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Abstract: Mesenchymal stem cells have a known regenerative potential and are used in many
indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF),
as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the
secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III,
and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic
acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The
aim of this study was an attempt to collect the existing literature on the use of stem cells in the
treatment of a burn wound. There were 81 studies included in the analysis. The studies differed
in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy
application. No major side effects were reported, and cellular therapy reduced the healing time of
the burn wound. Few case reports on human models did not report any serious adverse events.
However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains
an experimental method.

Keywords: stem cells; burn wound; adipose-derived stem cells; burns

1. Introduction

Large burns, over 20% of total body surface area (TBSA), are a life-threatening con-
dition due to loss of skin barrier and, in consequence, loss of fluids, severe metabolic
changes, and infectious complications. In full-thickness burns, the entire depth of the skin
is damaged, including the dermis, glands, and hair follicles. Only partial-thickness burns
have the potential to heal spontaneously, as shown in Figure 1 [1]. Deep burn wounds
have limited potential to self-heal, and in most cases require the removal of necrotic tissues
followed by skin grafting or application of skin substitutes. In clinical practice, deep burns
require removal of the burn eschar and replacing burned skin with skin grafts or skin
substitutes. When large surfaces of skin are burned, one of the most commonly occurring
problems is the lack of autologous skin to cover the burn wound. Many dressings and skin
substitutes are available on the market; however, there is no one ideal solution. Regen-
erative medicine and stimulation of tissue repair is a growing discipline of medicine [2].
The amount of scientific evidence available for the usage of biostimulants, growth factors,
and tissue-derived cells is increasing. Although it has been shown that EGF and HGF
improve re-epithelialization, TGFb3 prevents scar contraction, and VEGF, PDGF, and FGF
stimulate neovascularization, topical application of these growth factors, either separately
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or in combination, did not prove sufficient to improve burn wound healing. Even thought,
it has been proved that epidermal growth factor (EGF) and hepatocyte growth factor (HGF)
improve re-epithelialization, TGF-β3 prevents constricting scarring, whereas vascular en-
dothelial growth factor (VEGF), platelet-derived growth factor (VEGF), and fibroblast
growth factor stimulate neovascularization [3]. That is why it is cellular therapy and stem
cells derived from different sources that might be the future of burn wound treatment and
scar prevention [4].
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Stem cells can be divided according to the ability to differentiate and mature. Embry-
onic and placenta are totipotent and pluripotent stem cells which are able to differentiate
into cells of the three embryonic germ layers: endoderm, mesoderm and ectoderm. Mes-
enchymal stem cells are multipotent with reduced differentiation capacity into certain cell
types. Unipotent stem cells give rise to only one type of cells, such as muscle or epithelial
stem cells, and they participate in self-renewal processes and tissue regeneration. Mes-
enchymal stem cells (MSCs) are a type of undifferentiated cells with multipotent capacity
that maintain and repair the tissue in which they are found and can differentiate into
mature cell types such as adipocytes, osteoblasts, and chondroblasts [5]. Different names
have been used for these cells over time, including “marrow stromal cells”, “multipotent
stromal cells”, or “mesodermal stem cells” [6]. They are also referred to as “mesenchymal
stromal cells” and described as fibroblast-like multipotent cells [7].

The regenerative potential of the MSCs, as well as accessibility, make cellular therapy
a promising therapeutic option in wound treatment, including burn wounds. Adult stem
cells are found in almost all adult tissues, including bone marrow, adipose tissue, the
liver, the pancreas, the spleen, the thymus, skeletal muscles, dental pulp, and the dermis,
with bone marrow and adipose tissue remaining the most frequently used sources of
MSCs [5,7,8] (Figure 2).
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2. Methods

Two independent researchers (AC, AS) screened articles available in medical databases
(PubMed, PubMed Central, MEDLINE). The inclusion filters were “burn” or “burn wound”
and “stem cells” or “MSCs” or “adipose-derived stem cells”. Titles, abstracts, and full texts
in English were filtered to choose original articles and reviews describing the pathology of
burn wounds and the role of residual stem cells, as well as the experimental and clinical use
of stem cells in burn wound healing. The extensive heterogeneity of the methodology of the
studies and the small number of comparable studies impeded reliable statistical analysis.

The search strategy identified 800 records, out of which 81 studies were included in
the study. We performed a simple literature review.

2.1. Residual Stem Cells’ Reaction to Thermal Injury

There are residual mesenchymal stem cells (MSCs) in the dermis that are responsi-
ble for skin repair. They are present in niches in the region of the hair follicle bulges, at
the insertion of pili muscles [9,10], sweat glands, nerve endings [11–13], and sebaceous
glands [14]. With age, the structure of the skin changes and the number of stem cells
decreases, which may lead to prolonged healing in elderly burn patients [15]. After burn
trauma occurs, cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL-1β),
interferon IFN-γ IL-6, and IL-12 [16] are secreted. Stem cells can translocate to the injured
epithelium and stimulate regeneration [10,17,18]. The process of cell translocation is pro-
moted by increased expression of the CXCR-4 molecule on the MSC surface and stromal
cell-derived factor 1 (SDF-1) protein [19]. The expression of SDF-1 is down-regulated
by TGF-β1 and steroids [19]. In the initial phases of wound healing, MSCs promote a
shift between the macrophage population from M1 to M2 and stimulate the secretion of
anti-inflammatory TNF [18,20]. In the later phases, MSCs stimulate angiogenesis by secret-
ing growth factors including vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF), hepatocyte growth factor (HGF), fibroblast growth factor (b-FGF),
SDF-1, transforming growth factor β (TGF-β), angiopoietin-1, and growth differentiation
factor 11 (GDF11) [21]. MSCs have a crucial role in regulation of the inflammatory response
via paracrine action through extracellular vesicles [22]. Exosomes contain signal-active sub-
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stances, such as nucleic acids, amino acids, and proteins. Exosomes secreted by MSCs also
contain mRNAs, such as miR-125a, which accelerate vessel formation [21]. In the prolifera-
tion phase, MSCs promote the secretion of ECM proteins, glycosaminoglycans, endogenous
hyaluronic acid (HA), collagen I, II, III, and V, oxylatane, fibronectin, and elastin [23] by
stimulating fibroblasts [20]. Secretion of growth factors is regulated by hosphatidylinositol
3 kinase/Protein kinase B (PI3K/AKT) [24,25]. Inhibition of PI3K/AKT/mTOR signaling
promotes the process of autophagy [26]. MSCs. Effect on metalloproteinases (MMPs) and
ECM remodeling is presented on Figure 3.
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Figure 3. After trauma, expression of the CXCR-4 increases, and residual fat-derived stem cells from
the area of the hair follicles, sweat glands, and nerve endings are recruited to regulate the local
inflammatory response. Overexpression of the SDF-1 protein is responsible for cell migration in the
early stages of wound healing. ADSCs promote the shift of the macrophage population from M1 to
M2 and stimulate the secretion of anti-inflammatory TNF and IL-10. Images purchased under the
Adobe Stock License.

