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Abstract: Triacontanol (TRIA) has been reported to influence signal transduction in the crosstalk
triggered by various stress factors. As a signal player, it is also known to affect many physiological
processes, including enhancing the biosynthesis of secondary metabolites. Such knowledge can be
used to direct or boost the production of bioactive secondary compounds without stress induction.
Therefore, the aim of this study is to evaluate the use of TRIA as a factor stimulating the growth
and production of bioactive compounds in the shoot culture of Dracocephalum forrestii. TRIA was
applied at three concentrations (2.5, 5, and 10 µM), alone or in combination with phytohormones
(6-benzylaminopurine and indole-3-acetic acid). After five weeks, growth and physiochemical param-
eters (chlorophyll content, antioxidant enzyme activity, and phenolic acid level) were determined. The
results indicate that TRIA application significantly increased shoot dry weight, chlorophyll content,
antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase), and total polyphenol
level; it also influenced the multiplication ratio in combination with growth regulators. The greatest
antioxidant enzyme activity was observed for 5 µM TRIA in hormone-free medium, while the most
significant secondary metabolite production was obtained for phytohormone-containing medium
supplemented with 10 µM TRIA: total phenolic acid content (19.4 mg/g dry weight) was twice that
of the control. Hence, the TRIA application appears to be a valuable biotechnology technique for
modifying plant metabolite production.

Keywords: biologically active compounds; Dracocephalum forestii; in vitro culture; phytohormones;
plant secondary metabolites; triacontanol; rosmarinic acid

1. Introduction

Plant cell culture is a common alternative to conventional propagation for producing
biomass and biologically-important secondary metabolites. The growth and productivity of
in vitro cultures can be regulated, inter alia, by adding various exogenous compounds, par-
ticularly plant growth regulators (PGRs) such as cytokinins, auxins or gibberellins. These
substances can modulate morphological, biochemical, photosynthetic, and developmental
processes [1]. PGRs are effective at low concentrations and affect cell division, tissue regen-
eration, plant organ formation, and plant reproduction. Phytohormones and their synthetic
equivalents also regulate the pathways of plant secondary metabolites by influencing the
production and expression of appropriate enzymes [2]. However, similar effects can be
obtained in vitro by some biostimulants [3]. These natural or synthetic substances also
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influence plant growth and modify or regulate different physiological processes when
given in small concentrations.

A natural plant biostimulant is triacontanol (TRIA) [4]. It is an aliphatic thirty carbon
alcohol used as a growth promotor and is commonly applied to horticultural and agricul-
tural crops [5]. It can be obtained from epicuticular waxes in several plant species, such
as Medicago sativa, Vaccinium ashei or Oryza sativa [6–8]. TRIA application was found to
significantly increase fresh and dry weight, leaf area, and plant weight [9,10]. It is believed
to act by influencing various plant biochemical and physiological processes; for example,
it has been found to regulate photosynthesis by enhancing the activity of rbcS genes and
ribulose-1,5 bisphosphate carboxylase oxygenase (RuBisCO) [11]. Many of these processes
occur in response to diverse stress factors, and TRIA influences signal transduction in their
crosstalk. Namely, TRIA can enhance the activity of antioxidant enzymes, i.e., peroxidase
(POD), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) oc-
curring in response to stress factors such as heavy metals, salts, water or temperature [12].
Some studies indicate that TRIA may also influence the content of important secondary
metabolites in many plant species [9,13]; it may play a role in the interactions occurring
between environmental factors and influence the status of plant secondary metabolites.

