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Abstract: Overweight and obesity, associated with various health complications, refer to abnormal or
excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem
in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf
has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied
the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood
and fecal samples were collected from the dogs before and after treatment for different analyses,
including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and
blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies
the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the
downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the
high mulberry group were found, which have been associated with anti-inflammatory effects in the
literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory
and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by
real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans,
related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the
same treatment group. Further studies may be required to establish the gene expression mechanism
and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we
propose mulberry leaves as a portion of food supplements for improving blood glucose levels and
the anti-inflammation of blood in companion dogs.

Keywords: overweight; obesity; companion; mulberry leaf; anti-inflammation; Papillibacter cinnamivorans

1. Introduction

Obesity is an increasingly primary health concern and one of the leading causes of
declining quality of life [1,2]. Obesity is strongly associated with a higher prevalence of
infection and worse recovery, leading to a higher mortality rate [3,4]. Canine obesity is
on the rise as much as in humans, and the prevalence of obesity in dogs is 7.6%, which
continues to increase [5,6]. Obesity is considered a chronic and complex pathological state
accompanied by various diseases, such as inflammation, insulin resistance, pancreatitis,
and cardiovascular diseases [7]. Obesity induces low-grade systemic inflammation and
affects the innate immune system’s low state of metabolic homeostasis [8,9]. Obesity-related
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inflammation is widely considered one of the major factors that trigger the onset of insulin
resistance (IR), a major feature of type 2 diabetes [10]. In addition, insulin deficiency and
hyperglycemia caused by diabetes lead to immune dysfunction in the host [11].

Food supplements are one of the preferred choices against obesity because drugs
may cause serious side effects in long term usage. Mulberry (Morus alba L.) leaves are
a nutritional supplement that has long been widely used for health purposes. Owing
to its nutritional value in many Asian countries, it has been widely used as a functional
food, including beverages, noodles, and herbal tea. Mulberry leaves contain numerous
bioactive compounds, such as flavonoids and phenolic acids, which are responsible for
their antioxidant activity. A study reported that high-dose 1-deoxynojirimycin (1-DNJ),
which is found to be distributed among the mulberry species, reduces aspartate transferase
(AST) and alanine transferase (ALT) levels, and increases sensitivity to fat in high-fat
mice [12,13]. The 1-DNJ significantly reduces intestinal glucose absorption [14], improves
the serum lipid profile in coronary heart disease [15], inhibits metastasis of melanoma
cells [16], and improves insulin sensitivity [17]. In addition, the effects of mulberry leaf on
both humoral and cellular immunity have been proven by increasing antibody production
levels during in vitro and in vivo experiments [18,19]. Hence, we used the efficacy of these
mulberry leaves to apply them to the study of diabetes and obesity through the food of old
dogs. Obesity is a complex phenotype associated with numerous genes. We used blood
transcriptomes to study canine aging obesity because blood transcriptomes have been
found to respond to various environmental changes [20,21].

Diet is considered a key factor influencing the structure of the gut microbiome [22].
In recent years, the importance of the gut microbiome in obesity has been strengthened
through many studies [23]. The gut microbiome sustains the body’s metabolism and energy
balance. It can increase the accumulation of adipose tissue in the host [24] and contribute to
obesity in different ways [25]. A gut microbiome study was also conducted as it is strongly
associated with obesity and could be influenced by the mulberry leaf supplements provided
in the current research. In the study of obesity, transcriptional mechanics increased our
understanding of inflammation-related gene expression and began to link mRNA changes
to the physiological state of obesity. In addition, mulberry leaf supplements are, for the
first time, used for their anti-obesity effects in dogs. Mulberry leaf is suggested as a food
supplement that may reduce obesity in dogs. Further studies are required to establish the
identified gene expression for anti-inflammatory and anti-obesity effects.

2. Results
2.1. Body Condition Score (BCS) and Body Weight (BW)

After low- (40 mg/kg/day, Mulberry_40) or high-dose (100 mg/kg/day, Mulberry_100)
mulberry leaf treatment, the BCSs of the mulberry_40 and mulberry_100 groups were signif-
icantly lower than those of the mulberry _0 group after 12 weeks (Figure 1a). The weights
of the mulberry leaf treatment groups were slightly decreased for 12 weeks; however, the
differences between the treatment and placebo groups were not significant (Figure 1b).
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Figure 1. Comparison of body condition score (BCS) (a), body weight (BW) (b), glucose (c), cortisol 
(d), leptin (e), adiponectin (f) levels in obese dogs with low-dose (Mulberry_40) or high-dose (Mul-
berry_100) of mulberry leaf treatment for 12 weeks. * of BCS (a) shows the p-value of <0.05 vs. Mul-
berry_0 group. All data are presented as mean ± SD. * shows p < 0.05 and ** is p < 0.01. Mulberry_0: 
normal diet group supplemented with 40 mg/kg/day of maltodextrin (placebo); Mulberry_40: nor-
mal diet group supplemented with 40 mg/kg/day of the mulberry leaf; Mulberry_100: normal diet 
group supplemented with 100 mg/kg/day of the mulberry leaf. 

2.2. Obesity-Related Factors in the Blood 
After 12 weeks of mulberry treatments, blood glucose levels were decreased in all 

mulberry treatment groups. Both the mulberry_40 and mulberry_100 groups had signifi-
cantly lowered blood glucose levels, lower than that of the mulberry _0 group after 12 
weeks of treatment (Figure 1c). Cortisol levels were decreased in both the mulberry_40 
and mulberry_100 groups, but only showed as significantly decreased in the mul-
berry_100 group. Leptin and adiponectin levels were reduced and increased (respectively) 
in the mulberry treatment groups compared to those of the mulberry _0 group after 12 
weeks, but the results were not significant (Figure 1e,f).  
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Figure 1. Comparison of body condition score (BCS) (a), body weight (BW) (b), glucose (c), corti-
sol (d), leptin (e), adiponectin (f) levels in obese dogs with low-dose (Mulberry_40) or high-dose
(Mulberry_100) of mulberry leaf treatment for 12 weeks. * of BCS (a) shows the p-value of <0.05
vs. Mulberry_0 group. All data are presented as mean ± SD. * shows p < 0.05 and ** is p < 0.01.
Mulberry_0: normal diet group supplemented with 40 mg/kg/day of maltodextrin (placebo); Mul-
berry_40: normal diet group supplemented with 40 mg/kg/day of the mulberry leaf; Mulberry_100:
normal diet group supplemented with 100 mg/kg/day of the mulberry leaf.

