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Abstract: Parkinson’s Disease (PD) is a multifactorial neurodegenerative disease characterized by
motor and non-motor symptoms. The etiology of PD remains unclear. However, several studies have
demonstrated the interplay of genetic, epigenetic, and environmental factors in PD. Early-onset PD
(EOPD) is a subgroup of PD diagnosed between the ages of 21 and 50. Population genetic studies
have demonstrated great genetic variability amongst EOPD patients. Hence, this study aimed to
obtain a genetic landscape of EOPD in the Cypriot population. Greek-Cypriot EOPD patients (n = 48)
were screened for variants in the six most common EOPD-associated genes (PINK1, PRKN, FBXO7,
SNCA, PLA2G6, and DJ-1). This included DNA sequencing and Multiplex ligation-dependent probe
amplification (MLPA). One previously described frameshift variant in PINK1 (NM_032409.3:c.889del)
was detected in five patients (10.4%)—the largest number to be detected to date. Copy number
variations in the PRKN gene were identified in one homozygous and 3 compound heterozygous
patients (8.3%). To date, the pathogenic variants identified in this study have explained the PD
phenotype for 18.8% of the EOPD cases. The results of this study may contribute to the genetic
screening of EOPD in Cyprus.

Keywords: early onset Parkinson’s disease (EOPD); genetic investigation; Greek-Cypriot Parkinson’s
patients

1. Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative disease
worldwide [1]. By 2016, the global population of PD had reached 6 million [2], and by 2020,
it has been estimated to have increased to 9.4 million (95% CI) [3]. In a study investigating
the global burden of PD, gender stratification revealed that the prevalence is higher in males
than females with a ratio of 1 to 1.36–1.43 [2]. PD can be stratified into three subgroups
based on the age of disease onset; Juvenile-onset, Early-onset (EOPD), and Late onset
(LOPD). EOPD is diagnosed between the ages of 21 and 50 [4], and accounts for 10–15% of
PD cases [5]. The majority of PD cases are sporadic, and report no previous family history
of the disease [6]. Whereas the familial PD cases include inherited or monogenic forms of
the disease [6]. Interestingly, Ferguson et al., as well as other groups have demonstrated
that there is no significant difference between the percentage of familial cases in EOPD and
LOPD [7,8].

Pathologically, PD is characterized by two major processes; premature loss of dopamine-
producing neurons in the substantia nigra pars compacta (SNpc), and abnormal deposition
of Alpha-Synuclein protein in the brain and spinal cord in the form of Lewy bodies (LBs)
and Lewy neurites (LNs) [9,10]. The resultant dopamine deficiency in the brain leads to
a broad range of motor and non-motor manifestations. However, this occurs only after
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70–80% of dopaminergic neurons are lost [11]. Thus, by the time PD is diagnosed, the dis-
ease has already manifested and irreversible deterioration of the nervous system has taken
place [12].

Thirty years ago, the development of PD was supposed to be a result of environ-
mental exposures, such as contact with pesticides, prior head trauma, and well-water
drinking [13]. Nevertheless, more recent studies indicate that a complex interplay between
environmental and genetic factors contributes to the triggering of the disease [14]. By 2018,
15 genes with disease-causing mutations have been identified to cause 30% of the fam-
ilial cases, and 3–5% of the sporadic PD cases [15,16]. As described in a review by
Blauwendraat et al., rare variants in more than 20 genes have been reported to cause PD,
with varying degrees of penetrance [17]. The genes most commonly associated with EOPD
are Alpha-Synuclein (SNCA), Parkin (PRKN), Phosphatase and Tensin Homolog-induced
Putative Kinase 1 (PINK1), Protein Deglycase DJ-1 (DJ-1), Phospholipase A2 (PLA2G6), and
F-Box Only Protein 7 (FBXO7) [17]. It is important to note that there is an overlap between
certain genes that contain disease-causing mutations and those that harbor risk-variants
associated with PD [18,19]. By definition, autosomal recessive (AR) inheritance suggests
that the two gene alleles must be mutant for the disease to be clinically apparent, yet
this is not always the case in PD [19]. Heterozygous variants in EOPD-associated genes
with AR inheritance, such as PRKN and PINK1 have been reported to increase PD risk,
possibly due to compound heterozygosity or partial loss-of-function [19]. The function
of the EOPD-associated genes has been linked to protection against mitochondrial dys-
function, as well as the mediation of mitophagy (programmed autophagy of damaged
mitochondria) [20–22]. Other functions include roles in synaptic transmission [23,24] and
phospholipid remodeling [25–27].