Due to the wide range of properties, attempts have been made to use TRIA in in vitro
plant cultures [14,15]. Several works reported that the addition of TRIA to a growth
medium, alone or in combination with other plant growth regulators, affected propagation
and shoot growth. Cultures treated with TRIA typically demonstrated a higher number of
shoots per explant and higher biomass compared to controls, and the addition of TRIA to
the growth medium increased the level of some bioactive metabolites. For example, in vitro
shoots of Salvia officinalis and Thymus mastichiana accumulated higher levels of phenolic
compounds and essential oil constituents, respectively, compared to controls [14,15]. It
proves that the impact of biotic stress factors on plant-specialized metabolites and general
plant conditions can be demonstrated indirectly through the signal molecule application.
The analysis of stressor-induced signalling pathways allows for the selection of significant
molecular players involved (here, e.g., TRIA) that subsequently can be used as a tool for
gaining desired modifications in plant physiology and production. Hence, without stress
induction, different changes in plant growth rate and in in vitro production of secondary
metabolites can be achieved.

Since TRIA is known to influence many physiological processes, and to enhance
the biosynthesis of secondary metabolites, the aim of this study is to evaluate the use
of TRIA as a factor stimulating the growth and production of bioactive compounds in
Dracocephalum forrestii—the endemic Chinese medicinal plant. This species grows in moun-
tainous areas, over 2000 m above sea level, and its aboveground parts are traditionally
used in folk medicine as an astringent, diuretic, and antipyretic factor [16,17]. D. forrestii
shoot culture is a valuable source of polyphenolic compounds, particularly phenolic acids
(e.g., rosmarinic acid, caffeic acid, chlorogenic acid, salvianolic acid B) [18]. The presence of
these compounds in plant material determines its antioxidant, antimicrobial, and antitumor
properties [19].

The present study evaluates the effect of different concentrations of TRIA on the
proliferation and biomass of D. forrestii shoots, applied alone or in combination with other
phytohormones: 0.5 mg/L 6-benzylaminopurine (BAP) and 0.2 mg/L indole-3-acetic acid
(IAA). It examines the influence of TRIA on the physiological processes of plant cells, with
regard to chlorophyll production and the activity of antioxidant enzymes. The aim of the
study was also to determine the optimal content of TRIA for the production of phenolic
acids in D. forrestii in vitro culture.

2. Results and Discussion
2.1. Effects of TRIA on Culture Growth

The nodal segments of D. forrestii shoots were cultivated on MS (Murashige and
Skoog’s medium) agar medium containing 2.5, 5, or 10 µg/L triacontanol, with or without



Int. J. Mol. Sci. 2022, 23, 15147 3 of 13

a growth hormone mix (0.5 mg/L BAP and 0.2 mg/L IAA). Shoots cultivated in simple
MS medium and on MS medium containing the auxin-cytokinin mix (0.5 mg/L BAP and
0.2 mg/L IAA) were treated as controls. No difference in the percentage of response was
found between plants grown on the media used for the shoot cultivation; for all media
variants, the percentage of explants forming shoots ranged from 85 to 100% (Figure 1).
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Figure 1. D. forrestii shoots growing five weeks on MS medium containing: TRIA (µg/L) or TRIA
(µg/L) and 0.5 mg/L BAP and 0.2 mg/L IAA (TRIA-BI), C-medium without growth regulators, C-BI-
medium with 0.5 mg/L BAP and 0.2 mg/L IAA. Bar 1 cm.

Media supplemented with growth regulators stimulated callus formation on Dracocephalum
shoots; 5% explants grown on control C-BI medium formed callus tissue. The addition of
TRIA to the phytohormone-containing medium increased the frequency of callus formation
to 40% (Figure 1). The obtained callus tissue was undifferentiated and showed no tendency
to regenerate organs. Previous studies indicate that triacontanol can promote callus for-
mation: Hanganter and Ries [20] observed induction of undifferentiated Nicotiana tabacum
callus at 10 µg /disc TRIA, and Abhirami et al. [21] noted callus induction on A. gangetica
leaves cultivated on media with 1–20 µg/L TRIA. However, no callus formed on D. forrestii
explants in the presence of TRIA alone, i.e., without phytohormone in the medium.