2.2. Obesity-Related Factors in the Blood

After 12 weeks of mulberry treatments, blood glucose levels were decreased in all
mulberry treatment groups. Both the mulberry_40 and mulberry_100 groups had sig-
nificantly lowered blood glucose levels, lower than that of the mulberry _0 group after
12 weeks of treatment (Figure 1c). Cortisol levels were decreased in both the mulberry_40
and mulberry_100 groups, but only showed as significantly decreased in the mulberry_100
group. Leptin and adiponectin levels were reduced and increased (respectively) in the
mulberry treatment groups compared to those of the mulberry _0 group after 12 weeks,
but the results were not significant (Figure 1e,f).
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2.3. Preprocessing and Alignment of Reads

Whole transcriptome analysis was carried out to analyze the effect of the mulberry diet
on dogs using RNA-Seq analysis. The quality control step of sequencing reads achieved
more than 97% (mean value > 98.8%) of good reads from every sample that passed through
the filters. A high alignment percentage (mean value > 96%) of the filtered reads with the
reference genome was observed (Table S1). This alignment was used for further assembly
and expression analyses.

2.4. Assembly and Expression Analysis

Alignment was performed to assemble the whole transcriptome of all samples used
in the study. Subsequently, the expression of all assembled genes/transcripts was cal-
culated for reading counts and fragments per kilobase of transcript per million mapped
reads (FPKM). Furthermore, differentially expressed genes were identified by comparison
between groups. The DEGs were mainly observed when comparing the Mulberry_100
group with the others (Figure 2). According to the selected cutoff (FDR 0.1 and mini-
mum fold change 4), a total of 601, 275, 637, and 219 DEGs were identified when the
after_Mulberry_100 group was compared with before_Mulberry_0, before_Mulberry_40,
before_Mulberry_100, and after_Mulberry_40, respectively (Figure 1). Graphs of the DEGs
were plotted to visualize the MA and volcano plots (Figure S1).
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Figure 2. Number of differentially expressed genes before and after treatment. Mulberry_0: normal
diet group supplemented with 40 mg/kg/day of maltodextrin (placebo); Mulberry_40: normal diet
group supplemented with 40 mg/kg/day of the mulberry leaf; Mulberry_100: normal diet group
supplemented with 100 mg/kg/day of the mulberry leaf.

2.5. Functional Enrichment Analysis and Obesity-Related Genes

Functional enrichment of significant DEGs (URGTG) revealed that most genes associ-
ated with cellular processes in the biological process category followed biological regulation
(Figure S2). Congruently, most genes were enriched in the cellular and anatomical entities
in the cellular component category. Most DEGs were associated with the binding and
gene-specific transcriptional regulator categories in the molecular function and protein
class categories. In pathway enrichment analysis, DEGs were associated with 27 diverse
pathways (Figure S3). Among all common DEGs, three genes (TNFRSF1B, CACNA1A,
and AKT1S1) were found to be associated with obesity-related pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database.
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2.6. Real-Time PCR Analysis for Validation

We conducted real-time PCR analysis to validate the upregulated and downregulated
genes in mulberry leaves using total RNA from whole-blood samples from 15 old obese
dogs. The Mulberry_100 group had lower gene expression levels of PTX3 after mulberry
treatment than those in the other groups. In contrast, the expression of other genes (PDCD1,
TNFRSF1B, RUNX3, TICAM1, and CDKN1A) was significantly higher than that in the
mulberry_0 or mulberry_40 groups after being treated in the Mulberry_100 group (Figure 3).
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Figure 3. Quantitative expressions of diabetes-related genes between the before and after groups.
(a) PTX3, (b) PDCD1, (c) TNFRSF1B, (d) RUNX3, (e) TICAM1, and (f) CDKN1A. All data are presented
as mean ± SEM, and tests were performed in three independent experiments. * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001. The red lines expressed GeneCounts between the before and
after groups. Mulberry_0: normal diet group supplemented with 40 mg/kg/day of maltodextrin
(placebo); Mulberry_40: normal diet group supplemented with 40 mg/kg/day of the mulberry leaf;
Mulberry_100: normal diet group supplemented with 100 mg/kg/day of the mulberry leaf.
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2.7. Gut Microbiome and Diversity Analysis

A total of 4,434,033 paired-end reads from the amplicon region were used for mi-
crobiome analysis. After preprocessing and filtering, 1,533,672 feature reads/operational
taxonomic units (OTUs) were retained. A total of 18,164 unique features/operational
taxonomic units (OTUs) were identified in all samples.

A slight difference in alpha diversity was observed between the groups, but the
difference was not significant according to the p-values. Similarly, the groups showed no
significant differences in the evenness of alpha diversity (Figure S4). The beta diversity
calculated using different methods is plotted in a 3D graph (Figure S5). In the 3D graph
plotted using the Bray Curtis method, the samples with no treatment were more dispersed
in the graphs than the Mulberry_100 group samples that were clustered in the middle region
of the chart. The models with the Mulberry_40 group were also more dispersed in the
graph than those with the Mulberry_100 group, but they were less dispersed in comparison
to the Mulberry_0 group. A similar visual visualization pattern can be observed in the
3D plots generated for the other methods (Jaccard distance, unweighted UniFrac distance,
and weighted UniFrac distance) (Figure S5). Again, the beta diversity difference was not
significant according to the p-value cutoff in the permutational multivariate analysis of
variance (PERMANOVA).