MSCs play an important antioxidant and antiapoptotic role [27,28]. Insulin-like growth
factor 1 (IGF-1) inhibits apoptosis by the PI3K signaling pathway [21]. Interleukin-6
(IL-6) reduces oxidative stress by promoting transcription activator 3 (STAT3), nuclear
factor 2 erythroid factor 2 (Nrf2), and superoxide dismutase (SOD). Nrf2 protects lipids
from peroxidases by NOX1, whereas NOX4.MSC-secreted exosomes downregulate wound
expression of NADPH oxidase isoform 1 (NOX1), NADPH oxidase isoform 4 (NOX4),
interleukin 1β, interleukin 6, and tumor necrosis factor-alpha levels [21]. Glutathione
peroxidase (GPx) and catalase inhibit the secretion of myeloperoxidase (MPO) [23,27,28],
and stimulate BCl-2 expression, thus preventing hypoxia. Exosomes promote healing also
by Wnt/β-catenin signaling [21]. MSCs inhibit NF-κB activation in TCR-stimulated T cells
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via the PDL1/PD-1 and Gal-9/TIM-3 pathways, playing an important immunomodulatory
role in the wound healing process [21].

At the basal membrane, there is also an important population of residual keratinocyte
stem cells, responsible for keratinocyte maturation [10]. They are characterized by the
expression of α1, α2, α4, α6, β1, and β4 integrin, transferrin receptors, leucine-rich repeats
and immunoglobulin-like domain proteins, and ATP-binding cassette subfamily G member
2 on their surface [29]. A decrease in integrin β1 in the stratum basale enables the migration
of epidermal stem cells to the injury site [19,30]. After trauma, junctions between the basal
layer of the epidermis and keratinocyte stem cells with integrin3β1 and laminin-5 play an
important role [14].

2.2. Potential Use of Stem Cells in Burn Wound Healing

The majority of the studies on cell therapy in burns involve animal experiments
(Table 1). According to a meta-analysis of 22 preclinical studies on 595 animals, stem cell
therapy can significantly improve wound healing, especially in second-degree burns. Hair
follicle-derived stem cells were the most efficient type of cells [31]. Similar findings were
obtained by Yi et al. in an analysis of 20 studies with MSC therapy in burn wounds in
animals, where stem cell treatment improved closure, reduced wound area, and improved
vascularization of the tissues [32]. The most common form of stem cell application were
intradermal injections in the wound edge or wound bed. However, there are also potential
ways of cell application that do not involve injection: topical cells alone, cells encrusted in
dressings, and topical treatment with an ointment, or intravascular treatment. The time
from induction of the burn and wound debridement to administration of the cells varied
significantly across the studies. In some of the studies, administration was performed
immediately after the thermal injury, whereas in others, cell treatment was delayed for
up to several days and preceded by burn wound excision. Most of the studies achieved a
statistically significant improvement in wound healing in groups of animals treated with
stem cells from various origins and with different forms of administration [33]. Abbas et al.
compared the quality and effectiveness of autogenous stem cells obtained from bone mar-
row, adipose tissue, and dental pulp in a rat model. In the results, the most favorable
myeloperoxidase activity of the stem cells was observed in the ADSC group [34]. Autolo-
gous ADSC accelerated wound healing and reduced the healing time, even to 15 days for
deep burns [35].

Table 1. Experiment studies on animal models on the use of stem cells in burn wound healing.

Study Study Type Methods Outcomes Conclusion

Li YK [36] Experiment, mice

Human amniotic mesenchymal stem
cells were recruited, selected, and

cultured from human fetal placentas
obtained from the volunteers, and

injected subcutaneously into
thermally injured mouse skin.

A mean number of 2 × 106 stem cells
was injected. An increase in PCNA

and CK19 was observed on
days 7 and 14, with more tubular

structures observed after the initial
6 h post-burn, as well as inhibited
heat stress-induced apoptosis and
promoted proliferation of dermal
fibroblasts and keratinocytes and

activated PI3K/AKT/mTOR
signaling and GSK3β/β-catenin.

Human amniotic
mesenchymal stem cells

inhibit stress-induced
apoptosis.

Cheng [37] Experimental, mice

Human placental MCS were
obtained. Using a lentivirus,
overexpression of IGF-1 was

obtained in MSCs; 96 mice were
divided into 4 groups: control, burn,

burn+unmodified MCS, burn +
IGF-1modfied MCS. The cells were

injected on days 1, 4, 8, 12, 16, and 20
after the burn injury with 2 × 106 of

hPMSC-Lv-Vector or
hPMSC-Lv-IGF-1 at 4 points around

the burn wounds.