Single nucleotide variants (SNVs), insertion or deletion (Indels) and copy number
variations (CNVs) in PD-associated genes have been detected across many populations and
ethnic groups [5,27–49]. CNVs in PRKN have been reported in several population studies
and account for up to 12% of PD cases [31,33,34,39,42,43,45–49], with unique exceptions
observed in certain ethnic groups [39]. CNVs have also been reported less frequently
in SNCA, PINK1 and DJ-1 [31,34,36,38,50–52]. Previous population studies have shown
great genetic variability in the detected PD-associated variants, suggesting that geographic
location and ethnic origin influence the detection outcome [30]. Inclusivity is very important
in PD research and hence filling the genetic gap in underrepresented populations will be
very useful for better disease understanding [53].

Therefore, the aim of this study was to analyze the genetic landscape of EOPD in
the Cypriot population for the first time to date. Moreover, we wanted to investigate
whether there were any novel or recurring variant(s) in our population. For that purpose,
DNA sequencing and copy number analysis of the most common EOPD-associated genes
was performed.

2. Results
2.1. Cohort Description

This study included 48 EOPD patients with a median age of onset (AOO) of 46 years
(range 23–50 years). Males had a higher frequency of EOPD compared to females (M:F
ratio, 1.67:1) in this cohort. Family history was recorded for 18 (37.5%) patients in total; first-
and second-degree relatives with PD were reported for 13 (27.1%) and 5 (10.4%) patients,
respectively. Among the familial cases were 2 sets of siblings; dizygotic female twins and
one set of male and female siblings.

2.2. Pathogenic Variants

Pathogenic variants were identified in 9 out of the 48 patients tested (18.8%) (Table 1).
Of these, 5 (10.4%) patients carried the same frameshift mutation in the PINK1 gene, and
4 (8.3%) had CNVs in the PRKN gene. Among the carriers of the p.(Asp297Metfs*22)
frameshift mutation in PINK1, 3 were homozygous and 2 were heterozygous. Out of the pa-
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tients with CNVs in PRKN, one was a homozygous carrier of the deletion in exons 3 and 4,
whereas 3 patients were compound heterozygous carriers. Overall, 6 out of the 18 patients
with a family history (33.3%), and 3 out of the 30 patients without a family history of PD
(10%) were carriers of a pathogenic mutation. The clinical characteristics of those patients
are demonstrated in Table 2.

Table 1. Pathogenic variants identified in this study.

Case
No.

RefSeq
Gene Sequence Variant Copy Number Variant AOO Gender Known Family

History of Disease
Affected Family
Member, AOO

1 PINK1 1
c.889del _ 46 F Yes

dizygotic twin
sister, 23p.(Asp297Metfs*22) (hom)

2 PINK1 1
c.889del _ 23 F Yes

dizygotic twin
sister, 46p.(Asp297Metfs*22) (hom)

3 PINK1 1
c.889del _ 41 F No _

p.(Asp297Metfs*22) (hom)

4 PINK1 1
c.889del _ 50 F Yes father, unk

p.(Asp297Metfs*22) (het)

5 PINK1 1
c.889del _ 43 M No _

p.(Asp297Metfs*22) (het)