2.8. Taxonomy Analysis of the Samples

Taxonomy annotation was performed, and the results were visualized through bar
plots and Krona plots to study the taxa present in the samples and groups (Figure 4).
The most dominant phyla and classes present in all the models were Firmicutes and
Clostridia. Other abundant phyla in most samples were Fusobacteria, Actinobacteria, and
Proteobacteria (Figure 4).
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berry_0: normal diet group supplemented with 40 mg/kg/day of maltodextrin (placebo); Mul-
berry_40: normal diet group supplemented with 40 mg/kg/day of the mulberry leaf; Mulberry_100: 
normal diet group supplemented with 100 mg/kg/day of the mulberry leaf. 

2.9. Correlation Analysis between Obesity-Related Factors and Gut Microbiome 
The study observed a weak negative correlation between phylum Firmicutes and 
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microbiome and obesity-related factors. However, a strong positive correlation between 
BCS and body weight was detected, as expected in this study (Figure 5). 

Figure 4. Differential abundance of taxa in the Mulberry_0, Mulberry_40, and Mulberry_100 groups.
(a) Bar plot depicting differentially abundant bacterial taxa according to LDA. (b) Cladogram. Mul-
berry_0: normal diet group supplemented with 40 mg/kg/day of maltodextrin (placebo); Mul-
berry_40: normal diet group supplemented with 40 mg/kg/day of the mulberry leaf; Mulberry_100:
normal diet group supplemented with 100 mg/kg/day of the mulberry leaf.

2.9. Correlation Analysis between Obesity-Related Factors and Gut Microbiome

The study observed a weak negative correlation between phylum Firmicutes and
BCS (or body weight) (Figure 5). A strong correlation was not observed between the gut
microbiome and obesity-related factors. However, a strong positive correlation between
BCS and body weight was detected, as expected in this study (Figure 5).



Int. J. Mol. Sci. 2022, 23, 15215 7 of 16Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. Visualization of correlation matrix among microbiome and obesity-related factors. 

2.10. Functional Potential of Bacterial Community 
Enzyme classification numbers, pathways, and KEGG Ortholog (KO) abundance 

were analyzed using PICRUSt2 to predict the functional potential of a community based 
on ASVs. A total of 34, 10, and 1 KO were differentially abundant in the Mulberry_100 
group vs. the Mulberry_0 group, the after_Mulberry_100 group vs. the after_Mulberry_40 
group, and the after_Mulberry_0 group vs. the Mulberry_0 group (p < 0.05) in both 
Welch’s and Wilcoxon rank tests, calculated through ALDEx2 in the R platform (Tables 
S3 and S4). Notably, according to Benjamini–Hochberg’s corrected p-value, no KO was 
found to be differentially abundant. Furthermore, a heatmap of 34 differentially abundant 
KOs was drawn and visualized to compare the after_Mulberry_100 group vs. the be-
fore_Mulberry_0 group (Figure 6). 

 

Figure 5. Visualization of correlation matrix among microbiome and obesity-related factors.

2.10. Functional Potential of Bacterial Community

Enzyme classification numbers, pathways, and KEGG Ortholog (KO) abundance were
analyzed using PICRUSt2 to predict the functional potential of a community based on
ASVs. A total of 34, 10, and 1 KO were differentially abundant in the Mulberry_100 group
vs. the Mulberry_0 group, the after_Mulberry_100 group vs. the after_Mulberry_40 group,
and the after_Mulberry_0 group vs. the Mulberry_0 group (p < 0.05) in both Welch’s and
Wilcoxon rank tests, calculated through ALDEx2 in the R platform (Tables S3 and S4).
Notably, according to Benjamini–Hochberg’s corrected p-value, no KO was found to be
differentially abundant. Furthermore, a heatmap of 34 differentially abundant KOs was
drawn and visualized to compare the after_Mulberry_100 group vs. the before_Mulberry_0
group (Figure 6).
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3. Discussion

Obesity and inflammation are important factors that may cause serious health issues
in humans and other animals, such as dogs. Obesity may cause chronic inflammation,
as obesity is associated with chronic inflammation in obese subjects [26], and secretion
of inflammatory adipokines (such as leptin, interleukin (IL-6), tumor necrosis factor-α,
monocyte chemoattractant protein-1, and resistin) are also reported to be secreted by
adipocytes [27]. Weight control may reverse the expression of inflammatory markers and
inflammation in obese dogs [28]. Anti-inflammation has the potential to reduce not only
inflammation-related issues, but also obesity [29]. The current study was designed to
consider the importance of the efficacy of mulberry leaves for the health of dogs, especially
their anti-obesity [30] and anti-inflammatory effects [31,32].

Critically important obesity-related factors such as glucose, cortisol, leptin, and
adiponectin have been studied in this study. Blood glucose levels are strongly associ-
ated with diabetes and obesity. Similarly, adiponectin has a strong role in obesity and
related diseases, and its blood serum level can be decreased in obese patients [33]. Leptin
is a peptide hormone that performs different functions, including the regulation of food
intake and body mass [34]. Patients with abdominal obesity have elevated cortisol levels.
However, not all obese individuals have higher cortisol levels [35]. In this study, we ob-
served a decrease in blood glucose and cortisol levels after 12 weeks of oral administration
in a high concentration of the Mulberry_100 group. Though there were no significant results
in blood leptin and adiponectin levels in the treatment groups, a tendency to decrease
or increase appeared in terms of trends. This tendency needed to be established in the
genetic part.

