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Abstract: SARS-CoV-2 as a zoonotic virus has significantly affected daily life and social behavior
since its outbreak in late 2019. The concerns over its transmission through different media directly or
indirectly have evoked great attention about the survival of SARS-CoV-2 virions in the environment
and its potential infection of other animals. To evaluate the risk of infection by SARS-CoV-2 and to
counteract the COVID-19 disease, extensive studies have been performed to understand SARS-CoV-2
biogenesis and its pathogenesis. This review mainly focuses on the molecular architecture of SARS-
CoV-2, its potential for infecting marine animals, and the prospect of drug discovery using marine
natural products to combat SARS-CoV-2. The main purposes of this review are to piece together
progress in SARS-CoV-2 functional genomic studies and antiviral drug development, and to raise our
awareness of marine animal safety on exposure to SARS-CoV-2.
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1. Introduction

There are some common human coronaviruses which people normally get infected
with, such as 229E, NL63, OC43, and HKU1 according to a report of the Center for Disease
Control and Prevention (CDC) of the US (cdc.gov). Recently, some zoonotic coronaviruses
have transmitted to, and attacked, humans regionally and globally, developing into human
coronaviruses exemplified by the three viruses MERS-CoV (the β-coronavirus causing Mid-
dle East respiratory syndrome; MERS), SARS-CoV (the β-coronavirus causing severe acute
respiratory syndrome; SARS), and SARS-CoV-2 (the novel coronavirus causing coronavirus
disease; COVID-19). The burst of the infection by the latest coronavirus in humans was first
reported in Wuhan, Hubei, China in December 2019, with the interim name of coronavirus
2019-nCoV proposed by the World Health Organization (WHO). Shortly after, a Public
Health Emergency of International Concern (PHEIC) was declared by WHO on 30 January
2020 [1]. Later, the novel pathogenic coronavirus was officially renamed SARS-CoV-2 by
the International Committee on Taxonomy of Virus (ICTV), and the disease was named
COVID-19 (coronavirus disease 2019) in the system of International Classification of Disease
(ICD) by WHO on 11 February 2020 [2]. The rapid spread of SARS-CoV-2, and the sharp
increase in COVID-19 cases since its onset, drew international attention and constituted a
global pandemic that was announced by WHO on 11 March 2020 [3].

To mitigate the transmission of SARS-CoV-2, strict restrictions and preventive mea-
sures have been implemented, causing tremendous impact on the economics, social be-
havior, and many aspects of daily life. Although diverse countermeasures were imposed,
the COVID-19 pandemic has still caused more than 6 million deaths globally as of the
preparation of this manuscript. In addition, the SARS-CoV-2 virus has been reported to
have the potential to infect animals with close contact with humans, and some wild animals
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as well. Tremendous efforts and funds have been invested on clinical diagnostics, research,
and medicine and vaccine development to understand and control COVID-19 disease. In
this review, our focuses are centered on the genomic structure of SARS-CoV-2 and their
functions, its potential targeting of marine animals, and marine bioactive compounds with
therapeutic effect against COVID-19.

2. Genomic Structure of SARS-CoV-2 and Their Functions

Coronaviruses are enveloped viruses containing a positive-sense single-stranded RNA
(+ssRNA) genome, belonging to the subfamily Coronavirinae in Coronaviridae family [4].
There are four genera of coronaviruses including α, β, γ, and δ coronavirus with some
specific mutations and recombination. Currently, only the α- and β- coronaviruses have
been reported to infect humans, such as 229E and NL63 of α-coronavirus and OC43 and
HKU1 of β-coronavirus, while the γ- and δ- coronaviruses are known to infect only birds
or birds and non-human mammals, respectively [5]. The SARS-CoV-2 virus is a member of
β-coronaviruses that include at least four lineages of A, B, C, and D. The SARS-CoV-2 and
SARS-CoV (or SARS-CoV-1) belong to lineage B, while OC43 and HKU1 belong to lineage
A and MERS-CoV belongs to lineage C [6].