Induction of epithelial differentiation
was observed. Inhibition of cell
apoptosis and stimulation of cell
proliferation was observed in the
IGF-1 group. Modified stem cells

stimulated wound healing and in the
skin specimen reduced

inflammatory cells in the wound bed.
They also reduced pro-inflammatory

cytokine levels of IL-1b, IL-6 and
TNF-a, as well as TGF-β1, collagen I
and collagen III expressions in vivo,

and increased VEGF levels.

Modified MSCs with
overexpression of IGF-1 have

the potential to promote
faster wound healing and

reduction of scar contraction.
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Table 1. Cont.

Study Study Type Methods Outcomes Conclusion

Jian-Xing [38] Experiment, rats

A 30% third-degree burn was
created. After escharotomy, human

umbilical cord stem cells were
injected into the tail vein of rats.

Levels of IL-6 and TNF-α were
lower, phosphorylation levels of

P38MAPK and NF-B P65 proteins in
the liver to reduce the inflammatory

response, a shift to
anti-inflammatory M2 population of

macrophages in the skin graft.

Stem cells administrated
intravascularly reduce

inflammation by regulating
liver secretion of proteins and
cytokines. They improve skin

graft healing and
reduce scarring.

Yang [39] Experimental, mice

Allogenic umbilical cord
mesenchymal stem cells were

injected into the tail vein in severely
burned mice. The Dextran model
was used to evaluate blood–brain

barrier permeability.

UC-MSC reduced blood–brain
barrier permeability and decreased
levels of IL-6 and IL-1β in serum

and in the brain.

Systematic injection of
UC-MCS can improve the

integrity of the blood-brain
barrier and prevent

neurological symptoms in
severe burns.

Abdel-Gawad [40] Experiment, rats

90 rats divided into three groups:
control (6), burn model (42), and

study (42). Bone-marrow stem cells
were injected subcutaneously in the

study group.

Decrease in wound contraction,
downregulation of TGF-β, IL-6,

TNF-α, MMP-9, and microRNA21.

Bone-marrow-derived stem
cells improve healing of burn

wound and reduce
scar formation.

Li [41] Experimental, rats

BM-MSC were harvested from rats
and labeled with Fe3O4 NP. A

full-thickness burn was created, and
then stem cell were injected in the

tail vein.

Labeled stem cells were non-toxic.
Labeled stem cells migrated to the

burn wound up to day 7. Increase in
neoangiogenesis factors was

observed: increase in CD31 and
α-SMA. Reduction of systemic levels

of IL-1α, IL-2, IL-6, and
interferon (INF)-γ.

Intravascularly injected stem
cells can migrate to the burn
wound and improve healing.
They reduce systemic levels

of pro-inflammatory
cytokines.

Ramhormozi [42] Experimental, rats

Bone-marrow-derived stem cells
(BMS) were obtained from adult

male Wistar rats; 40 rats were burned
and divided into groups: control,

simvastatin iv, BMS intradermally,
and BMS+ simvastatin. Wound

healing, collagen, re-epithelialization
were examined. Additionally,

qRT-PCR for Akt/mTOR signaling
pathway; CD31 and VEGF genes.

Better wound healing was observed
in the group were stem cells were

injected intradermally and
simvastatin was administrated

intravascularly. Additionally, levels
of α-SMA, CD31 and VEGF genes in

granulation tissues were also
significantly higher. In the qRT-PCR
findings, the expression levels of Akt
and mTOR transcripts were higher.

A combined therapy
improved healing by

stimulating Akt/mTOR
signaling pathway.

Wu [43] Experiment, rats

Allogenic BM-CS were used. A
model of a deep second-degree burn

was created. A plasmid
pLV-CMV-EF1-fLuc-T2A-puro was

used to create a recombinant
lentivirus with overexpression of

caveolin-1 and transfected to
BM-MSCs and injected intradermally

5 min after burn injury.

Overexpression of caveolin-1
improves the efficiency of BM-MCSs

in burn wound healing and
shortened the healing time to

10 days. The protein expression of
TGF-b1, TGF-b3, FGF, and EGF was

increased. Additionally, serum levels
of IL-1b, IL-6 and TNF-a

were decreased.

Application of exogenous
MSCs overexpressing

caveolin-1 improves burn
wound healing.

Fujiwara [44] Experimental, sheep

Allogenic ADSCs were obtained and
administered topically; 7 sheep were
enrolled into the study. After a burn

and excision of a deep burn, the
wound was covered with a skin graft
(2 × 2 cm) and ADSCs were applied

topically in the study group.

Topical use of allogenic ADSCs in
sheep improved graft intake and

wound blood flow, increased VEGF
levels in the wound, and accelerated

wound epithelialization after the
excision of a full-thickness

burn model.

Topical allogenic ADSCs
accelerate graft intake and

improve wound
vascularization. A new burn

model was established.

Hermeto [45] Experiment, rats

Two rats were donors of
adipose-derived stem cells. ADSCs

were harvested, isolated, and
cultures; 40 rats were divided into
4 groups: placebo gel, insulin gel,

topical ADSCs, and topical ADSCs+
insulin gel applied on superficial

second-degree burns.

ADSCs improved healing and
reduced the wound extent in both

topical ADSC and topical DSC+
insulin gel groups.

Topical use of ADSC can be
useful in the treatment

of superficial
second-degree burns.

Costa de Oliveira
Souza [46] Experimental, rats

Cellulose membranes incorporated
with 10% tamarind xyloglucan plus

gellan gum 1:1 and 10% lysozyme, or
with 10% gellan gum and 10%

lysozyme were seeded with
allogenic ADSCs and used in a rat

burn model. The study group
consisted of 40 rats.

No impairment of stem cell activity
was observed. The cellulose
membrane had a potential

antimicrobial activity. Stem cells
accelerated epithelialization.

Cellulose membrane is
non-toxic for stem cells, and it
enables cell proliferation and

maturation, as well
as migration.