Whole transcriptome analysis has been used to study gene expression-based mecha-
nisms of treatment in different organisms [6,36–39]. In this study, RNA-Seq analysis was
applied to study the entire transcriptome expression in the different groups of dogs to
understand the biological mechanism important for the anti-inflammatory and anti-obesity
effects of the diet. The whole-transcriptome analysis generated and utilized high-quality
next-generation sequencing data. The quality control experiment yielded a high percentage
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(>98%) of high-quality reads. Furthermore, a high alignment rate (>96%) of the reads was
achieved, again justifying the quality of the assembled transcriptome analyzed in this study.
The standard RNA-Seq pipeline was used for differential expression analysis of different
groups according to the treatments provided. Differential gene expression was mainly
observed in the Mulberry_100 group, indicating that significant gene expression changes
occurred only with 100 mg/kg/day mulberry leaf treatment. Therefore, the DEGs in the
Mulberry_100 group were further studied. In the gene subset analysis, 143 and 2 genes
were found to be upregulated and downregulated, respectively, in the Mulberry_100 group
compared with all other groups. These genes may be considered potential targets for anti-
obesity and/or anti-inflammatory effects of 100 mg/kg/day of mulberry leaf treatment
provided to the animals. Functional enrichment analysis revealed that the majority of
URGTG functions were associated with cellular processes, biological regulation, cellular
anatomical entity, binding, and gene-specific transcriptional regulator categories. These cat-
egories are associated with cellular metabolic activities that can be related to inflammation
and/or obesity.

Among URGTG, three genes, AKT1S1, TNFRSF1B, and CACNA1A, were found to be
associated with obesity-related pathways (in KEGG database), which were thermogenesis
(hsa04714), the adipocytokine signaling pathway (hsa04920), and type II diabetes mellitus
(hsa04930), respectively. One of these genes (TNFRSF1B) is also known to be important for
the anti-inflammatory response. These genes may be important for the anti-obesity effect
of the treatment in the current study.

Furthermore, genes from the immune system process and the interleukin signaling
pathway from the biological function and pathway category were selected to explore their
roles in the literature. Program cell death protein 1 (PDCD-1), TNF receptor superfamily
member 1B (TNFRSF1B), Runt-related transcription factor (RUNX3), and TIR domain-
containing adapter molecules 1 (TICAM1) were the four out of five genes (from the immune
system process) that were found to be associated with anti-inflammatory activities. PDCD-1
is known to modulate immune system activity by suppressing the inflammatory activity
of T-cells and promoting self-tolerance [40], and was downregulated in the Mulberry_100
group. TNFRSF1B, along with TNF-receptor 1, forms a heterocomplex that mediates
the recruitment of two anti-apoptotic proteins, c-IAP1 and c-IAP2 (ubiquitin ligases),
which limit cell death and prevent inflammation [41]. RUNX3 plays an important role in
inhibiting the JAK2/STAT3 pathway, which may protect against acute lung injury and
inflammation [42]. TICAM-1 inhibits the interaction of IL-17RA with Act1 and suppresses
c-Myc expression, which causes inflammation. These functions of TICAM-1 suppress
IL-17A–IL-17A–mediated inflammatory responses [43]. Similarly, the cyclin-dependent
kinase inhibitor 1 (CDKN1A) gene from the interleukin signaling pathway may suppress
inflammatory cytokine production, including IL-1β, IL-6, and TNF-α, and represent a
potential therapeutic target for novel RA treatments [44]. Among the downregulated
genes, pentraxin 3 (PTX3), one of the two DRGTG genes, is known as an inflammatory
gene and is considered a novel biomarker for inflammatory cardiovascular disease [45].
Downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1
may be important gene expression mechanisms in the treatment groups responsible for the
anti-inflammatory effects associated with the treatment. Expression of all these candidate
genes was also cross-checked through PCR in all studied animals, again following the
same pattern as observed in the whole transcriptome (RNA-Seq) analysis and favoring the
anti-inflammatory effect of the treatment (Figure 3).

Gut microbiome is also a crucial factor contributing to both anti-obesity and anti-
inflammatory properties [25,46]. Therefore, microbiome analysis was also performed to
study the gut microbiome in the studied animals, and the differential abundance of the
gut microbiome in the treatment groups. Notably, sex-related differences can also exist
in the gut microbiome. However, some studies have not found any difference, and the
effect of sex on gut microbiomes seems to be less influential in comparison with other
factors [47–49]. Both males and females were included in each studied group to balance
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the sex-related differences in the gut microbiome. In the gut microbiome analysis, both the
alpha diversity index and evenness were not significantly different according to the p-value.
Similarly, beta diversity was not significantly different among the groups according to
PERMANOVA. This suggests that the treatments did not cause significant microbiome
dysbiosis in the gut of the animals. Taxonomic annotation revealed that the most abundant
phylum in all samples was Firmicutes, which is normally considered one of the most
abundant phyla in the gut microbiome of humans and dogs [50,51]. Differential abundance
analysis of the gut microbiome revealed that Papillibacter cinnamivorans was abundant in
the Mulberry_100 groups, and other species of Papillibacter cinnamivorans are known to be
abundant in individuals consuming a Mediterranean diet, which is known to be rich in
vegetables [52]. The Mediterranean diet is known to have an anti-inflammatory effect [53],
and the diet provided to the Mulberry_100 group in the current study was also rich in
mulberry leaves, which could explain the abundance of Papillibacter cinnamivorans in this
study. This study aimed to analyze the anti-inflammatory and anti-obesity effects of P.
cinnamivorans. No strong correlation was observed between obesity-related factors and
gut microbiome, which might be due to the small number of animals used in the study.
Furthermore, a study with a more significant number of animals may be suggested in future
research. Similarly, more studies are required to establish the identified gene expression
for anti-inflammatory and subsequent anti-obesity effects. Nevertheless, Mulberry leaf is
suggested as a food supplement that may reduce obesity in companion dogs.