2.1. Full Genetic Makeup of SARS-CoV-2

After the initial clinical diagnosis of the novel coronavirus-caused disease, scientists are
striving to dissect the genetic elements of SARS-CoV-2. On 3 February 2020, the full genome
sequence of SARS-CoV-2 was published, which contains 29,903 nucleotides consisting of at
least 14 ORFs (1ab, S, 3a, 3b, E, M, 6, 7a, 7b, 8, 9a, 9b, N, 10) with some overlaps encoding
some structural, nonstructural, and accessory proteins [7]. Transcriptome data support the
transcription of ORF1a, 1b, S, 3a, E, M, 6, 7a, 7b, 8, N [8]. Comparative genomic analysis
further concluded that the protein-coding ORFs in the genome of SARS-CoV-2 include
ORF1a, 1ab, S, 3a, 3c, E, M, 6, 7a, 7b, 8, N, and 9b [9]. Some disagreement and ambiguity
exist for the numbers and names of the ORFs, such as ORF9b and 9c being also called
ORF9a and 9b or ORF13 and ORF14, respectively [7,9–11]. Collectively, the primary genome
structure of SARS-CoV-2 (Figure 1A) and its proposed protein-coding ORFs (Figure 1B) in
the linear structure have been elucidated.

(+) Genomic RNA can function as mRNA directing translation into viral proteins,
and can also be used as a template for the synthesis of (−) genomic RNA, which then
guides new (+) genomic RNA synthesis by the action of RNA-dependent RNA polymerase
(RdRp) during replication (Figure 1B). It is a common strategy for the (+) ssRNA virus to
synthesize a set of subgenomic RNAs (sgRNAs) to direct the translation of its 3′-proximal
genes [12]. The (+) genomic RNA of SARS-CoV-2 can guide the synthesis of a polyprotein,
namely pp1ab, by translating the ORF1ab located in the 5′-end covering about two-thirds
of the genome. The ORF1ab can also be referred to as ORF1a and ORF1b, in which ORF1a
can be translated into pp1a by canonical translation, while a programmed −1 ribosomal
frameshift (−1 PRF) at the end of ORF1a may happen leading to the synthesis of pp1ab by
non-canonical translation (Figure 1B). The rest, approximately one-third, of the genome
located at the 3′-end is transcribed into sgRNAs with varying lengths for their translation
into the structural proteins S (spike), E (envelop), M (membrane), and N (nucleocapsid),
and the at least six accessory proteins including 3a, 6, 7a, 7b, 8, and 9b [13]. Some ORFs,
including ORF3b, 9c, and 10, obtained by computational analysis, may not encode a protein
in the virus, although some studies on their ectopic expression have shown their biological
functions [9,13]. One of the mechanisms proposed for the production of sgRNAs is a
template switch, or jumping through the long-range base paring between the transcription
regulatory sequence (ACGAAC; TRS) located in the 5′-leader (TRSL) and the one in the
genome body (TRSB) before the ORFs during the synthesis of (−) gRNA. sgRNAs appear
polycistronic, while it is assumed that only the first ORF after the junction part of the
TRS sites is translated, and the sgRNA is named with the first ORF accordingly [14]. The
transcription and translation of the gRNA and sgRNA are achieved through the action of
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replication and transcription complex (RTC) consisting of RdRp and other RNA processing
enzymes in the double membrane vesicles (DMV) formed through transmembrane proteins
nsp3/nsp4/nsp6-induced ER membrane remodeling [13,15,16].
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Figure 1. Schematic view of SARS-CoV-2 genome and its replication and transcription. (A) Genome
structure of SARS-CoV-2. (B) SARS-CoV-2 genome replication and expression. The positive-sense
single stranded RNA of SARS-CoV-2 can act as template guiding the synthesis of negative-sense
gRNA for genome replication to (+) gRNA. The (+) gRNA can serve as mRNA for translation of
the long ORF1a and ORF1ab at its 5′-terminus of genome, and the transcription of the 3′-terminus
of its genome is achieved by the discontinuous synthesis of a set of subgenomic mRNAs (sgRNA)
through a template switch mechanism by jumping from the transcription regulatory sequence in the
genome body (TRSB; indicated by arrows) to the leader TRS (TRSL). The sgRNAs guide the synthesis
of structural proteins and some accessory proteins.

2.2. ORF1ab Cleavage

ORF1ab encodes 16 non-structural proteins (nsps) with pp1a being cleaved into
nsp1-11 and pp1ab into nsp1-10 and nsp12-16 [9] for the initial hijacking and colonization
of host cells [17]. The cleavage of pp1a and pp1ab are mediated by two proteases, nsp3
(papain-like protease, PLpro) and nsp5 (chymotrypsin-like protease, 3CLpro, also called
main protease, Mpro) [18]. The recognition sites for PLpro and Mpro are LXGG↓XX and
X-(L/F/M)-Q↓(G/A/S)-X, respectively, and PLpro is responsible for the first three cuts
to release nsp1/nsp2/nsp3, while Mpro cleaves the rest of the sites in pp1a/pp1ab after
nsp4 [19] (Figure 2).