Barrera [47] Experimental, mice

Allogenic ADSCs were isolated,
cultured, enriched with

CD26+/CD55+ and seeded in a
hydrogel dressing. A contact burn

model was established.

Hydrogel seeded with ADSCs
healed the wound faster than ADSCs

injected. They improved wound
vascularization and increased levels

of mRNA for Vegfa and protein
levels for MCP-1, SDF-1, and VEGF.
Additionally, the quality of the scar
was better with the lower fractional
dimension of collagen architecture.

SC-seeded hydrogel
significantly improves

healing in murine burns.
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Table 1. Cont.

Study Study Type Methods Outcomes Conclusion

Dong [48] Experiment, mice

Hydrogel system comprised of a
hyperbranched poly (ethylene
glycol) diacrylate (HB-PEGDA)

polymer, a commercially available
thiol-functionalized hyaluronic acid
(HA-SH) and a short RGD peptide
enriched in xenogenic ADSC was
used to treat second-degree burns

in mice.

On day 3, a significant improvement
in healing in the treated group was
observed. The examination of the

specimens showed a higher number
of vessels, ratio of collagen type III to

I, and reduction of
active myofibroblasts.

A novel combined dressing
enhanced neovascularization,
promoted wound closure and

reduced scar formation.

Roshangar [49] Experimental, rats
Allogenic ADSCs were incorporated
in 3D bioprinter-derived gel scaffold

and used in scald burn model.

The scaffold was not toxic and did
not interfere with ADSC capacities

and viability.

3D bioprinter-derived gel
scaffold enhanced burn

wound treatment.

Razei Yazdi [50] Experimental, rats Xenogeneic ADSCs were injected
intradermally in 4 areas.

ADSCs reduced inflammatory cells
in the wound. They promoted VEGF

gene expression and secretion of
TGF-β. ADSC also promoted

proliferation of dermal fibroblasts.

ADSCs improve burn wound
healing by affecting

fibroblasts, keratinocytes, and
inflammatory cells, as well as
increasing the expression of
the TGF-β and VEGF genes.

Franck [51] Experimental, rats

23 rats were used, and one was a
donor for ADSCs. A burn model

was conducted. ADSCs were
injected into the burn wound just

after wound cooling. An amount of
3.2 × 106 was used.

ADSCs reduced the burn wound
area after 14 days. There was no

difference in inflammatory
infiltration between the study and

control groups. The number of
lymphatic vessels was reduced. The

concentration of collagen type III
was elevated.

ADSCs improve wound
healing and reduce

scar formation.

Azam [52] Experimental, rats

ADSCs were isolated from 22 rats,
then the isolated cells were

incubated in a medium with
curcumin for 24 h. An acid burn

model was used, 24 h after the injury
an excision was made, and the rats
were divided into 3 groups. ADSCs
were injected intradermally around

the wound.

Curcumin improved the healing
capacities of ADSCs, increased the
capacity of migration, proliferation

and paracrine potential, and
suppressed secretion of

pro-inflammatory cytokines in
comparison with innate ADSCs.

Curcumin-preconditioned
ADSCs may show potential in

the treatment of acid burns.

Babakhani [53] Experimental, rats

Hair-follicle stem cells were derived
from 10 rats. A group of 45 rats was
divided into three groups: treatment,

control, and sham. A burn model
was conducted. The stem cells were

injected around the wound bed.

Stem cells improved healing and
epidermal thickness. They also

stimulated neovascularization and
increased the expression of CD31.

Stem cells injected around a
deep partial- thickness burn

accelerate healing by
improvement of epidermal

density and
neovascularization.

Amini-Nik [54] Experimental, mice
and pigs

Human stem cells were obtained
from deeply burned skin. They were

used topically in a burn model in
5 mice and 4 pigs.

No tumor formation of stem cells
was observed. Stem cells accelerated

healing in a mouse and pig model.
After 12 days after administration,
the stem cells were still present in

the wound.

Stem cells obtained from
burned skin may be useful in

future autologous skin
regeneration of deep burns.

Human studies are still limited and involve primarily case reports. Different types of
stem cells were successfully used to reduce the burn wound area and improve healing time
as well as prevent contracting scarring (Table 2).

No serious side effects were reported in the studies, which may suggest safety of the
therapy. However, different types of stem cells (umbilical cord, bone-marrow, adipose-
derived) were used and of different origins (autogenic, allogenic). Heterogeneity of the
studies and case reports impede a decent comparison of the described therapies. Each
stem cell type is characterized by individual features, but in vivo they act similarly as
regulatory cells.
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Table 2. Human studies on stem cells in burn wound healing.

Study Study Type Patients & Methods Outcomes

Kitala [55] Case report

A 40-year-old patient with deep thermal burns
(IIb◦/III◦-36%TBSA, III◦/IV◦-1%TBSA). Amnio-derived stem

cells were isolated by mechanical homogenization from the
placenta and cultured. After bed wound debridement, the

wound was covered with stem cells in a saline solution and
covered with a dermal matrix substitute.

No adverse events were reported.
The wound healed within 12 days.

Pain reduction was observed.

Rasulov [56] Case report

Allogeneic stem cells were collected from two healthy
volunteers from the iliac plate. The cells were applied to the
surface of the wounds and, after several days, the skin was

re-transplanted, this time achieving complete wound closure. A
female patient with extensive skin burn (I-II-IIIAB skin burn,

total area 40%, area of IIIB degree 30%) was treated.

Rapid healing of the donor site
and accelerated healing of

deep burns.

Mansilla [57] Clinical study

Examination of the concentration of stem cells (Flow cytometric
analysis, using a large monoclonal antibody panel: CD44,

CD45, CD14, DR, CD34, CD19, CD13, CD29, CD105, CD1a,
CD90, CD38, CD25. MSC phenotype was considered positive
for CD44, CD13, CD29, CD90, and CD105, and negative for the
other monoclonals) in the peripheral blood of burned (3 days

after injury) and healthy volunteers.