6 PRKN 2 _ Ex3–4del (hom) 45 M Yes grandmo-
ther, unk

7 PRKN 2 _ Ex2del (het); Ex2–4del (het) 50 F Yes sister, 56

8 PRKN 2 _ Ex2del (het); Ex5del (het) 35 M No _

9 PRKN 2 _ Ex3–4del (het); Ex6–7del (het) 50 F Yes father, unk

RefSeq, Reference Sequence database built by the National Center for Biotechnology Information; AOO, age
of onset; hom, homozygous; het, heterozygous; Ex, exon; del, deletion; unk, unknown; 1 NM_032409.3,
2 NM_004562.3.

2.3. Variants of Uncertain Significance (VUS)

In this study, 2 variants with conflicting interpretations of pathogenicity in ClinVar [54]
were identified; c.1372A > C (p.Met458Leu) in PRKN, and c.416G > A (p.Arg139His)
in PLA2G6. The aforementioned variants were detected in two male patients, with
AOO = 49 and AOO = 50, respectively. Both patients had no family history of PD, and had
no other pathogenic variants in the genes under investigation in this study. The former
variant, rs182893847 [55], has been reported in HGMD [56] as a likely disease-causing
mutation but with questionable pathogenicity (CM096654, DM?), and was described to
have a rare global frequency in the 1000 Genome Project (0.0014) [57]. The latter variant,
rs141825182 [55], has not been reported by neither HGMD nor 1000 Genome Project, but
was described by ALFA [58] to be very rare worldwide (0.0017). According to the ACMG
guidelines [59], both variants are classified as ‘variants of uncertain significance (VUS)’.
However, according to the Invitae Sherloc variant classification [60], a refinement of
the ACMG guidelines, both variants are classified as ‘likely benign’.
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Table 2. Clinical characteristics of patients carrying a pathogenic variant.

Case
No.

RefSeq
Gene

Clinical
Symptoms

at Onset

MDS-UPDRS
Score Total

(Parts I, II, III, IV)
H & Y Years after

Onset 3 Dyskinesia Surgery Other Diseases, AOO

1 PINK1 1 R, B
16

1 20 No No
hypothyroidism, 59;

(1, 4, 11, 0) hypertension, unk;

2 PINK1 1 T, PI
189

5 44 Yes No

dysarthria, 54;

cognitive decline, 54;

(34, 45, 99, 11) depression, unk

3 PINK1 1 T, R, PI

111

5 35 Yes STN
DBS

dementia, 80;

depression, 41;

(23, 28, 60, 0) arrhythmia, unk;

hypertension, unk

4 PINK1 1 R, B
36

1 12 No No _
(14, 10, 11, 1)

5 PINK1 1 R, B
94

3 23 Yes STN
DBS

benign prostatic
hyperplasia, unk(13, 31, 38, 12)

6 PRKN 2 T, R, B

76

3 24 Yes No

colon cancer, 75;

skin melanoma with
lung/liver metastasis, 70;

depression, 55;

(18, 14, 36, 8)

memory disturbances, 55;

CVD, unk;

hypertension, unk

7 PRKN 2 T

43

2 11 Yes No

sleep disturbances, 68;

breast cancer, 56;

depression, 50;

(19, 11, 13, 0)
hypertension, 41;

diabetes, unk

8 PRKN 2 R, B
22

1 3 Yes No
bipolar disorder, 41;

(8, 3, 11, 0) depression, 33

9 PRKN 2 R
43

1 13 No No

hypercholestero-
lemia, unk;

(8, 7, 28, 0) hypertension, unk

RefSeq, Reference Sequence database built by the National Center for Biotechnology Information; MDS-UPDRS,
Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale; H & Y, Hoehn
and Yahr Stage; R, rigidity; B, bradykinesia; T, tremor; PI, postural instability; DBS STN, deep brain stimulation of
the subthalamic nucleus; unk, unknown; 1 NM_032409.3, 2 NM_004562.3, 3 for both MDS-UPDRS and H & Y.