ORF1ab encodes components to facilitate SARS-CoV-2 immediate infection (Table 1).
nsp1 binds to the small subunit of the host cell ribosome to block the translation of host
transcripts while initiating the translation of the viral genome [20,21]. nsp2 is a zinc-finger
protein that can interact with the human 4EHP-GIGYF2 complex to impact the functioning
of post-transcriptional silencing machinery to suppress the host defense response [22].
nsp3, the longest nsp in the genome, can interconnect with the host proteins involved
in the immune response, RNA metabolism, and some fundamental cellular functions,
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suggesting the attack of host cell functioning by nsp3 [23]. The nsp7-nsp8 tetramer (dimer
of dimer) acts as the primase to initiate RNA replication and interact with nsp12 to form a
replication/transcription complex [24]. nsp12 encodes RNA-dependent RNA polymerase
responsible for viral replication and transcription with the participation of helicase encoded
by nsp13 [25]. nsp14 is a bifunctional protein which possesses an N7-methyltransferase
activity at its C-terminus and 3′-5′ exonuclease (ExoN) activity at its N-terminus. The
nsp14 interacts with nsp10 cofactor to form a complex to excise its proofreading during
the RNA synthesis mediated by the RdRp, which lacks extension fidelity [26]. In addition,
the nsp14-nsp10 complex catalyzes the formation of cap-0 structure (m7GpppA) of the
newly synthesized viral RNA. Furthermore, the nsp16 methyltransferase and the activation
cofactor nsp10 work as a complex to methylate the cap-0 structure at 2′-O position to form
the cap-1 structure (m7GpppAm) [27]. Accumulating studies have shown that the nsps
processed from ORF1ab can suppress the innate immunity of host cells to evade the host
defense response, such as the suppression of type I interferon production [28].
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cleaved by PLpro and Mpro into 15 nsps.

Table 1. The basic description of the nonstructural proteins based on annotation of the GenBank ID
NC_045512.2. and with reference to a recent review on SARS-CoV-2 genomic structure [29].

Protein Amino Acids Function

nsp1 180 Leader protein
nsp2 638 Zinc-finger protein
nsp3 1945 Papain-like proteinase (PLpro)
nsp4 500 Tetra spanning transmembrane protein
nsp5 306 3C-like proteinase (3CLpro) or main protease (Mpro)
nsp6 290 Transmembrane domain-containing protein
nsp7 353 A component of primase complex with nsp8 and nsp12
nsp8 198 A component of primase complex with nsp7 and nsp12
nsp9 113 ssRNA-binding protein

nsp10 139 Interacting with nsp14 and nsp16
nsp11 13 n.d.(not defined)
nsp12 932 RNA-dependent RNA polymerase (RdRp)
nsp13 601 Helicase
nsp14 527 N7-Methyltransferase and 3′-5′ exonuclease (ExoN)
nsp15 346 Uridine-specific endoribonuclease
nsp16 298 2′-O-ribose Methyltransferase
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2.3. Structural Proteins

The structural proteins of SARS-CoV-2 include S, E, M, and N proteins, and their
structural domains are shown in Figure 3. The SARS-CoV-2 virion contains the gRNA
bound with N protein packed within a capsid and the M, E, and S proteins incorporated in
the outside membrane.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 18 
 

 

nsp13 601 Helicase 
nsp14 527 N7-Methyltransferase and 3′–5′ exonuclease (ExoN) 
nsp15 346 Uridine-specific endoribonuclease  
nsp16 298 2′-O-ribose Methyltransferase 

2.3. Structural Proteins 
The structural proteins of SARS-CoV-2 include S, E, M, and N proteins, and their 

structural domains are shown in Figure 3. The SARS-CoV-2 virion contains the gRNA 
bound with N protein packed within a capsid and the M, E, and S proteins incorporated 
in the outside membrane. 

 
Figure 3. Domain structures of SARS-CoV-2 N, E, M, and S structural proteins. (A) N protein. IDR, 
intrinsically disordered region. RBD, RNA binding domain. DD, dimerization domain. (B) E pro-
tein. NTD, N-terminal domain (NTD). TMD, transmembrane domain. CTD, C-terminal domain. (C) 
M protein. (D) S protein. RBD, receptor-binding domain. FP, fusion peptide. TM, transmembrane 
anchor. CT, cytoplasmic tail. The aa denotes the amino acids. The size of the diagram of S protein is 
not proportional to those of N, E, and M proteins. 