The addition of TRIA to the MS medium, regardless of its concentration, did not
influence the proliferation of D. forrestii shoots. For all TRIA treatments without the
IAA/BAP mix and for the control C, the proliferation ratio was about two shoots per
explant (Figure 2). However, when triacontanol was added to the BAP-containing medium,
it enhanced the shoot regeneration effect. The highest shoot proliferation ratio was found
on medium with 2.5 µg/L TRIA, 0.5 mg/L BAP and 0.2 mg/L IAA, i.e., 10 new shoot/buds
per explant. This value was about 50% higher compared to that obtained for shoots grown
on MS medium without TRIA (C-BI) and five times higher than that for the culture on
MS medium (C) (Figure 2). Increasing the TRIA concentration in media with BAP and
IAA gradually reduced the proliferation ratio; however, the proliferation ratio remained
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greater than the control C-BI value, even in the medium with the highest TRIA level
(10 µg/L) (Figure 2).
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Figure 2. Effect of triacontanol on the propagation of D. forrestii shoots cultured five weeks on MS
medium containing TRIA (µg/L) or TRIA (µg/L) and 0.5 mg/L BAP and 0.2 mg/L IAA (TRIA-BI):
C-medium without growth regulators, C-BI- medium with 0.5 mg/L BAP and 0.2 mg/L IAA. The
values represented means ± SE of three independent experimental replicates. The means marked
with various letters for the same parameter were different at p < 0.05 according to Tukey’s test.

TRIA was found to promote in vitro multiplication for other medicinal plants in the
Lamiaceae, such as Melissa officinalis, Salvia officinalis, and Thymus masthiana [14,15,22]. TRIA
used at concentrations between 2–10 µg/L increased the proliferation of the above species
by up to 50%. Similarly, in the case of M. officinalis, the lowest concentration (2 µg/L)
was found to yield the best results [22]. In contrast, for the other two species, the highest
multiplication ratio was observed for the higher TRIA concentration [14,15].

In the present study, TRIA was found to influence biomass growth in D. forrestii.
Supplementation significantly increased the dry weight of the culture in comparison with
the control culture (C) at all used concentrations (Figure 3). Regardless of the proliferation
ratio, the D. forrestii shoots growing on the TRIA-supplemented media were thicker and
have larger leaves than those growing on the control media. The highest dry weight was
obtained when shoots were cultivated on medium with 10 µg/L TRIA (0.078 g/tubes). In
this case, the dry weight increased 40-fold within five weeks, i.e., four times higher than for
the control. Also, supplementation of the MS medium with the auxin-cytokinin complex
increased in culture dry weight (C vs. C-BI), and TRIA additionally intensified the action
of growth regulators. Again, the highest TRIA concentration used (10 µg/L) proved to be
the most effective (Figure 3). The dry biomass (0.17 g/tubes) was found to be four times
higher than for the control (C-BI), i.e., an 80- fold increase in dry weight within five weeks.

It has previously been noted that 10 µg/L TRIA combined with BAP and IAA most
effectively stimulated the growth of S. officinalis shoots [14]. The presence of TRIA in the
medium also stimulated the biomass of in vitro cultivated T. masthiana and Capsicum frutescens
shoots [15,23].
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Figure 3. Effect of TRIA on dry mass (DW) of D. forrestii shoots, growing five weeks on MS medium
containing TRIA (µg/L) or TRIA (µg/L) and 0.5 mg/L BAP and 0.2 mg/L IAA (TRIA-BI): C-medium
without growth regulators, C-BI- medium with 0.5 mg/L BAP and 0.2 mg/L IAA. The values
represented means ± SE of three independent experimental replicates. The means marked with
various letters for the same parameter were different at p < 0.05 according to a Tukey’s test.

Earlier reports suggest that the observed increase in biomass and multiplication ratio
of plants treated with TRIA could result from the formation of the second messenger
9-ß-L (+) adenosine, with a similar structure to purine cytokinins [5,6]. The 9-ß-L (+)
adenosine influences the physio-biochemical processes related to plant growth. It leads
to the formation and proliferation of cells and induces activities of enzymes relating to
carbohydrate and protein metabolism in plants, and the increase in plant dry weight may
result from an increase in the levels of reducing sugars, soluble proteins, and free amino
acids in the plant [6]. Additionally, TRIA promotes growth by inducing other substances
stimulating plant development, such as gibberellic acid, IAA, glucosamine, melatonin, and
serotonin [12].