3. Discussion

To the best of our knowledge, this is the first genetic study conducted on Greek-
Cypriot EOPD patients targeting EOPD-associated genes. This study is representative of
the Greek-Cypriot population as patient recruitment occurred at a tertiary center where
the majority of EOPD cases in Cyprus are being referred to. Given this information, the cap-
ture rate is expected to be >90%. The female-to-male ratio of EOPD patients in the present
study was slightly higher than in previous reports [2].

We report 9 patients (18.8%) in our cohort that were positive for a pathogenic variant
(Table 1). Of those, 56% harbored the same single nucleotide deletion in PINK1, and
44% were carriers of CNVs in PRKN. Variants in PRKN are more common than PINK1
amongst EOPD patients from European and Asian populations [5,30,33]. For example, in
a Dutch cohort, the frequency of PRKN variants (6%) was greater than PINK1 (1%) [34].
Similarly, in an Irish cohort, 6.9% of EOPD cases were carriers of a PRKN pathogenic
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variant, while no variants were detected in PINK1 [37]. In a study on EOPD in central
European populations (Czech, German, Polish, and Ukrainian), PINK1 pathogenic variants
were only reported in 0.6% of the Polish cohort, whereas PRKN variants were detected in
all 4 cohorts (2.6–9.1%) [5]. Furthermore, in a large multicentre study including Caucasian
(French and Turkish), Arab-Berber and other ethnicities, PRKN mutations (12.5%) were
more frequent than PINK1 (1.9%) [33]. In contrast to the above population studies, we
had a 10.4% frequency of PINK1 mutation and 8.3% of PRKN. Interestingly, PINK1 and
PRKN mutation frequencies in our Greek-Cypriot cohort are more similar to Arab-Berbers
(PINK1 = 6.4%, PRKN = 7.5%) than Caucasians (PINK1 = 0.9%, PRKN = 13.5%) [33].

The frequency of pathogenic variants amongst cases with a known family history of PD
in this study (33%) compared to those without (10%), is similar to previous reports [16,33].
It is important to note that there might be a recall bias amongst the sporadic cases regarding
family history of PD.

No pathogenic variants were detected in the other 4 genes (DJ-1, SNCA, PLA2G6 and
FBXO7) under investigation in this study. The majority of EOPD cohorts either report
a very small frequency of pathogenic variants in DJ-1 (<2%) [33,34,36,50], or similar to our
study- not at all [5,37]. Unlike other groups [31,34,47], we did not detect any missense
variants or CNVs in the SNCA gene. Pathogenic variants in PLA2G6 and FBXO7 are very
rare [30], and have not been detected in our cohort.

PINK1 loss-of-function variants cause AR-EOPD, and the presence of biallelic variants
may result in a dysfunctional kinase domain and/or mitochondrial motif encoded by the gene.
We identified the largest number of patients (n = 5) carrying the p.(Asp297Metfs*22)
pathogenic frameshift variant in exon 4 of PINK1, as compared with 3 carriers reported
worldwide [61,62]. Savettieri et al., first described the c.889del single nucleotide deletion
in a consanguineous Sicilian family; they reported 2 EOPD siblings (male AOO = 28,
male AOO = 29) homozygous for the frameshift variant [61]. Kumazawa et al., reported
the same deletion in a Greek female with juvenile-onset (AOO = 10), an offspring of
a consanguineous marriage with a first-degree family history of PD (affected sister) [62].
The single nucleotide deletion leads to the premature termination of the polypeptide kinase
domain and by that the loss of the PINK1 protein function.

