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BioMThermDB 1.0: Thermophysical Database of Proteins in Solutions
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Abstract: We present here a freely available web-based database, called BioMThermDB 1.0, of
thermophysical and dynamic properties of various proteins and their aqueous solutions. It contains
the hydrodynamic radius, electrophoretic mobility, zeta potential, self-diffusion coefficient, solution
viscosity, and cloud-point temperature, as well as the conditions for those determinations and details
of the experimental method. It can facilitate the meta-analysis and visualization of data, can enable
comparisons, and may be useful for comparing theoretical model predictions with experiments.
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1. Introduction

Proteins are the most abundant macromolecules in living cells and represent the
building blocks of life. They govern almost all biological processes that define living
organisms the way they are. Knowledge of the physical properties of protein solutions
can have practical importance for formulating biological agents and drugs [1,2]. In order
to maintain their beneficial functions, proteins must remain stable in environments in
which they are immersed, usually in different aqueous solutions. Consequently, a wide
and diverse set of information on the thermophysical and thermodynamic properties of
proteins in aqueous solutions is of critical importance for obtaining a better understanding
of the protein structure and its relationship with factors that influence its stability, which is
vital for preparing safe pharmaceutical formulations. With the development of biophysical
methods for protein characterization and web-based applications, bio-macromolecular
studies have become extremely data-rich; thus, the need for data storage, its organization,
and interconnection is increasing rapidly these days. Even though a great amount of useful
information is available in existing databases, such as ProThermDB [3], MPTherm [4],
PROXiMATE [5], and PINT [6], there remains an unmet need for specific data to answer
everyday questions that arise in the preparation and modeling of protein solutions; e.g.,
there are questions such as what will be the phase stability and approximate viscosity
of a given protein solution, what type of interactions can be expected in a particular
protein solution, and how do its properties change with modifying conditions, such as
protein concentration, pH, and temperature. In this study, we developed a database for
protein and antibody solutions, called BioMThermDB 1.0, which consists of a broad set of
thermophysical and dynamic properties that can help provide adequate answers for such
puzzles. The obtained database was created by gathering data from both comprehensive
and often scattered scientific literature, as well as from our own experimental results. The
database is web-based and enables its users to obtain frequently elusive numerical values of
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thermophysical quantities. The database is freely available at https:/ /phys-biol-modeling.
fkkt.uni-lj.si/biomthermdb.html (current version of 5 October 2022).

2. Results and Discussion

BioMThermDB 1.0 provides thermophysical and thermodynamic data predominantly
for globular proteins (e.g., various serum albumins, lysozyme, hemoglobin, etc.) and
antibodies but information about other proteins is also available (see Figure 1 and Table 1).
Each entry is given as a specific protein solution that contains information about the overall
composition of the solution; this includes details about the dissolved protein, such as its
concentration and possible PDB-structure code [7]. In addition, information is given on
the chemical identity of the buffer, its pH value, the ionic strength of the solution, the
temperature, and the possible presence of different excipients (co-solutes) is also taken
into account. In its current version, BioMThermDB 1.0 provides several protein-solution
properties that are important for determining their stability, such as the hydrodynamic
radius, electrophoretic mobility, zeta potential, and the so-called cloud-point temperature,
which is the point at which protein solutions separate into two co-existing phases [8-10].
A piece of indispensable information, especially for modeling protein solutions, is also the
viscosity of the solvent and protein solution itself [11]. In addition, each entry contains the
details of the experimental technique used to obtain the thermophysical data of a certain
protein solution, as well as the DOI of the corresponding original article in which the results
were first published.
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Figure 1. Distribution of thermophysical data entries based on their protein family.

BioMThermDB 1.0 currently is comprised of 5889 specific entries, of which 77.4%
belong to globular and other proteins, and the remaining 22.6% are represented by anti-
bodies. More than half of all listed protein solutions have their viscosity measured (Figure 2),
which makes them very useful in terms of designing protein formulations and verifying
calculated results. Figure 2 also reveals that the database already contains at least 500 entries
in almost every physical-feature category (the exception being the self-diffusion coefficient)
and it will continue to grow further.

Figure 3A demonstrates that the concentration ranges of our database span over
all areas, from almost completely diluted to extremely concentrated protein solutions.
However, most entries are found in two ranges, namely between 0 and 10, and 101 and
500 mg mL~!, as they together represent 75.15% of all the data. This is due to the well-
known fact that interparticle interactions are usually studied in dilute systems; on the
other hand, experiments for observing, e.g., liquid-liquid phase separation, are mostly
performed at concentrations above 90 mg mL~1 [12-14].
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Table 1. List of protein entries for group Other in Figure 1.