2.2. Determination of Chlorophyll Content

Chlorophyll content was significantly enhanced in the D. forrestii shoots after the addi-
tion of TRIA into MS medium; shoots treated with 10 µg/L demonstrated three-fold higher
levels compared to control shoots (0.12 mg/g fresh weight (FW)) (Figure 4). Moreover,
shoots grown on media with TRIA in combination with phytohormones demonstrated
higher amounts of chlorophyll compared to control (C-BI) (Figure 4). Also, in this case,
a higher chlorophyll concentration was observed at higher TRIA concentration, reaching
a maximum at TRIA 10 µg/L (about 0.085 mg/g FW). However, the presence of growth
regulators in the growth media significantly reduced the stimulating effect of TRIA on
chlorophyll production.

Similarly, Tantos et al. [22] found the amount of photosynthetic pigments to increase
with increasing TRIA concentration in M. officinalis shoots in vitro. The highest amount
of chlorophyll was observed in shoots grown on medium with 10 µg/L TRIA, i.e., 176%
of the amount observed in the control. Previous studies attribute the increase of pho-
tosynthetic pigments in plants treated with TRIA to the crucial role it plays in protect-
ing protein-pigment complexes and up-regulating the rbcS genes related to chlorophyll
biosynthesis [11,24].
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Figure 4. Effect of triacontanol on chlorophyll content in shoots of D. forrestii cultured for five weeks
on MS medium containing TRIA (µg/L) or TRIA (µg/L) and 0.5 mg/L BAP and 0.2 mg/L IAA
(TRIA-BI), C-medium without growth regulators, C-BI- medium with 0.5 mg/BAP and 0.2 mg/L IAA.
The values represented means ± SE of three independent experimental replicates. The means
marked with various letters for the same parameter were different at p < 0.05 according to a
Tukey’s test.

2.3. Genetic Stability

Several molecular methods, such as random amplified polymorphic DNA (RAPD),
restriction fragment length polymorphism (RFLP) or inter simple sequence repeats (ISSR),
have been used to analyze the genetic stability within tissue culture-regenerated shoots.
In this case, ISSR amplification was chosen due to its simplicity, cost-effectiveness, and
usefulness in the analysis of non-sequenced genomes. Hence, the genetic variation of
both the control cultures and investigated regenerants were analyzed by the analysis of
the band reproducibly. The amplification yielded 264 scorable bands, generated with six
randomly-selected single microsatellite primers (Table S1).

A particular primer was generated from three to seven bands ranging from 100 to
3000 bp in length. The ISSR analysis did not reveal any signs of polymorphism in any
D. forrestii culture compared to the control shoots (Figure 5). As a consequence of the
monomorphic banding patterns, all the Jaccard [25] coefficients were the same (value—
1), confirming that the induced shoots were genetically homogeneous. Although only
six primers were used as a tool for genetic variation studies (Table S1), it may be tentatively
stated that the shoots raised on different medium compositions (including those supple-
mented with TRIA) maintained high uniformity, preserving high genetic similarity among
the treatments.
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2.4. Effects of Triacontanol on Activities of Antioxidant Enzymes

TRIA may affect plant antioxidant capacity by regulating the activity of some antioxi-
dant enzymes, viz. POD, SOD and CAT [21,26]. The addition of TRIA to the MS medium
was found to enhance the activity of antioxidant enzymes in D. forrestii shoots compared
to shoots growing on C control medium (Table 1). Although all antioxidant enzymes
demonstrated an increase in activity which was visible at the lowest TRIA dose, the highest
activity was noted for shoots grown on MS medium with 5 µg/L TRIA: CAT 84.98 U/mg
of protein, SOD 29.62 U/mg of protein, and POD 15.81 U/mg of protein (Table 1). Of these
enzymes, CAT reacted most strongly to the presence of TRIA, demonstrating an eight-fold
increase under optimal conditions.