4. Materials and Methods
4.1. Animals and Diet

The participants were elderly obese dogs visiting animal hospitals. Obese dogs identi-
fied as level six or higher out of nine levels of the body condition score (BCS) were selected
through veterinary tests, and individuals with clinical symptoms, systemic diseases, or
history were excluded from the test. All test subjects were included in the test after ob-
taining written consent from their guardians, and the test method was approved by the
Animal Testing Ethics Committee (PTB-2021-IACUC-006). This study was conducted in
accordance with the guidelines of the Animal Care and Use Committee of the Institute
of Animal Science. Fifteen old overweight dogs (average 8.06 years, BCS 7.8 ± 0.06, and
12.36 ± 0.06 kg body weight [BW], one beagle dog, one Shetland sheepdog, and three
cocker spaniels per group) were included (Table 1). A total of 15 individual dogs were
randomly divided into three groups: the placebo group (Mulberry_0) with 40 mg/kg/day
of maltodextrin; low concentration administered with a 40 mg/kg/day of Mulberry leaf
powder; the low-dose group (Mulberry_40), and a high concentration administered with a
100 mg/kg/day of Mulberry leaf; the high-dose group (Mulberry_100). All groups were
placed in capsules of the same size and color. The placebo capsule (40 mg/kg/day of
maltodextrin (placebo), Mulberry_0) or test capsules (40 or 100 mg/kg/day of the mulberry
leaf) were administered daily during the morning feeding time for 12 weeks according to
the guidance of the veterinarian in charge. The type, feed quantity, and living environment
of the feed, other than the placebo/test substance administration, remained the same as
before participation in the test. Food intake was monitored during the 12 weeks of interven-
tion through counseling over the phone at least once a week. The amount of feed and the
number of snacks were measured. All dogs required four visits to the veterinary hospital
for blood collection, weighing, and BCS measurements. BCS (at 3, 6, 9, and 12 weeks)
measurements were performed by veterinarians using a 9-point scale based on the criteria
of Laflamme et al. (1997) [54].
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Table 1. Information on companion dog animals for each group used in the study.

Group Species Gender Age (y) BW (kg) BCS
(9-Scale)

Mulberry_0

Cocker
Spaniels F 7 11.5 8

Beagle F 9 16.5 9
Cocker

Spaniels F 10 17.4 9

Cocker
Spaniels M 10 12.1 8

Shetland
Sheepdog F 6 11.5 7

Mulberry_40

Beagle M 8 15.8 9
Cocker

Spaniels M 6 11.7 8

Cocker
Spaniels F 9 10.0 7

Cocker
Spaniels M 9 12.9 8

Shetland
Sheepdog F 7 11.8 7

Mulberry_100

Beagle F 9 17.9 9
Cocker

Spaniels M 8 12.2 8

Shetland
Sheepdog F 6 10.8 7

Cocker
Spaniels F 8 9.0 7

Cocker
Spaniels F 9 11.5 7

Mulberry_0: normal diet group supplement with 40 mg/kg/day of maltodextrin(placebo); Mulberry_40: normal
diet group supplement with 40 mg/kg/day of mulberry leaf; Mulberry_100: normal diet group supplement with
100 mg/kg/day of mulberry leaf.

4.2. Blood Sampling, Serum Chemistry, and Fecal Sampling

Blood and fecal samples were collected from dogs before and after treatment for
12 weeks. Blood was collected and left in a tube for more than 30 min, and then centrifuged
at 400× g at 4 ◦C for 10 min. The serum was stored at −80 ◦C until use. Canine blood
glucose (Accu-Chek Mobile, Roche Diabetes Care GmbH, Mannheim, Germany), canine
cortisol ELISA kit (LSBio, Inc., Seattle, WA, USA), canine leptin ELISA kit (R&D Systems,
Minneapolis, MN, USA), and canine adiponectin ELISA kit (R&D Systems, Minneapolis,
MN, USA) levels were analyzed using commercial kits according to the guidelines of each
manufacturer. Whole blood samples were collected from dogs using RNAprotect® Animal
Blood Tubes (QIAGEN, Hilden, Germany) at the start of the treatment and after the end
of the experiment (12 weeks) for RNA-Seq. Blood (500 µL) was purified using an RNeasy
Protect Animal Blood Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions. Total cholesterol (TC) and triglyceride (TG) levels were analyzed using
commercial kits according to the manufacturer’s protocol. Fecal samples were collected at
the end of treatment and stored at −80 ◦C until further use.

4.3. RNA-Seq Pipeline Used for Assembly and Differential Expression Analysis

Quality control analysis (QCA) is the initial step of RNA-Seq, which consists of
filtering, error removal, and trimming of the reads. According to standard parameters, pair-
end reads from all groups were subjected to quality control analysis using fastp (version
0.23.2) [55]. Only good reads according to QCA were used for alignment-based assembly for
further analysis. The reference genome of Dog (Canis lupus familiaris), CanFam 3.1 reference
genome assembly released by the Genome Reference Consortium, was considered for the
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alignment of filtered (good quality) reads through HISAT2 [56]. Alignment results for each
sample were obtained as sequence alignment map (SAM) files converted to sorted BAM
files according to the requirement for further analysis. StringTie was used to assemble
reads by aligning BAM files [57]. Assembly results of all samples were combined before
analysis of the differential expression study. A Python script (prepDE.py) available with
StringTie was used to connect the assembly results for all the groups. Furthermore, a matrix
of reading count values for every assembled transcript/gene was obtained for differential
expression analysis. A gene count matrix containing expression values for all samples
was utilized for further expression-related analyses using iDEP.93 [58]. Differential gene
expression analysis was performed using DESeq2 and EdgeR with a default threshold
value (false discovery rate < 0.1). A fold change threshold for gene expression of 4 instead
of 2 was considered to reduce the number of differentially expressed genes (DEGs).

4.4. Comparison of DEGs in Different Groups

Essential differentially expressed genes in the treatment group were identified by
comparing gene sets found to be upregulated or downregulated between the groups using
Venn analysis through InteractiVenn [59]. Common upregulated or downregulated genes
in the treatment group (URGTG or DRGTG) were identified by comparing gene sets that
were upregulated compared to all other groups.

