, could cause dysbiosis and might increase
the transmission of disease-causing traits from mother to offspring [58]. This mother-fetal
trait-transferring relationship is known as an intergenerational relationship. Recently, an
experimental study investigated the effects of the gut microbiota on ischaemic brain injuries,
and several factors, such as bacterial metabolites and immune system regulation, were
identified [138]. Probiotic supplements help treat disorders caused by the gut microbiota. In
20 randomized controlled trials with 2972 participants, probiotic supplementation lowered
plasma glucose levels and improved insulin sensitivity and resistance, ensuring healthy
foetal development [139]. Fetal growth restriction is associated with insulin resistance,
increased inflammation, and glucose deficiency [140]. According to human population
research and epidemiological data, intrauterine growth and maternal obesity negatively
impact fetal physical and mental development [141]. However, several knowledge voids in
terms of the difference in the fetal and maternal gut microbiota compositions that affect
brain development exist. This study has reported growing evidence of intergenerational
communications between gut microbiota and brain development. This mutual communi-
cation occurs via the GBA. Growing evidence suggests that the GBA plays a crucial role
in intergenerational transmission in terms of the development and prevention of brain
disorders [123,142].
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7. Future Perspectives

It is alluring to speculate that the metabolites from the maternal gut microbiota can
stimulate the offspring’s brain development during embryogenesis. Therefore, the maternal
gut microbiota might play a crucial role in transgenerational brain development, improved
phenotypic expressions, and endophenotypes [143]. The impact of the GBA on fetal brain
developmental programming and its modulation by various microbial metabolites have
been successfully demonstrated in studies. Such studies uncover the full therapeutic
potential of microbial metabolites in the gut from infancy to adulthood, reducing the
burden of neurological damage in future generations. Mechanistic studies that deserve
further investigation include neurotransmitter release under the gut metabolites’ influence
and turnover in the ventral tegmental area and substantia nigra pars compacta, synaptic
plasticity impairment and recovery pathways, altered parasympathetic activity, and VN and
canonical signaling pathway expression profiles [144]. Probiotic, prebiotic, or antimicrobial
administration and evaluation of food-related behaviours and metabolic outputs in healthy
pregnant women are promising efforts to lower the burden of transgenerational disorders
which influence the offspring’s brain development. Mechanistic studies on the GBA’s
role in immune activation and CNS development have not been elucidated; however,
they might provide promising targets for neurodevelopmental diseases [145]. Therefore,
early fetal life is critical in terms of microbial colonization because it affects fetal physical
health and is assumed to affect adult’s mental health in the long term. Furthermore, this
review derived and inspired new insights into potential molecular pathways, including the
molecular mechanisms of VN-mediated parasympathetic manipulation, the quantitative
release and turnover of neurotransmitters in brain regions involved in neurodevelopment,
and the molecular profiles in specific neural circuits responding to gut microbiota ecological
dynamics, which are worthy of further investigation. Such investigations will reveal the
therapeutic potential of the gut microbiota and their metabolites in preventing and treating
neurological and behavioural disorders in infants and adults. Thus, combining prebiotic,
vitamin, or antimicrobial administration with analysis of food-related behaviours and
metabolic outputs could help reduce the therapeutic burden in healthy and unhealthy
human guts.

8. Conclusions

As evidenced by extensive research, the GBA modulates neural signaling during the
prenatal and postnatal periods. Alternatively, it is enticing to speculate whether exposure
to the maternal gut microbiota and their metabolites could influence brain development
during embryogenesis. Therefore, further research on the effects of maternal gut microbiota
and their metabolites on neonatal brain developmental programming via the GBA is
warranted. Meanwhile, in this review, we highlighted the role of maternal microbiota in
the foetus prenatally and postnatally and its role in epigenetic regulation and immune
responses during brain development. Following this, we discussed the critical roles of
gut metabolites in intergenerational communication via the GBA. Furthermore, we briefly
described the molecular characteristics of the GBA in brain development, resulting in a
better understanding of neurodevelopmental disorders and therapeutic clues.
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