Positive correlation between the
number of cells and the extent of
the burn. Younger patients had a
higher number of stem cells than

older patients.

Lattaillade [58] Case report

A case of severe buttock radiation burns (2000 Gy at the center
of the skin surface lesion) in a 27-year-old Chilean. After
primary and secondary excisions, bone-marrow-derived

mesenchymal stem cells were applied.

Successful treatment of a radiation
burn using autogenous myeloid
stem cells and a collagen matrix

Jeschke [59] Case report

A case of a patient with full-thickness burns covering 70% of
the body surface, in whom allogeneic myeloid stem cells were

used. After debridement of the burn wound, stem cells and
fibrin glue were applied to the surface of the burn wound and
covered with allografts. About half of the grafts were healed. In
the next procedure, the edges of the wound were injected with
a commercial suspension of allogeneic myeloid stem cells and

the allografts were broken down, with about 90% of the
wounds closed as a result.

Stem cells accelerate
wound healing.

2.3. Umbilical Cord and Placental Stem Cells

Acquisition of umbilical-cord stem cells and placental stem cells is not painful and can
be performed after placenta delivery [60,61]. Umbilical cord and placental stem cells can be
used topically, in injections into the wound or intravascularly. Research studies reported
usage of allogenic and xenogeneic stem cells for burn wound healing.

Human amniotic mesenchymal stem cells injected subcutaneously into thermally in-
jured mouse skin reduced thermal stress-induced apoptosis by activation of PI3K/AKT/mTOR
signaling and GSK3β/β-catenin. They also promoted the proliferation of dermal fibrob-
lasts and keratinocytes, as well as the formation of tubular structures within the first 6 h
post-burn [36].

Overexpressing IGF-1 human placental stem cells with IGF-1 injected into the burned
mouse skin reduced the apoptosis rate and increased the proliferation rate. They also
reduced the levels of pro-inflammatory cytokines, improved wound healing, and acceler-
ated shrinkage of the burn area. Skin specimens from the injected wound contained fewer
inflammatory cells and collagen fibers than the control specimen [37].

Human umbilical cord mesenchymal stem cells injected into the tail vein of rats
influenced phosphorylation levels of P38MAPK and NF-B P65 proteins in the liver to
inhibit the inflammatory response by reduction of secretion of HMGB, IL-6, and TNF-α.
They also caused a shift to an anti-inflammatory M2 population of macrophages in the skin
graft [38]. IL-6 and IL-1β increase blood–brain barrier permeability and induce neurological
syndromes in severe burns. Umbilical cord-derived mesenchymal stem cells injected into
the tail vein of mice reduced blood–brain barrier permeability and decreased levels of IL-6
and IL-1β 3 h post-burn [39].

A human study reported a case of amniotic stem cells being used. Kitala et al. pre-
sented the case of a 40-year-old female with an extent of deep burns (IIb◦/III◦/IV◦) of
37% TBSA. Amniotic stem cells were applied under an acellular dermal matrix (ADM)
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substitute. The placenta was obtained during a caesarean section, with the written consent
of the donor. The specimen was examined to exclude HIV 1 and 2, hepatitis B virus (HBsAg
and anti-HBc), hepatitis C virus (anti-HCV), and syphilis. ADM from the human dermis
was obtained by decellularization with a 0.05% trypsin solution. After debridement of the
burn wound, the stem cells were transplanted and covered with ADM. The wounds healed
completely within 12 days. No side effects were reported [55].

Umbilical cord and placental stem cells were reported to be effective in improving
wound healing. The acquisition process, from healthy voluntary donors, may impede the
widespread usage of the cells on larger number of patients.

2.4. Bone-Marrow-Derived Stem Cells

BM-MCSs injected in the rat tail vein were able to migrate to the burn wound and
were observed in the wound bed up to day 7. Increase in neoangiogenesis, as well as CD31
and α-SMA was observed. After the systematic use of BM-MCSs reduction of levels of
IL-1α, IL-2, IL-6, and interferon (INF)-γ can be detected [62].

BM-MCSs injected subcutaneously can accelerate secretion of the epidermal growth
and granulation formation. Other effects may include downregulation of pro-inflammatory
cytokines, downregulation of TGF-β, IL-6, TNF-α, MMP-9, and microRNA21 [40]. Injected
allogenic BM-ADSC increased secretion of chemokine ligand 2 (CXCL2), granulocyte
macrophage-colony-stimulating factor (GM-CSF), L-selectin, intracellular cell adhesion
molecule (ICAM)-1, tissue inhibitor of metalloproteinase (TIMP)-1, and interleukin (IL)-4.
Migration of the labeled BM-ADSCs was detected in the burn wound after 7 days. α-SMA
and CD31 were elevated. Systemic levels of IL-1α, IL-2, IL-6, and interferon (INF)-γ levels
were lower in the treatment group [41].

In a different model, in adult male Wistar rats, BM-MSCs combined with simvastatin
improved wound healing. BD-MSCs were injected intradermally, and simvastatin was
administrated intravascularly. In the study, the observed levels of α-SMA, CD31 and
VEGF genes in granulation tissues were also significantly higher. In the qRT-PCR findings,
the expression levels of Akt and mTOR transcripts were higher [42]. Overexpression of
caveolin-1, the structural component of the caveolae membrane important in cell signaling,
improved the efficacy of BD-MSCs and decreased serum levels of IL-1, IL-6, and TNF-α [43].

Rasulov et al. in 2005 described a case of a burn in which they applied stem cells. The
wounds, of intermediate and full thickness, covered up to 40% of the body surface. Despite
several surgical cleanses of the wounds and skin grafts, healing was not achieved. Rasulov
used allogeneic stem cells obtained from two healthy volunteers, from the iliac plate. The
cells were applied to the wound surface and after a few days the skin was re-transplanted,
this time achieving complete wound closure [56].