2.3.1. N Protein 
The N protein consists of two structural domains and three intrinsically disordered 

regions (IDRs). The N-terminal domain (NTD) and the C-terminal domain (CTD) are 
flanked with IDRs at the N-terminus and C-terminus, respectively, with the central IDR 
in between [30]. The two structure domains are also called the RNA-binding domain 
(RBD) and dimerization domain (DD), and the three IDRs are named NTD, a central linker 
(LINK), and CTD, respectively (Figure 3A) [31]. The structural signatures of N protein 
suggest that the N protein can physically interact with the gRNA of SARS-CoV-2 for pack-
aging through liquid-liquid phase separation (LLPS) to form a condensate, and this pro-
cess is proposed to be driven by the recognition and binding of a specific element in the 
5ʹ-end of ORF1ab as virion assembly excludes the sgRNAs [32]. Functional domain anal-
ysis suggests that the L/Q-rich subdomain of the central IDR or central linker of N protein 
is essential for its interaction with gRNA [30], while the other domains are also important 
for their interaction, as their presence can compensate for the missing of SR-rich or L/Q-
rich region of the central IDR [30,33]. Further probing into the cis-acting element in the 
ORF1ab region for N protein-mediated gRNA packaging shows that the core element at 
20080-21171 nt (nsp15-nsp16 region) is sufficient for viral packaging [34]. The packaging 
process proposed is that the N protein binds to the packaging signal in the gRNA to initi-
ate the condensation and recruit more N protein along the gRNA. The recruited N pro-
teins can interact through the dimerization domain to form large oligomers, eventually 
forming the mature and stable condensate of viral RNA-protein complex [30,31]. 

  

Figure 3. Domain structures of SARS-CoV-2 N, E, M, and S structural proteins. (A) N protein. IDR,
intrinsically disordered region. RBD, RNA binding domain. DD, dimerization domain. (B) E protein.
NTD, N-terminal domain (NTD). TMD, transmembrane domain. CTD, C-terminal domain. (C) M
protein. (D) S protein. RBD, receptor-binding domain. FP, fusion peptide. TM, transmembrane
anchor. CT, cytoplasmic tail. The aa denotes the amino acids. The size of the diagram of S protein is
not proportional to those of N, E, and M proteins.

2.3.1. N Protein

The N protein consists of two structural domains and three intrinsically disordered
regions (IDRs). The N-terminal domain (NTD) and the C-terminal domain (CTD) are
flanked with IDRs at the N-terminus and C-terminus, respectively, with the central IDR in
between [30]. The two structure domains are also called the RNA-binding domain (RBD)
and dimerization domain (DD), and the three IDRs are named NTD, a central linker (LINK),
and CTD, respectively (Figure 3A) [31]. The structural signatures of N protein suggest
that the N protein can physically interact with the gRNA of SARS-CoV-2 for packaging
through liquid-liquid phase separation (LLPS) to form a condensate, and this process is
proposed to be driven by the recognition and binding of a specific element in the 5′-end of
ORF1ab as virion assembly excludes the sgRNAs [32]. Functional domain analysis suggests
that the L/Q-rich subdomain of the central IDR or central linker of N protein is essential
for its interaction with gRNA [30], while the other domains are also important for their
interaction, as their presence can compensate for the missing of SR-rich or L/Q-rich region
of the central IDR [30,33]. Further probing into the cis-acting element in the ORF1ab region
for N protein-mediated gRNA packaging shows that the core element at 20080-21171 nt
(nsp15-nsp16 region) is sufficient for viral packaging [34]. The packaging process proposed
is that the N protein binds to the packaging signal in the gRNA to initiate the condensation
and recruit more N protein along the gRNA. The recruited N proteins can interact through
the dimerization domain to form large oligomers, eventually forming the mature and stable
condensate of viral RNA-protein complex [30,31].