Table 1. Effect of triacontanol on the antioxidant enzyme activities in D. forrestii shoots cultured for
five weeks on MS medium containing TRIA (µg/L) or TRIA and 0.5 mg/L BAP and 0.2 mg/L IAA
(TRIA-BI). C-control medium without growth regulators, C-BI- control-medium with 0.5 mg/L BAP
and 0.2 mg/L IAA.

Activity of Antioxidant Enzymes (U/mg of Protein)

Medium with POD SOD CAT

TRIA 2.5 7.81 ± 0.64 d 25.11 ± 0.15 b 35.17 ± 0.15 d

TRIA 5 15.81 ± 0.31 a 29.62 ± 0.21 a 84.98 ± 0.27 a

TRIA 10 7.39 ± 0.61 d 23.48 ± 0.09 c 71.72 ± 0.28 c

C 3.21 ± 0.02 f 12.10 ± 0.08 g 11.75 ± 0.09 g

TRIA 2.5-BI 9.54 ± 0.70 c 20.05 ± 0.11 d 37.15 ± 0.19 e

TRIA 5-BI 11.14 ± 0.11 b 16.23 ± 0.11 e 78.07 ± 0.49 b

TRIA 10-BI 5.07 ± 0.40 e 15.78 ± 0.18 f 78.49 ± 0.23 b

C-BI 5.90 ± 0.09 e 15.03 ± 0.12 f 22.48 ± 0.18 f

The values represented means ± SE of three independent experimental replicates. The means marked with
various letters for the same parameter were different at p < 0.05 according to a Tukey’s test.

The results indicate that supplementation with TRIA of the phytohormone-containing
MS medium increased the activity of antioxidant enzymes compared to C-BI control treat-
ment (MS medium with BAP and IAA) (Table 1). On the other hand, TRIA had a much
weaker effect on enzyme activity when applied in the presence of growth regulators than
when applied alone, while the presence of phytohormones in the medium, without TRIA,
also increased the activity of all tested enzymes (C-BI vs. C). When given in combina-
tion (TRIA + BAP + IAA), CAT was the most sensitive enzyme to its presence in the
medium (Table 1).

TRIA has also been found to influence enzymatic activity in other plant cultures. For
example, 0.5 mL/L TRIA dosed as spray increased CAT activity Arachis hypogaea twenty-
fold compared to the control; however, 0.5 mg/L TRIA with 0.5 mg/L BAP reduced CAT
activity compared with controls containing only BAP [27].

TRIA treatment is known to increase the activity of antioxidant enzymes under normal
and stress conditions. It is possible that TRIA as a signalling compound modulates the
activity of the antioxidant defense system by inhibiting malondialdehyde (MDA) and H2O2
production, which could result in enhanced antioxidant levels and increased antioxidant
activity [26,28,29]. TRIA is known to modulate the induction of defense-related genes
responsible for water and nutrient absorption, photosynthesis, membrane stability, and
enzyme activities [30]. Certain stress factors can stimulate TRIA biosynthesis and thus
activate the pathways of defense reactions. However, the exogenous addition of TRIA to
plants, whether by addition to nutrient medium, irrigation or foliar spraying, was found to
elicit key environmental stress tolerance mechanisms as was observed in Erythrina variegate
seedlings [31].
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2.5. Effects of Triacontanol Phenolic Compounds Content

The stress response can also occur through non-enzymatic mechanisms. Such strate-
gies are based on stimulating the biosynthesis of secondary metabolites that act as natural
antioxidants, such as polyphenolic compounds in plants.