There are reports of similar use of bone marrow stem cells collected from a deceased
donor [57]. Lataillade successfully treated radiation burns using autogenous myeloid stem
cells and a collagen matrix [58]. Mansilla et al. examined the concentration of stem cells in
the peripheral blood of burned and healthy volunteers, observing a positive correlation
between the number of cells and the extent of the burn. In younger patients, the number of
stem cells was higher than in older patients [57].

Jeschke et al. reported a case of a patient with full-thickness burns covering 70% of the
body surface, in whom allogeneic myeloid stem cells were used. After cleaning the burn
wound, they applied stem cells and fibrin glue to the surface of the burn wound, and then
disassembled the allografts. Approximately half of the grafts healed. In the next procedure,
the edges of the wound were injected with a commercial suspension of allogeneic myeloid
stem cells and the allografts were disrupted, resulting in the closure of approximately 90%
of the wounds [59].

2.5. Adipose-Derived Stem Cells

The California Institute for Regenerative Medicine has defined adult stem cells as cells
that “are committed to becoming a cell from their tissue of origin and can’t form other cell
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types” [63]. The definition of pluripotent stem cells describes cells having “the potential
of taking on many forms in the body, including all from the more than 200 different cell
types” [63].

However, many authors have repeatedly demonstrated that adipose-derived regen-
erative cells and adipose-derived stem cells can indeed form other cell types, owing to a
three-germ layer differentiation capacity [63]. To standardize MSCs, in 2006 the Interna-
tional Society for Cell and Gene Therapy proposed the minimal obligatory criteria:

(1) Trilineage potential presenting in the ability to differentiate into adipocytes, chondro-
cytes, and osteocytes in vitro;

(2) Expression of the surface markers CD73, CD90, and CD105;
(3) Lack of expression of hematopoietic and endothelial antigens CD14 (or CD11b), CD19

(or CD74alfa), CD 34, CD 45, and HLA-DR surface markers;
(4) Plastic adherence in standard culture conditions [5–7].

The immunophenotype of AD-MSCs is more than 90 percent identical to bone-morrow
mesenchymal stem cells (BMSCs), with the major difference in the presence of the glyco-
protein CD34 on the AD-MSCs cell surface [5]. Except for the abovementioned surface
markers, expression AD-MSCs are positive for pericyte markers CD140a and CD14d and
the smooth muscle marker alfa-smooth muscle actin [5]. The presence of the pericyte
marker suggests a possible niche for AD-MSCs within the perivascular region of fat tissue,
near small capillaries, between mature adipocytes and the extracellular matrix [5]. Most
often, a flow cytometer with specific stem cell antibody marker (fluorescent antibody cell
sorting) is used to identify the cells, while gene expression is performed with quantitative
real-time polymerase chain reaction (RT-PCR) and microarray analysis.

AD-MSCs have immunomodulatory and paracrine functions as well as the abil-
ity to secrete a wide range of bioactive molecules, such as cytokines, chemokines, and
antioxidants [7,64]. They produce growth factors such as vascular endothelial growth
factor, hepatocyte growth factor, fibroblast growth factor 2, and IGF-1, which are impor-
tant in the initiation of angiogenesis, adipose tissue regeneration, and in overall healing
processes [5,7,64,65].

The immunomodulation function of AD-MSCs consists of inhibition of dendric cell
differentiation by prostaglandin E2, and suppression of immunoglobulin synthesis. Promo-
tion activity is aimed at anti-inflammatory M2 macrophage polarization and regulatory
T-cell proliferation. Secretion of chemokine (C-C motive), ligand 2, and indoleamine 2,3-
dioxygenase inhibits the synthesis of immunoglobulin by B cells. The aforementioned
T-cell proliferation is regulated by leukemia inhibitory factor, hepatocyte growth factor,
interleukin 10, prostaglandin 2, tumor growth factor-beta, and indoleamine. Inhibition
of CD8+ and CD4+ T lymphocytes and natural killer cell proliferation is regulated by in-
doleamine 2,3-dioxygenase, nitric oxide, interleukin 6, prostaglandin 2, and tumor growth
factor-beta [7].

The great advantage of adipose tissue stem cells is their availability and the technical
ease of obtaining them [35]. Although the first described source for harvesting stem cells
was bone marrow, currently adipose tissue is assessed as the most precious resource in
clinical practice. Apart from worse accessibility, bone marrow delivers cells with lower
proliferative capacity, longer doubling time, and lower viability in comparison with adipose-
derived cells. The frequency of AD-MSC is 500 times higher than that of BM-MSC, which
is why it allows for the delivery of a large number of cells that can be obtained in many
ways [66]. The type of the harvesting procedure applied influences the quality of AD-
MSCs, which means the viability and ability for proliferation [66]. The most frequently
used methods include aspiration, liposuction, and surgical excision [66,67]. Aspiration
allows for easy and quick harvesting of a large amount of fat tissue while leaving a
minimal scar. It can be performed as power-assisted vacuum aspiration or mechanical-
assisted syringe aspiration, as described by Coleman [66]. The advantage of the Coleman
technique is the reduction of trauma to the adipocytes owing to the gentle negative pressure
applied in this method. A disadvantage of syringe aspiration is the longer duration of the
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procedure needed to obtain the same number of cells as in vacuum aspiration. Apart from
the higher risk of cell trauma, a disadvantage of the vacuum method is that specialized
equipment is required, according to the selected technique. Power-assisted liposuction
(PAL), laser-assisted liposuction (LAL), and ultrasound-assisted liposuction (UAL) are
the most commonly used approaches [66]. Surgical resection of fat tissue is a method of
harvesting adipocytes without damaging them. This requires an incision of the skin, which
leaves a post-surgical scar. Local anesthesia is sufficient for small procedures. If a large
amount of adipose tissue is needed, the procedure should be performed under general
anesthesia, which can be considered a disadvantage.