Out of the 5 PINK1 variant carriers in this study, 2 were dizygotic twin sisters, both
homozygous carriers (Table 1, case no. 1–2). However, they had a difference of 23 years in
their AOO, as well as a differential clinical presentation; one (AOO = 23) was wheelchair-
bound by the age of 65, had depression and cognitive decline. Whereas the other sister
(AOO = 46) presented with mild motor symptoms, and 20 years after her onset is still
at stage 1 of the Hoehn & Yahr scale (Table 2). It is important to note that the mildly
affected sister might have had an earlier disease onset than 46. The aforementioned patient
was only seen in the clinic after the kinship with her twin sister came to the attention of
the neurologist; therefore, early diagnosis might have been lost due to this mild form of
PD. The third homozygous carrier of the frameshift variant (Table 1, case no. 3) developed
PD symptoms at the age of 41 and reported no family history, had hypertension and
depression. The differential AOO, disease progression, and clinical presentation amongst
the patients with same homozygous pathogenic variant may be credited to highly penetrant
rare variants being affected by other genetic and environmental factors [17]. These cases
highlights the complex and multifactorial nature of PD.

The frameshift variant could explain the EOPD phenotype in the homozygous patients
(n = 3). However, since PINK1 is a recessive gene, the heterozygous carriers (n = 2)
might be harboring other risk variants not yet identified. Nevertheless, heterozygous
variants in the AR PD-associated genes, such as PRKN and PINK1, have been previously
reported to possibly increasing PD susceptibility [19,63]. However, the mechanism by
which these variants affect disease development is still unclear. Epigenetic inactivation of
the wild type allele, creating a pseudo-dominant effect of the heterozygous variant, could be
a possible explanation [64]. Alternatively, an EOPD phenotype in heterozygous carriers
can be explained by the co-occurrence of heterozygous variants in more than one AR
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EOPD-associated gene [64,65]. Digenic inheritance in EOPD has been previously reported
in cases with heterozygous variants in PINK1 and DJ-1 [64], PINK1 and PRKN [65], and
PRKN and SNCA [66]. Similarly, the identified heterozygous carriers in this cohort could
be harboring other heterozygous variants in genes not investigated in this study.

PRKN variants are another cause of AR-EOPD due to loss-of-function of the protein
product. The MLPA analysis revealed 4 patients (8.3%) in the Cypriot EOPD cohort with
CNVs in the PRKN gene. These findings are aligned with previous population studies
that reported similar percentages (<12%) [31,34,35,38,40–42,45,47,48]. One patient was
homozygous and three were compound heterozygous for CNVs in PRKN (Table 1, case
no. 6–9). For the homozygous carrier, we were unable to amplify exons 3 and 4 with
Sanger sequencing which further verifies the biallelic deletion. Regarding the compound
heterozygous patients, two report non-adjacent exon deletions. Compound heterozygous
carriers of CNVs in the PRKN gene have been reported in the past; heterozygous deletions
of non-adjacent exons [48], as well as heterozygous deletion of one exon and duplication
of another [31]. In addition, we were able to confirm that 2 out of the 4 PRKN variant
carriers (Table 1, case no. 6–7) developed cancer several years (25 and 6 years, respectively)
after their PD symptom onset. Specifically, the patients that had at least one biallelic exon
deletion, developed cancer. In addition, the father of one of the patients that did not
develop cancer to date (Table 1, case no. 8), died of Leukemia at the age of 58. However,
since paternal samples were not collected in this study, we could not confirm the pattern of
inheritance. The role of PRKN in cancer, as a tumor suppressor gene, has been previously
discussed [67–69].