The levels of polyphenolic compounds in D. forrestii shoots grown for five weeks on
MS agar media supplemented with TRIA alone and with TRIA + BAP + IAA were evaluated.
The levels of the phenolic acids present in the hydromethanolic extract were determined
based on their retention times and UV and MS spectra, as described previously [18]. The
quantities were determined using HPLC. The total phenolic acid content was calculated as
the sum of those of all analysed compounds. It was found that TRIA had a significant effect
on polyphenol accumulation in D. forrestii culture: total phenolic acid content increased with
TRIA level in the medium. The polyphenol level found in shoots grown on MS medium
with 10 µg/L TRIA (12.52 mg/g DW) was 54% higher than in shoots grown on a control
hormone-free medium (C) (Table 2). Supplementing the medium with phytohormones
(BAP + IAA) slightly increased the total phenol content, but significantly higher polyphenol
production was observed for TRIA + BAP + IAA (Table 2). The highest level of polyphenols
(almost 20 mg/g DW) was achieved in shoots cultivated on medium with phytohormones
and 10 µg/L TRIA, i.e., more than twice as high as in the control C-BI.

The predominant compound in all tested extracts was rosmarinic acid (RA), whose
level increased with the concentration of TRIA. Rosmarinic acid is a valuable plant metabo-
lite with wide anti-oxidant, anti-inflammatory, and anticancerogenic activities [32]. It has
been found to exert hepatoprotective effects in vitro and in vivo: RA reduced liver fibrosis
grade, ameliorated biochemical indicators, and downregulated TGF-β1 and CTGF expres-
sion [33]. RA also exerted a neuroprotective effect on spinal cord injury by inhibiting the
TLR4/NF-κB pathway and activating Nrf2/HO-1 [34]. Khamse et al., [35] confirm that RA
has strong activity against temporal lobe epilepsy. In addition, incubation with RA caused
a decrease in breast cancer cell migration and induced their apoptosis [36], and a study
on a rat model showed RA to offer potential as a chemopreventive agent against colon
cancer [37].

The total polyphenol content in the D. forrestii shoots was found to be primarily
influenced by changes in RA accumulation. The RA content doubled in both the medium
with TRIA alone and the medium with TRIA + BAP + IAA (Table 2). TRIA appeared to
have a much weaker influence on the other metabolites: a visible decrease in caffeic acid
level was observed with higher TRIA concentration. This may be related to its use as a
substrate in the biosynthesis of RA, whose accumulation increases significantly.

Other studies report TRIA application to result in significant increases in alkaloid
production in C. roseus [38], the morphine level in Papaver somniferum [13], and artemisinin
content in Artemisia annua [9]. However, little data has confirmed that triacontanol can
influence the accumulation of phenolic compounds in plants. TRIA application has been
found to increase the total phenolic level in Zea mays [39], and the use of a medium con-
taining TRIA and BAP and IAA resulted in a 30% increase in RA content in Salvia officinalis
shoots compared to controls [14].
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Table 2. The effect of TRIA on the accumulation of phenolic compounds in D. forrestii shoot cultured five weeks on MS medium containing triacontanol (TRIA)
(µg/L) or triacontanol and 0.5 mg/L BAP and 0.2 mg/L IAA (TRIA-BI), C-medium without growth regulators.

Compound TRIA 2.5 TRIA 5 TRIA 10 C TRIA 2.5-BI TRIA 5-BI TRIA 10-BI C-BI

chlorogenic acid 0.53 ± 0.01 c 0.31 ± 0.01 d 0.11 ± 0.03 f 1.64 ± 0.05 a 0.15 ± 0.003 e 0.18 ± 0.001 e 0.19 ± 0.003 e 0.60 ± 0.013 b

caffeic acid 0.03 ± 0.002 c 0.03 ± 0.001 c 0.04 ± 0.01 bc 0.04 ± 0.002 bc 0.10 ± 0.002 a 0.09 ± 0.001 a 0.09 ± 0.002 a 0.05 ± 0.001 b