4.5. Functional Enrichment of DEGs and Identification of Obesity-Related Genes

Functional enrichment of URGTG was performed using PANTHER (protein anal-
ysis through evolutionary relationships). URGTG was enriched according to biological
processes, cellular components, molecular functions, protein classes, and pathways [60].
Ensemble IDs of all URGTG genes were used to query the panther classification system
using C. lupus familiaris as the target organism. The results were stored in images and
Microsoft Excel formats. All genes present in obesity-related pathways were collected
from the KEGG pathway database. DEGs present in the obesity-related pathway were
considered obesity-related genes in the analysis.

4.6. Blood Gene Expression Using Real-Time PCR Analysis

RNA (50 ng/µL) before and 12 weeks after treatment was isolated from the blood
sample using an QIAamp RNA Blood Mini Kit (Qiagen, Hilden, Germany). Extracted RNA
was used for cDNA synthesis using the iScript cDNA synthesis kit (BioRad, Hercules, CA,
USA). Real-time PCR was performed using SYBR® Green Master Mix (TaKaRa Bio, Otsu,
Japan) and analyzed using the QuantStudio3 PCR system (Thermo Fisher Scientific, San
Jose, CA, USA). The primer sequences (5′–3′) used for RT-PCR are shown in Table S2, and
the expression levels were normalized to the internal GAPDH gene.

4.7. Gut Microbiome Sequence Analysis

16S ribosomal amplicon sequences from the V3–V4 region acquired as pair-end reads
were processed using the latest version of Quantitative Insights into Microbial Ecology
(QIIME2-version 2021) [61]. These paired-end reads from all groups were imported into
QIIME2 and subjected to quality control before the analysis. Divisive amplicon denoising
algorithm 2 (DADA2) was used to denoise, trim, remove low-quality reads, and filter
chimeras [62]. Trimming was carried out after graphic visualization of forward and reverse
reads for quality through the “qiime tools view module” to choose trimming locations. Am-
plicon sequence variants (ASVs) were constructed for further analysis. Multiple sequence
alignment (MSA) of the ASVs was carried out using mafft for phylogenetic analysis [63].
FastTree was used to construct a phylogenetic tree from the alignment [64].

4.8. Taxonomic Annotation

A taxonomy classifier based on Greengenes 13_8 99% OTUs was used for the taxo-
nomic annotation of ASVs using the q2-feature-classifier module in QIIME2 [65]. It uses a
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naïve Bayes taxonomy classifier for annotation. The taxonomic annotation of all samples
was visualized using Barplots and Krona plots, which were drawn using the qiime taxa
barplot” module and python script, respectively [66].

4.9. Diversity Analysis

Alpha diversity was calculated by measuring the community richness and evenness.
Community richness was calculated using the observed features, Shannon’s diversity index,
and Faith’s phylogenetic diversity. Community evenness was calculated using Pielou’s
evenness method. Similarly, beta diversity was calculated through qualitative and quantita-
tive measures of community dissimilarity using Jaccard distance and Bray-Curtis distance.
Furthermore, beta diversity was calculated by incorporating a phylogenetic relationship
between features through unweighted UniFrac distance (a qualitative measure of commu-
nity dissimilarity). UniFrac distance (a quantitative measure of community dissimilarity)
was weighted UniFrac distance (a quantitative measure of community dissimilarity).

4.10. Differential Abundance of Taxa

Linear discriminant analysis effect size (LEfSe) was used to identify the differen-
tial abundance of taxa in the treatment group [67]. Taxonomy results collapsed to the
species level (7th level), and the ASV table results from qiime2 with metadata informa-
tion were used to prepare the LEfSe input format file. Standard cutoff parameters and a
one-against-all strategy for multiclass analysis were used in the LEfSe analysis. Graphs
depicting differences in the microbiome community and cladograms were drawn for visu-
alization [67].

4.11. Correlation Analysis between Obesity-Related Factors and Gut Microbiome

Taxonomy results collapsed to the phylum (2nd level) and species level (7th level) were
used to calculate the Pearson correlation using the R program. The correlation between gut
microbiomes and obesity-related factors (such as BCS, body weight, adiponectin, leptin,
LDL, T-Chol, and TG) were calculated. Furthermore, the correlation matrix was plotted
using the corrplot function in the R program.

4.12. Prediction of Functional Potential of Bacterial Community with Amplicon Sequences

Prediction of microbial community functions from amplicon sequences was carried
out using PICRUSt2 (https://github.com/picrust/picrust2, accessed on 30 May 2022) in
all groups. PICRSt2 was selected for the analysis, as it is considered an accurate method for
predicting the functional potential of the bacterial community [68]. ASVs obtained from
DADA2 were used for functional prediction as input in sequences and abundance files in
the biome format through the PICRUSt2 pipeline. To identify the differential function of
the microbial community in different groups, ALDeX2 was used for the predicted function
in different groups.
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26. Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity indices and inflammatory markers in obese

non-diabetic normo-and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014, 13, 1–10. [CrossRef]
27. Lafontan, M. Fat cells: Afferent and efferent messages define new approaches to treat obesity. Annu. Rev. Pharmacol. Toxicol. 2005,

45, 119–146. [CrossRef]

http://doi.org/10.1155/2020/6134362
http://doi.org/10.1093/eurheartj/ehab518
http://doi.org/10.3389/fimmu.2021.732913
http://doi.org/10.1111/obr.12320
http://doi.org/10.1136/vr.156.22.695
http://doi.org/10.1038/s41598-021-95789-8
http://doi.org/10.3390/ijms20102392
http://doi.org/10.1161/CIRCRESAHA.119.315896
http://doi.org/10.1172/JCI57132
http://doi.org/10.1038/nm.2627
http://doi.org/10.2174/1573399815666191024085838
http://doi.org/10.1016/j.phrs.2021.106029
http://doi.org/10.1038/srep01377
http://doi.org/10.1111/jfbc.13573
http://doi.org/10.1021/jf101401b
http://doi.org/10.1021/jf073223i
http://doi.org/10.1080/21645515.2015.1011977
http://doi.org/10.1073/pnas.091062498
http://doi.org/10.1289/ehp.7635
http://doi.org/10.3390/nu11122862
http://doi.org/10.3748/wjg.v27.i25.3837
http://doi.org/10.1073/pnas.0407076101
http://doi.org/10.1097/NT.0000000000000167
http://doi.org/10.1186/1476-511X-13-29
http://doi.org/10.1146/annurev.pharmtox.45.120403.095843