Even though SNCA variants account only for a minority of PD cases globally, the dis-
ease pathology involving the SNCA protein product seems to be shared amongst the ma-
jority of PD patients [70]. One of the hallmarks of PD is the abnormal deposition of
α-synuclein in the central nervous system in the form of LBs and LNs [70]. Besides mis-
sense variants and CNVs in SNCA, α-synuclein aggregation could be a result of abnormal
protein clearance, impaired mitochondrial function, and increased oxidative stress that
may induce proteins to alter their structure [71]. Consequently, LBs may contribute to
PD by disrupting dopamine regulation in DA neurons leading to its toxic concentration
within the cell [72]. Alternatively, LBs can disrupt the ubiquitin-proteasome (UPS) clearance
system and by that alter cellular homeostasis [72]. α-synuclein aggregates bind with high
affinity to mitochondria, inhibiting mitochondrial protein uptake and promoting reactive
oxygen species (ROS) formation [73]. ROS may damage the mitochondrial DNA and have
a positive feedback-loop effect on α-synuclein aggregation [73]. Furthermore, Shimura et al.,
hypothesized that a functional interaction might exist between the SNCA and PRKN pro-
teins; Loss-of-function variants in PRKN might result in Parkin not being able to effectively
ubiquitinate the α-synuclein protein, hence its intracellular accumulation [74].

Additionally, DJ-1, a multifunctional protein that is involved in oxidative stress sensing
and chaperonal activities, has been reported to directly interact with α-synuclein monomers
and oligomers [75]. DJ-1 overexpression was shown to decrease the dimerization of
α-synuclein, while mutant forms of the protein impaired this observation [75]. PINK1,
Parkin and DJ-1 polypeptides have been identified to form a ligase complex that aims to
ubiquitinate and degrade non-folded proteins [76]. Parkin, encoded by PRKN, has been
reported to play a role downstream of PINK1 in the mediation of mitophagy. The PINK1
kinase has been directly seen to phosphorylate Parkin and cause its localization to mitochon-
drial outer membranes [22]. Once activated, Parkin-a ubiquitin-E3 ligase, is able to ligate
ubiquitin molecules onto its mitochondrial substrates [77], and by that promote the removal
of dysfunctional mitochondrial proteins and the autophagy of damaged mitochondria [78].
Furthermore, FBXO7 has been reported to directly interact with PINK1 and Parkin and
play a role in the Parkin-mediated mitophagy process [79]. The EOPD-associated genes
that were under investigation in our study seem to interact with each other on a structural
and functional level. Hence, variants in either one of the aforementioned genes have the po-
tential to alter cellular processes and potentially increase PD susceptibility.
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Currently, the diagnosis of PD is clinical and based on the presence of motor features.
Early onset patients have a challenging journey towards a PD diagnosis as their initial
symptoms may vary and their young age of onset may lead to differential diagnoses. To
date, 18.8% of the 48 tested Cypriot patients had a clear monogenic cause for their PD
phenotype. Almost 1 in every 5 patients in our cohort has been identified as a carrier of
either a PINK1 or PRKN variant. Hence, the results of this study may contribute to the gen-
etic screening of EOPD in Cyprus.

Some limitations of this study were that we did not include all PD-associated genes in
Sanger sequencing. However, the MLPA analysis included probes for several additional
genes associated with PD, including ATPase 13A2 (ATP13A2), Leucine-rich repeat kinase
2 (LRRK2), GTP Cyclohydrolase 1 (GCH1) and Ubiquitin C-terminal hydrolase L1 (UCHL1).
Another limitation of this study was that we used a candidate gene approach while other
population studies used genome wide association studies that gave a broader range of
results. Even though we had quite a high detection of monogenic forms of EOPD, the id-
iopathic cases still account for >80%. Overcoming the limitations of this study could
potentially decrease this percentage. Future work ought to include whole exome sequencing
for the idiopathic EOPD cases. Genetic analysis and determining familial aggregation of
a LOPD Cypriot cohort would be helpful for future comparison with this study’s EOPD
cohort. This will allow for a more inclusive genetic view of PD in Cyprus.

Even though Cyprus is officially part of the European continent, its geographic location
and historical events reflect how it might be integrated in the Middle East, giving rise to its
unique genetic profile. Thus, the importance of this study is the addition of another piece
to the puzzle of PD genetics and the reduction of the research gap in underrepresented
populations [53,80].