salvianolic acid I/H and salvianolic acid E 0.45 ± 0.01 b 0.28 ± 0.01 d 0.28 ± 0.01 d 0.67 ± 0.02 a 0.36 ± 0.003 c 0.41 ± 0.01 b 0.44 ± 0.01 b 0.45 ± 0.04 b

rosmarinic acid 9.51 ± 0.22 d 9.19 ± 0.23 d 11.30 ± 0.02 b 5.02 ± 0.01 f 10.67 ± 0.21 c 10.67 ± 0.19 c 14.79 ± 0.31 a 6.47 ± 0.01 e

salvianolic acid B 0.19 ± 0.001 e 0.19 ± 0.01 e 0.28 ± 0.002 c 0.23 ± 0.01 d 0.47 ± 0.01 a 0.27 ± 0.001 c 0.21 ± 0.00 d 0.37 ± 0.01 b

methyl rosmarinate 0.28 ± 0.01 f 0.39 ± 0.003 e 0.48 ± 0.03 d 0.54 ± 0.003 cd 0.97 ± 0.04 a 0.72 ± 0.03 b 0.72 ± 0.01 b 0.59 ± 0.1 c

Total phenol content 10.96 ± 0.1 c 10.39 ± 0.3 c 12.52 ± 0.2 b 8.14 ± 0.2 d 12.72 ± 0.1 b 12.35 ± 0.2 b 19.44 ± 0.34 a 8.53 ± 0.1 d

The values represented means ± SE of three independent experimental replicates. The means marked with various letters for the same parameter were different at p < 0.05 according to a
Tukey’s test.
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3. Material and Methods
3.1. Plant Material and Experimental Setup

The plant material used in the experiment was D. forrestii shoots cultured under
previously-established optimal conditions, i.e., on an MS [40] agar medium with 0.5 mg/L
BAP and 0.2 mg/L IAA [18]. The nodal segments of shoots (about 0.5–1 cm in length) were
used as explants.

The explants were placed on MS solid medium containing TRIA at concentrations
of 2.5, 5, or 10 µg/L, and TRIA at the same concentrations, together with 0.5 mg/L BAP
and 0.2 mg/L IAA. Shoots growing on MS medium without growth regulators (control C)
and on medium containing 0.5 mg/L BAP and 0.2 mg/L IAA (control C-BI) were used as
controls. The D. forrestii shoot culture was grown in a growth chamber at 26 ± 2 ◦C, under
fluorescent lamps with a 16 h light/8 h dark photoperiod. The growth period of the culture
was five weeks.

3.2. Measurement of Growth and Chlorophyll Content

After week five, the percentage of explants forming new buds and explants was
estimated for each treatment. The number of shoots or buds per explant (proliferation
ratio), as well as culture dry weight (g/tube) (DW), was recorded. The experiment was
repeated three times.

To determine the chlorophyll content, the fresh biomass (0.2 g) of shoots was macerated
using cool (4 ◦C) 80% acetone [41]. The pigment contents were established spectrophoto-
metrically. The absorbance was tested at the following wavelengths: 664 nm for chlorophyll
a and 647 nm for chlorophyll b [42]. The level of chlorophyll was expressed in mg/g FW as
the sum of chlorophyll a and chlorophyll b.

3.3. Genetic Stability

DNA extraction from the regenerated shoots was performed following the modified
CTAB protocol [43]. The plant material was weighed to reach 100 mg and then ground in
liquid nitrogen. After suitable preparation, the quality of the obtained DNA was assessed by
0.7% agarose gel electrophoresis (Bio-Rad). The genomic DNA was subjected to ISSR-PCR
as described by Grzegorczyk-Karolak et al. [44].

The ISSR-PCR amplification used six primers representing the UBC collection (Uni-
versity of British Columbia, Vancouver, Canada) (Table 1). The size of the DNA fragments
was evaluated using a FastGene 100 bp DNA Marker (NIPPON Genetics Düren, Germany;
length range between 100 and 3000 bp). The amplification was performed three times
and the reproducible bands were scored. The genetic stability of the shoots regenerated
under different medium conditions was estimated using Jaccard’s coefficient [25]: a value
of 0 indicates no set similarity, while 1 indicates complete overlapping.