Autogenic, allogenic, and xenogeneic ADSCs are used in burn wound treatment.
Topical use of allogenic ADSCs in a sheep burn model improved skin graft intake and blood
flow in the burn wound, increased VEGF levels, and accelerated wound epithelialization
after the excision of a full-thickness burn model [44]. Topical administration of allogenic
ADSCs can reduce the extent of the wound and accelerate healing [45]. For topical use,
ADSCs were often combined with dressings. Allogenic ADSCs can be incorporated in
a cellulose membrane to treat second-degree burns [46] and can also be incorporated in
PEG hydrogel [68] or 5% collagen hydrogel [47]. Hydrogel and ADSCs in combination
were used in full-thickness thermal burns in a rat model and improved wound closure
(95% vs. 79% with a saline gauze). They also stimulated granulation and remodeling of
the dermal layer. Dong et al. treated deep second-degree burns in mice with a hydrogel
dressing with hyaluronic acid with embedded human ADSCs. Significant improvement in
healing in the treated group was observed on day 3. Examination of the specimens showed
a higher number of vessels, a higher ratio of collagen type III to I, and a reduction in active
myofibroblasts [48]. ADSCs can also be incorporated in 3D-printed scaffolds [49]. There
are also reports of ADSC being suspended together with keratinocytes and fibroblasts on
bioabsorbable nanostructures that could serve as composite grafts [69].

In some reports, ADSCs were injected into the burn wound or burn wound edges. In
a study by Rezai et al., allogenic ADSCs were injected intradermally to improve wound
healing and reduce the number of inflammatory cells in the wound. ADSCs promoted
VEGF gene expression and secretion of TGF-β. ADSC also promoted the proliferation of
dermal fibroblasts [50]. Injected intradermally, allogenic ADSCs reduced the area of the
burn after 14 days as well as reduced lymphatic vessels and influenced the concentration
of collagen type III [51].

Curcumin-preconditioned ADSCs had an increased capacity for migration, prolifer-
ation, and paracrine potential, suppressed secretion of pro-inflammatory cytokines, and
improved healing in comparison with innate ADSCs [52]. In a rat burn model, autologous
ADSCs were seeded in a PRP matrix and injected under the meshed skin graft to improve
healing and neovascularization [70].

Intravascular injections of ADSCs might have an influence on organ burn-related
changes. ADSCs injected intravascularly in a swine burn model of a 40% deep burn influ-
enced prothrombin times and INR, wherein low doses revealed slight hypercoagulation.
ADSCs reduced the partial thromboplastin time, fibrinogen, and d-dimer levels, which had
been increased by the burn. Low doses of IV-ADSCs slightly increased creatinine [71].

ADSCs are easy to collect even from voluntary donors after elective liposuction.
Banking ADSCs might be a promising option for cellular burn therapy in future.

2.6. Hair Follicle Stem Cells, Keratinocyte Progenitors, and Stem Cells from Excised Burned Skin

Allogenic hair follicle stem cells (HFSCs) obtained from rats and injected into deep
partial-thickness burns accelerated wound healing and improved epidermal thickness.
HFSCs stimulated neovascularization and increased the expression of proangiogenic CD31
on endothelial cells. The acquisition of HFSCs was performed by collecting a whisker from
the upper lip and processing it with collagenase I/Dispase II solution. The bulges were
then removed from the capsule and small pieces were cultured. Flow cytometric analysis
was performed to determine the expression of CD34 and Nestin [53].
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Human-induced pluripotent stem cells, derived from reprogrammed human skin
fibroblasts, express CD200, integrin α-6 (ITGA6), integrin β-1 (ITGB1), transcription factor
P63, keratin 15 (KRT15), and keratin 19 (KRT19)-like keratinocyte progenitor cells [10].
They can improve wound healing [72]

Xenogenic HFSCs were integrated into human acellular amniotic membrane to treat
third-degree burns in mice. The composite did not change the volume of the stem cells and
improves wound healing after day 7. Both HFSCs in a composite as well all HFSCs alone
improved neovascularization in full-thickness skin defects [73].

Human MSCs obtained from excised burned skin with a third-degree burn injected in
the burn wound improved healing in a mouse and swine burn model [54].

Dolp et al. obtained stem cells from discarded burned skin without subcutaneous
fat. In comparison with umbilical cord stem cells, there was no significant difference in
the expression of MHC I and II, ROS release, or colony formation [74]. Van der Veen also
obtained stem cells from the eschar [75].

One of the threats in acquiring autologous stem cell from the eschar is the influence
of the thermal destruction of all type of cells in deep burns. Additionally, in large burns
over 20% TBSA, lesions due to the burn shock can be observed in many organs and the
influence of the burn shock on stem cells is still unknown.

2.7. Stem Cells in Scar Prevention and Treatment

A scar is not only a cosmetic problem but most importantly a functional one. There are
four stages of scar formation: hemostasis, inflammation (day 1–3), proliferation (day 4–21),
and remodeling (from day 21 to a year) [76]. In the first stage, platelets, erythrocytes,
leukocytes, and fibrin fibers are involved in the formation of a clot [77]. Then, neutrophils
“flow” to the damaged tissue, as they are responsible for combating potential pathogens,
debridement of the wound by phagocytosis, and the secretion of pro-inflammatory me-
diators and chemokines [76,77]. When they undergo apoptosis, monocytes migrate to
the wound area, where they mature into macrophages [77]. Macrophages are important
cells of the proliferation period [76]. They have regulatory properties and stimulate fi-
broblasts to secrete extracellular matrix proteins, including type III collagen. The most
important cytokines in this period are PDGF and TGFβ 1 [76]. Moreover, macrophages
stimulate the maturation of fibroblasts into myofibroblasts and secrete metalloproteinases.
M1 macrophages are primarily pro-inflammatory, and an increase in their numbers in scar
tissue is detected in the early phase, between 7 and 14 days. Re-epithelialization occurs
after the stimulation and migration of keratinocytes [76]. In the scar remodeling phase,
granulation tissue is formed, in which type III collagen is degraded and replaced with
type I collagen [76]. M2 macrophages, with a suppressor effect, are detected in the late
phases of scar remodeling (after 28 days). The activity of M2 macrophages, which persists
for too long, is observed in hypertrophic scars. Reducing the number of macrophages
and inhibiting their activity, prevented scar from overgrowth [78]. The pro-inflammatory
cytokines IL-6 and IL-8 stimulate scar overgrowth, while anti-inflammatory cytokines, such
as IL-10, have the opposite effect [76].