4. Materials and Methods
4.1. Participants

A cohort of 48 EOPD patients of Greek-Cypriot origin was recruited from the neurology
clinics of the Cyprus Institute of Neurology and Genetics (CING) in Nicosia, Cyprus. Since
it is a tertiary referral center for genetic and neurological disorders in Cyprus, most EOPD
patients in Cyprus are referred to CING by their physicians, and the majority are being
followed up there. All patients were evaluated by CING neurologists and fulfilled the inc-
lusion criteria; (i) clinical diagnosis of PD, and (ii) age of onset between 21–50 years. Patients
with additional neurological symptoms were excluded from the study. EOPD patients were
recruited from 2014 until 2021. The study was approved by the Cyprus National Bioethics
Committee and conducted in accordance with the 1964 Declaration of Helsinki. Informed
consent was obtained from all patients.

4.2. Genetic Analysis
4.2.1. DNA Sequencing

Genomic DNA was extracted from peripheral blood lymphocytes using standard
methods. Primers were designed for the 6 most common EOPD-associated genes; SNCA
(NM_000345.4), PRKN (NM_004562.3), PINK1 (NM_032409.3), DJ-1 (NM_007262.5), PLA2G6
(NM_003560.4) and FBXO7 (NM_012179.4). Primer sequences and PCR conditions can be
provided upon request. The Sanger sequencing method was used for the amplification
and sequencing of the coding exons and flanking intronic regions of the genes. The sa-
mples were run in an ABI 3130xl genetic analyzer (Applied Biosystems, Waltham, MA,
USA) using a 36 cm capillary (Applied Biosystems, Waltham, MA, USA), and POP-7 Per-
formance Optimized Polymer (Applied Biosystems, Waltham, MA, USA). Data analysis
was carried out using the Sequencing Analysis software (Applied Biosystems, Waltham,
MA, USA). The reference genomic, transcript, and protein sequences used to describe
the sequence variants were obtained from RefSeq: NCBI Reference Sequence Database
https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 18 June 2020). The accession numbers
and classifications of previously known variants were retrieved from ClinVar [54], Human

https://www.ncbi.nlm.nih.gov/refseq/
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Gene Mutation Database (HGMD®) [56], dbSNP [55], and the literature. Alternative allele
frequencies (AAF) were retrieved from the Allele Frequency Aggregator (ALFA, Release
Version: 20200227123210) [58], and the 1000 Genome Project [57].

4.2.2. Detection of Copy Number Variation (CNV)

Patients were screened for CNVs using the Multiplex Ligation-Dependent Probe
Amplification (MLPA) method. The SALSA® MLPA® Probemix P051-D2 and P052-D2
Parkinson kits (MRC-Holland, Amsterdam, The Netherlands) were applied according to
the manufacturer’s instructions. The Coffalyser.Net software version 220513.1739 (MRC-
Holland, Amsterdam, The Netherlands) was used for data analysis.

4.3. In Silico Predictions

In silico tools were applied to predict the downstream effect of the variants detected in
our study that have not been previously reported in ClinVar or have conflicting interpreta-
tions of pathogenicity, as recommended by the American College of Medical Genetics and
Genomics (ACMG) standards and guidelines [59]. Missense prediction tools were utilized
to determine the effect of the coding variants on the amino acid sequence, and hence the pro-
tein structure and function. While splice site prediction tools were implemented to predict
if the variants had any effect on splicing.

5. Conclusions

In conclusion, 18.8% of the Greek-Cypriot EOPD population had a clear monogenic
cause for their PD phenotype. One previously described frameshift variant in PINK1
(NM_032409.3:c.889del) was detected in five patients (10.4%), and CNVs in the PRKN gene
were identified in four patients (8.3%). Almost 1 in every 5 patients has been identified as
a carrier of either a PINK1 or PRKN pathogenic variant. Hence, the results of this study
may contribute to the genetic screening of EOPD in Cyprus.
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