Int. J. Mol. Sci. 2022, 23, 15215 15 of 16

28. Vendramini, T.H.A.; Macedo, H.T.; Amaral, A.R.; Rentas, M.F.; Macegoza, M.V.; Zafalon, R.V.A.; Pedrinelli, V.; Mesquita, L.G.; de
Carvalho Balieiro, J.C.; Pfrimer, K. Gene expression of the immunoinflammatory and immunological status of obese dogs before
and after weight loss. PLoS ONE 2020, 15, e0238638. [CrossRef]

29. Quarta, C.; Clemmensen, C.; Zhu, Z.; Yang, B.; Joseph, S.S.; Lutter, D.; Yi, C.-X.; Graf, E.; García-Cáceres, C.; Legutko, B. Molecular
integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 2017, 26,
620–632.e6. [CrossRef]

30. Huang, R.-Y.; Huang, C.-C.; Hu, F.B.; Chavarro, J.E. Vegetarian diets and weight reduction: A meta-analysis of randomized
controlled trials. J. Gen. Intern. Med. 2016, 31, 109–116. [CrossRef]

31. Kjeldsen-Kragh, J. Rheumatoid arthritis treated with vegetarian diets. Am. J. Clin. Nutr. 1999, 70, 594s–600s. [CrossRef]
32. Menzel, J.; Jabakhanji, A.; Biemann, R.; Mai, K.; Abraham, K.; Weikert, C. Systematic review and meta-analysis of the associations

of vegan and vegetarian diets with inflammatory biomarkers. Sci. Rep. 2020, 10, 21736. [CrossRef]
33. Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New insight into

adiponectin role in obesity and obesity-related diseases. BioMed Res. Int. 2014, 2014, 658913. [CrossRef]
34. Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity:

Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [CrossRef]
35. Van der Valk, E.S.; Savas, M.; van Rossum, E.F. Stress and obesity: Are there more susceptible individuals? Curr. Obes. Rep. 2018,

7, 193–203. [CrossRef]
36. Chawla, A.; Stobdan, T.; Srivastava, R.B.; Jaiswal, V.; Chauhan, R.S.; Kant, A. Sex-biased temporal gene expression in male and

female floral buds of seabuckthorn (Hippophae rhamnoides). PLoS ONE 2015, 10, e0124890. [CrossRef]
37. Guleria, V.; Jaiswal, V. Comparative transcriptome analysis of different stages of Plasmodium falciparum to explore vaccine and

drug candidates. Genomics 2020, 112, 796–804. [CrossRef]
38. Jaiswal, V.; Park, M.; Lee, H.-J. Comparative Transcriptome Analysis of the Expression of Antioxidant and Immunity Genes in the

Spleen of a Cyanidin 3-O-Glucoside-Treated Alzheimer’s Mouse Model. Antioxidants 2021, 10, 1435. [CrossRef]
39. Jaiswal, V.; Cho, Y.-I.; Lee, H.-J. Preliminary study to explore the immune-enhancement mechanism of platycodon grandiflorus

extract through comparative transcriptome analysis. Appl. Sci. 2020, 11, 226. [CrossRef]
40. Syn, N.L.; Teng, M.W.; Mok, T.S.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017,

18, e731–e741. [CrossRef]
41. Zhang, J.; Webster, J.D.; Dugger, D.L.; Goncharov, T.; Roose-Girma, M.; Hung, J.; Kwon, Y.C.; Vucic, D.; Newton, K.; Dixit, V.M.

Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation. Cell Rep. 2019, 27, 2679–2689.e3. [CrossRef] [PubMed]
42. Li, S.; Cui, H.; Xu, C.; Sun, Z.; Tang, Z.; Chen, H. RUNX3 protects against acute lung injury by inhibiting the JAK2/STAT3

pathway in rats with severe acute pancreatitis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5382–5391. [PubMed]
43. Miyashita, Y.; Kouwaki, T.; Tsukamoto, H.; Okamoto, M.; Nakamura, K.; Oshiumi, H. TICAM-1/TRIF associates with Act1 and

suppresses IL-17 receptor–mediated inflammatory responses. Life Sci. Alliance 2022, 5, e202101181. [CrossRef] [PubMed]
44. Takashima, Y.; Hayashi, S.; Fukuda, K.; Maeda, T.; Tsubosaka, M.; Kamenaga, T.; Kikuchi, K.; Fujita, M.; Kuroda, Y.; Hashimoto, S.

Susceptibility of cyclin-dependent kinase inhibitor 1-deficient mice to rheumatoid arthritis arising from interleukin-1β-induced
inflammation. Sci. Rep. 2021, 11, 12516. [CrossRef]

45. Inoue, K.; Kodama, T.; Daida, H. Pentraxin 3: A novel biomarker for inflammatory cardiovascular disease. Int. J. Vasc. Med.
2012, 2012. [CrossRef]

46. Wang, J.; Chen, W.-D.; Wang, Y.-D. The relationship between gut microbiota and inflammatory diseases: The role of macrophages.
Front. Microbiol. 2020, 11, 1065. [CrossRef]

47. Lay, C.; Rigottier-Gois, L.; Holmstrøm, K.; Rajilic, M.; Vaughan, E.E.; de Vos, W.M.; Collins, M.D.; Thiel, R.; Namsolleck, P.;
Blaut, M. Colonic microbiota signatures across five northern European countries. Appl. Environ. Microbiol. 2005, 71, 4153–4155.
[CrossRef]

48. Kovacs, A.; Ben-Jacob, N.; Tayem, H.; Halperin, E.; Iraqi, F.A.; Gophna, U. Genotype is a stronger determinant than sex of the
mouse gut microbiota. Microb. Ecol. 2011, 61, 423–428. [CrossRef]

49. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [CrossRef]
50. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.

Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef]
51. Reddy, K.E.; Kim, H.-R.; Jeong, J.Y.; So, K.-M.; Lee, S.; Ji, S.Y.; Kim, M.; Lee, H.-J.; Lee, S.; Kim, K.-H. Impact of breed on the fecal

microbiome of dogs under the same dietary condition. J. Microbiol. Biotechnol. 2019, 29, 1947–1956. [CrossRef]
52. Wang, D.D.; Qi, Q.; Wang, Z.; Usyk, M.; Sotres-Alvarez, D.; Mattei, J.; Tamez, M.; Gellman, M.D.; Daviglus, M.; Hu, F.B. The Gut

Microbiome Modifies the Association Between a Mediterranean Diet and Diabetes in USA Hispanic/Latino Population. J. Clin.
Endocrinol. Metab. 2022, 107, e924–e934. [CrossRef]

53. Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean diet as a tool to
combat inflammation and chronic diseases. An overview. Biomedicines 2020, 8, 201. [CrossRef]

54. Laflamme, D. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15.
55. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
56. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [CrossRef]

http://doi.org/10.1371/journal.pone.0238638
http://doi.org/10.1016/j.cmet.2017.08.023
http://doi.org/10.1007/s11606-015-3390-7
http://doi.org/10.1093/ajcn/70.3.594s
http://doi.org/10.1038/s41598-020-78426-8
http://doi.org/10.1155/2014/658913
http://doi.org/10.3389/fendo.2021.585887
http://doi.org/10.1007/s13679-018-0306-y
http://doi.org/10.1371/journal.pone.0124890
http://doi.org/10.1016/j.ygeno.2019.05.018
http://doi.org/10.3390/antiox10091435
http://doi.org/10.3390/app11010226
http://doi.org/10.1016/S1470-2045(17)30607-1
http://doi.org/10.1016/j.celrep.2019.04.111
http://www.ncbi.nlm.nih.gov/pubmed/31141691
http://www.ncbi.nlm.nih.gov/pubmed/31298391
http://doi.org/10.26508/lsa.202101181
http://www.ncbi.nlm.nih.gov/pubmed/34819358
http://doi.org/10.1038/s41598-021-92055-9
http://doi.org/10.1155/2012/657025
http://doi.org/10.3389/fmicb.2020.01065
http://doi.org/10.1128/AEM.71.7.4153-4155.2005
http://doi.org/10.1007/s00248-010-9787-2
http://doi.org/10.1038/nature11234
http://doi.org/10.1038/nature09944
http://doi.org/10.4014/jmb.1906.06048
http://doi.org/10.1210/clinem/dgab815
http://doi.org/10.3390/biomedicines8070201
http://doi.org/10.1093/bioinformatics/bty560
http://doi.org/10.1038/s41587-019-0201-4


Int. J. Mol. Sci. 2022, 23, 15215 16 of 16

57. Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with
HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [CrossRef]

58. Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq
data. BMC Bioinform. 2018, 19, 534. [CrossRef]

59. Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets
through Venn diagrams. BMC Bioinform. 2015, 16, 169. [CrossRef]

60. Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim
and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [CrossRef]

61. Estaki, M.; Jiang, L.; Bokulich, N.A.; McDonald, D.; González, A.; Kosciolek, T.; Martino, C.; Zhu, Q.; Birmingham, A.; Vázquez-
Baeza, Y.; et al. QIIME 2 Enables Comprehensive End-to-End Analysis of Diverse Microbiome Data and Comparative Studies
with Publicly Available Data. Curr. Protoc. Bioinform. 2020, 70, e100. [CrossRef]

62. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

63. Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic
Acids Res. 2005, 33, 511–518. [CrossRef]

64. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance
Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [CrossRef]

65. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An
improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.
2012, 6, 610–618. [CrossRef]

66. Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011,
12, 385. [CrossRef]

67. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery
and explanation. Genome Biol. 2011, 12, R60. [CrossRef]

68. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for
prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef]

http://doi.org/10.1038/nprot.2016.095
http://doi.org/10.1186/s12859-018-2486-6
http://doi.org/10.1186/s12859-015-0611-3
http://doi.org/10.1093/nar/gky1038
http://doi.org/10.1002/cpbi.100
http://doi.org/10.1038/nmeth.3869
http://doi.org/10.1093/nar/gki198
http://doi.org/10.1093/molbev/msp077
http://doi.org/10.1038/ismej.2011.139
http://doi.org/10.1186/1471-2105-12-385
http://doi.org/10.1186/gb-2011-12-6-r60
http://doi.org/10.1038/s41587-020-0548-6

	Introduction 
	Results 
	Body Condition Score (BCS) and Body Weight (BW) 
	Obesity-Related Factors in the Blood 
	Preprocessing and Alignment of Reads 
	Assembly and Expression Analysis 
	Functional Enrichment Analysis and Obesity-Related Genes 
	Real-Time PCR Analysis for Validation 
	Gut Microbiome and Diversity Analysis 
	Taxonomy Analysis of the Samples 
	Correlation Analysis between Obesity-Related Factors and Gut Microbiome 
	Functional Potential of Bacterial Community 

	Discussion 
	Materials and Methods 
	Animals and Diet 
	Blood Sampling, Serum Chemistry, and Fecal Sampling 
	RNA-Seq Pipeline Used for Assembly and Differential Expression Analysis 
	Comparison of DEGs in Different Groups 
	Functional Enrichment of DEGs and Identification of Obesity-Related Genes 
	Blood Gene Expression Using Real-Time PCR Analysis 
	Gut Microbiome Sequence Analysis 
	Taxonomic Annotation 
	Diversity Analysis 
	Differential Abundance of Taxa 
	Correlation Analysis between Obesity-Related Factors and Gut Microbiome 
	Prediction of Functional Potential of Bacterial Community with Amplicon Sequences 

	References