MSCs can be used to prevent the formation of contracting scars (Table 3). Piejko et al.
used autogenic ADSCs in the combined treatment of post-burn contracting scar of the neck.
In the experimental part of the study, a comparison of different types of cells seeded in
the dermal substitute was performed. ADSCs were characterized by higher secretion of
VEGF and pro-angiogenic interleukin 6 (IL-6) than human fibroblasts. The transcription of
metalloproteinases 2 and 9 was also increased, which potentially can favorably influence
the scar remodeling process and improve the quality of the scar. In the further reported case,
a contracting post-burn scar on the neck was qualified for excision. Autogenic ADSCs were
harvested by means of surgical excision of adipose tissue 3 weeks before the subsequent
stage. Cells were isolated, cultured, and seeded into a dermis-substitute matrix based on
bovine collagen and sulphite-chondroitin. Four weeks after scar excision, the silicone layer
of the matrix was removed and the neodermis was covered with a split-thickness skin graft.
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No adverse events were reported. The skin in the area treated with ADSC-s-matrix was
more elastic and less reddish than in non-treated areas [79].

Zahorec et al. described a case of post-burn hypertrophic scars corrected with surgical
excision followed by lipofilling and injections of autologous isolated and cultured ADSCs.
The obtained improvement in scar quality showed a reduction in Vancouver Scar Score
(VSS) from 7.63 points to 2.38 at the 6-month follow-up [80].

Table 3. Clinical studies considering usage of autologous agents in post-burn scars.

Study Study Type Patients and Methods Outcomes Conclusion

Piejko [79] Clinical experiment,
case study

Contracting post-burn scar on the
neck was qualified for excision.

Autogenic AD-SCs were harvested
by surgical excision of adipose tissue

3 weeks before the next stage. The
cells were isolated, cultured, and

seeded into the dermis
substitute-matrix based on bovine
collagen and sulphite-chondroitin.
Four weeks after the scar excision

the silicone layer of the matrix was
removed and the neodermis was

covered with a split-thickness
skin graft.

No adverse events reported,
good scar quality and texture.

Autologous stem cells can
promote “scarless” healing

of deep tissue wounds.

Li [81] Experiment

Adipose and scar tissue was
collected from subjects that

underwent plastic excision of scars.
Adipose-derived stem cells were

isolated and cultured. Then,
exosomes were isolated. BABL/c
mice were randomly divided into

groups; 3 days after creating a
full-thickness injury, exosomes were

injected subcutaneously.

Exosomes inhibited the
proliferation and migration of

fibroblasts, decreased the
expression of Col1, Col3,
α-SMA, IL-17RA, and

p-Smad2/p-Smad3 and
increased the levels of SIP1 in
HSFs. miR-192-5p was highly
expressed in ADSC-Exo and

targeted the expression of
IL-17RA to decrease the

pro-fibrotic protein levels.

ADSC-Exo have
antifibrotic features and
improve wound healing.

Zahorec [80] Clinical experiment

8 patients with post-burn scars:
2 keloid, 6 hypertrophic.

Adipose tissue was harvested with
the Coleman technique, then ADSCs
were isolated and cultured. ADSCs

were injected with a 20G needle,
subdermally after scar resection.

Improvement in VSS score in a
6-month observation

(7.63 to 2.38), elapsing from
scar incidence to correction

was 79 months

Autologous ADSCs are
safe and effective in

preventing and treating
post-burn scars.

Meng [82] Experimental
Fibroblasts from hypertrophic scars

were co-cultured with umbilical cord
stem cells.

Umbilical cord stem cells
suppressed the proliferation

and migration ability of
fibroblasts, with the TGF

β1/Smad3 pathway inhibited
as well. Additionally, levels of

mRNA of collagen type Iα2
(COL1A2), collagen III α1

(COL3A1) and actin α2 smooth
muscle (ACTA-2) were lower.

Umbilical cord
stem cells have

anti-fibrotic potential.

Additionally, exosomes isolated from human adipose-tissue-derived stem cells can be
used to improve scar quality. ADSC exosomes inhibited the proliferation and migration of
fibroblasts and decreased collagen deposits. They also decreased pro-fibrotic markers, such
as Col1, Col3, α-SMA, and IL-17RA. MiR-192-5p modulates gene expression to suppress
IL-17RA [81]. Hypertrophic scar fibroblasts cultured with umbilical cord stem cells were
characterized by a suppressed proliferation and migration ability. Furthermore, the TGF
β1/Smad3 pathway was inhibited, and mRNA of collagen type Iα2 (COL1A2), collagen III
α1 (COL3A1), and actin α2 smooth muscle (ACTA-2) were lower [82].

3. Conclusions

At this point, stem cell therapy in burns is at the experimental level. However, the
first results are promising and understanding of stem cell biology is good, so more studies
should be performed. Experimental studies on small and bigger animals showed that stem
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cells of different origins have a potential to accelerate burn wound healing. Just a few cases
report on humans reported optimistic results and no side-effects. Due to limited evidence
and randomized studies, the routine use of stem cells in the treatment of a burn wound
cannot be recommended. Further studies on more patients should be performed to analyze
the safety and efficiency of stem cells in burn wound management as well as to establish
the most appropriate cell type, origin, and way of application. Research is needed to prove
the viability of autogenous mesenchymal stem cells and their safety in use.
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