Protein Number of Entries
Soy-protein isolate 107
Rice-flour proteins 42
Erythrocytes 30
Horse globulins 26
CP12C75S (C-terminal disulfide bridge mutant) 26
Globulin 24
Conalbumin 19
CP12C31S (N-terminal disulfide bridge mutant) 18
Microtubule-associated Proteins (MAPs) 14
4S n2-B1-glycoprotein 13
Recombinant p53 (1-93) 13
Neurofilaments 11
Serum orosomucoid 10
Fibrinogen 10
Lipoprotein ([4-14C] cholesterol-labeled) in dog’s blood serum 10
Wild-type CP12 protein 7
Ovomucoid O 7
Nuclease 6
BL-crystallin 1

Cloud-point temperature
Viscosity of solution

Self diffusion coefficient -
Zeta potential
Electrophoretic mobility

Hydrodynamic radius

0 500 1000 1500 2000 2500 3000
NUMBER OF ENTRIES

Figure 2. Distribution of thermophysical data entries based on measured properties.

Similar to concentration regimes, BioMThermDB 1.0 covers protein thermophysical
data throughout the whole pH range, with experiments carried out even in the harshest
known conditions (pH below 2 and above 10), as displayed in Figure 3B. Of course, the
majority of entries are in the vicinity of physiological conditions (i.e., 40.61% of entries are
between pH = 6 and 8) since they are most important for studying various properties of
protein solutions, with an emphasis on the formulations of biological drugs. In terms of pH
and buffers, this database is of additional value considering that, given the pH values in
combination with buffer identity and the ionic strength of solution, one can more easily
shed light on often underestimated buffer-specific effects that could be incorporated into
results. Buffers can govern many aspects of protein stability, e.g., conformational, colloidal,
and interfacial stability, and, as such, are a non-negligible part of protein solutions [13,15].



Int. . Mol. Sci. 2022, 23, 15371

40f6

(A)

® 101 <y <500 mg/mL

" 51<y<100 mg/mL

(B)

16.14%

M 8<pH<10
4.81%

(C)

B y>500 mg/mL mT=37°C
0.77% 0.21%
0<y <10 mg/mL

B T<25°C

41.89% e3%ilis 345C 28.28%
18.06%
¥ 10 <y <50 mg/mL
7.94% 43.57%
B 10<pH<12 ®WO<pH<2 D
1.41% 0.89% 2<pH<4 B I>+1mV

12.29% 39.20%

W I{<-1mV

A4<pH<6 56.30%

39.98% B -1< I<+1mV
4.50%

Figure 3. Different distributions of protein thermophysical and thermodynamic data based on (A)
concentration of protein solutions, (B) pH value of protein solutions, (C) temperature of protein
solutions, and (D) zeta potential of protein solutions.

Regarding temperature, one can find most entries (43.57%) at room temperature
(Figure 3C) considering that working with those temperatures usually presents the lowest
probability of early-protein aggregation onset. However, one is sometimes in search of
quite the opposite, namely in the case of when one seeks out the occurrence of protein
self-assembly. The self-association of proteins can be achieved by both the cooling and
heating of protein solutions. Many such experiments are represented by the database
entries whose properties are determined below 25 (28.28%) and above 37 °C (9.88%). The
cooling of protein solutions is usually involved in cloud-point measurements, while heating
is often necessary for in vitro onset of protein fibrillization [16,17].

Another important physical property that can be used to shorten the time needed to
produce trial-protein formulations and help one to both optimize and assess their long-term
stability is the zeta potential. The distribution of this indicator of the protein surface charge,
as depicted in Figure 3D, shows that only 4.5% of all entries have a zeta potential in the
range between —1 and +1 mV, which marks the least stable and most aggregation-prone
protein solutions. Protein formulations dominated by repulsive interactions are more stable
and, among the entries in BioMThermDB 1.0, these are represented with a pronounced
negative (56.30%) or positive (39.20%) zeta potential.

3. Materials and Methods

BioMThermDB 1.0 is currently developed using the HTML programming language
and is freely accessible at https://phys-biol-modeling.fkkt.uni-lj.si/biomthermdb.html
(current version of 5 October 2022). The editing and ordering of BioMThermDB 1.0 en-
tries, their statistical analysis (calculation of percentages and counting of data), and the
final visualization were performed in Microsoft Excel. At the moment, BioMThermDB 1.0
is in tabular form but the database will continue to grow and be upgraded. The devel-
opment of an efficient data browser is also planned for it in the near future; it will be
maintained on a regular basis and both all novelties and upgrades will be published on the
BioMThermDB 1.0 homepage.
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4. Conclusions

To understand and model the stability of protein solutions, a wide and diverse set of
information on the thermophysical and thermodynamic properties of proteins in aqueous
solutions is of critical importance. Despite the fact that the thermophysical properties
of protein solutions are widely studied, the data are scattered in literature and often not
consistent due to different protein batches and different experimental techniques. The
BioMThermDB 1.0 database presents an overview of the existing published data and some
of our own unpublished thermodynamic and thermophysical data on protein solutions
that should help scientists in the theoretical treatment of these systems, as well as help
experimentalists in planning new experiments.
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