3.4. Determination of Phenolic Compound Content

Lyophilized shoots of D. forrestii (100 mg amounts) were extracted with 80% methanol
by sonification (UD-20 ultrasonic disintegrator). The extraction is described in more detail
by Weremczuk-Jeżyna et al. [18].

The plant material was subjected to quantitative HPLC analysis as described by
Weremczuk-Jeżyna et al. [18]. The HPLC system consisted of a diode array detector
(Waters 2998), a binary HPLC pump (Waters 2545), and an autosampler (Waters 2767).
Separations were carried out on an XBridge C18 OBD column. The mobile phase (A)
consisted of 0.1% trifluoroacetic acid in the water, with mobile phase B consisting of 0.1%
trifluoroacetic acid in acetonitrile. The flow rate was 1.6 mL/min. UV spectra were recorded
at 190–700 nm and chromatograms were acquired at 325 nm. The phenolic compounds
were identified by comparing their UV spectra and retention times with those of reference
compounds and/or literature data [18]. Phenolic standards such as rosmarinic acid, caffeic
acid, and chlorogenic acid were purchased from Sigma-Aldrich (Darmstadt, Germany),
and salvianolic acid B was purchased from Extrasynthese (Genay, France). Compounds for



Int. J. Mol. Sci. 2022, 23, 15147 11 of 13

which pure standards were not available were quantified according to the calibration curve
of similar standards.

3.5. Estimation of Activities of Antioxidant Enzymes

For analysis, 500 mg fresh weight of D. forrestii shoots was ground with a 4 mL
phosphate buffer (pH = 7.5) and 0.5 mM EDTA (in 4 ◦C). The mixture was centrifuged
(12,000 rpm for 10 min) and the supernatant was used to evaluate the activity of super-
oxide dismutase (SOD), catalase (CAT) and peroxidase (POD) using a UV-1800 UV/VIS
Spectrophotometer (China). The CAT activity was determined at 240 nm as described by
Sirivarasai et al. [45]. The POD activity was evaluated according to Hemeda and Klein [46]
at a wavelength of 470 nm. SOD activity was estimated based on the ability to inhibit the
reduction of nitro blue tetrazolium (NBT) (Sigma-Aldrich, Darmstadt, Germany) at 560 nm,
as described by Giannopolitis and Reis [47]. The results were expressed as units per mg
of protein content. Protein concentration was determined spectrophotometrically accord-
ing to Bradford [48] using bovine serum albumin (Sigma-Aldrich, Darmstadt, Germany)
as standard.

3.6. Statistical Analysis

All results were presented as means ± SE (standard error). All variables were com-
pared using a Tukey’s HSD test. The analysis was performed using Statistica v.10 Pl for
Windows (StatSoft, Krakow, Poland). p < 0.05 was regarded as significant.

4. Conclusions

In the present study, it was demonstrated that the stress-signalling mediator, triacon-
tanol, could induce biochemical and physiological modifications in in vitro plant culture.
Hence, it could be used to modulate/enhance the productivity and quality of the important
plant species. However, its pattern of interaction with other hormones is ambiguous. In
addition, in our study, no permanent interactions between TRIA and cytokinins were
observed. However, it seems justified to conclude that the direction of TRIA-triggered
action may be dose-dependent, although the type and level of response variation between
species still have to be evaluated. In the given research better results were achieved, both
for TRIA applied alone and along with BAP and IAA. TRIA successfully improved the
multiplication ratio and growth of D. forrestii shoot culture at the concentrations applied in
the present study. Additionally, TRIA activated the shoot defense system and increased the
activity of antioxidant enzymes. It also increased the production of secondary metabolites
with antioxidant properties, including rosmarinic acid, which is a compound widely used
in pharmacy, cosmetology, and the food industry.
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