2.3.2. E Protein

The E protein is the smallest protein of SARS-CoV-2 structural proteins, with only one
transmembrane domain (TMD) (Figure 3B) [35]. During viral infection, a small portion of
the expressed E protein is incorporated into the viral envelope while the majority is in the
ER-Golgi intermediate compartment (ERGIC) of the host cell, assembling into a pentamer
imbedded in the membranes as ion channels (ICs). The C-terminal domain of the E protein
faces the cytoplasmic side, and the N-terminal domain faces the ER-lumen [36]. The
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insertion of the E protein in the ER, Golgi, and ERGIC membranes can induce membrane
curvature towards the cytoplasm, potentially facilitating the budding of the SARS-CoV-2
virions. In addition, the channel-like structure formation in the ER/Golgi membrane system
can stimulate viral entry and trafficking in the host cell and affect the normal physiological
activity of the host cell by altering membrane permeability [35].

2.3.3. M Protein

The M protein is the most abundant structural protein of SARS-CoV-2, consisting of
three transmembrane domains (TMD) flanked with a short N-terminal domain (NTD) and
a β-sheet sandwich domain (BD or CTD) at the C-terminus (Figure 3C). The M protein is
also located in the ERGIC, where it can form a dimer with some structural plasticity, while it
is unlikely to function as a channel for ion conduction [37]. The M protein is considered the
major driver for virial assembly, which is supported by the observation that it can interact
with the N protein and ribonucleoprotein complex, further recruiting S and E proteins,
potentially through physical interactions to form virion particles [37,38].

2.3.4. S Protein

The S protein is the most extensively studied structural protein. It is a type I membrane
protein with only a single-span transmembrane domain, while it is assembled as a trimer
anchored in the surface of the SARS-CoV-2 virion [39]. Basically, the S protein contains
a short signal peptide located at the N-terminus, followed by S1 and S2 subunits in the
middle and at the C-terminus, respectively (Figure 3D). The S1 and S2 subunits can be
further divided into several different domains [40]. The S1 subunit contains an N-terminal
domain (NTD), a receptor-binding domain (RBD), and two C-terminal domains (CTD1
and CTD2). The RBD harbors the receptor-binding motif (RBM) interacting with the ACE2
receptor on the host cell [41]. The S2 subunit contains a fusion peptide (FP), transmembrane
anchor (TM), cytoplasmic tail (CT), and other domains [40,42]. During SARS-CoV-2 virus
maturation in the infected host cells, the connection between S1 and S2 subunits is cleaved
by furin protease, and then the S1 and S2 subunits are linked non-covalently. The cleavage
of S1 and S2 by furin definitely promotes viral infection, but other protease may also
function for the cleavage with less efficiency as the knock-out of furin does not totally
abolish SARS-CoV-2 infection and replication [43]. The S1 subunit, especially the RBD,
exhibits high structural flexibility, shaping an active “up” or inactive “down” states by
conformational change to modulate the accessibility to the ACE2 receptor [44]. Once the
S1 domain of the active state interacts with the ACE2 receptor, another cleavage essential
for the activation of SARS-CoV-2 in post fusion stage is the cleavage at the S2′ site, which
can be achieved by the action of transmembrane serine protease 2 (TMPRSS2) on the cell
surface or by cathepsin L in the endosomal compartment [45,46]. The cleavage at the S2′

site exposes the fusion peptide and the fusion machinery of the S2 subunit to the host cell
membrane and further drives their fusion to form a fusion pore in the host cell membrane,
facilitating the entry of viral gRNA into the host cell [44,47]. It has been shown that
ACE2 undergoes SUMOylation (conjugation with small ubiquitin-like modifier 3) at the
lysin (K) 187 residue that compromises its K48-ubiquitination, in turn, suppressing ACE2
protein degradation mediated by the TOLLIP (Toll interacting protein) cargo receptor in the
autophagic degradation system. As such, inhibition of ACE2 SUMOylation to destabilize
ACE2 can be an attractive approach to combat SARS-CoV-2 [48].

2.4. Accessory Proteins

Accessory proteins are considered to be dispensable for SARS-CoV-2 replication. The
overall functions of the accessory proteins include dysregulation of host defense response
and physiological activities and induction of apoptosis of the host cell, thus contributing
to the pathogenicity of SARS-CoV-2 virus [49]. ORF3a and ORF7a demonstrate potent
antagonist activity against autophagy [50], and ORF3a shows proapoptotic activity by
activation of caspase-3 [51]. The contribution of ORF3a to the pathogenicity of SARS-
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CoV-2 is also supported by the observation that the deletion of ORF3a can reduce the
cytokine storm in the host cell, reflected by the decreased ratio of IL6/IL10 [52]. ORF6
and ORF8 can suppress the host defense response by inhibiting the promoter activity of
NF-κB transcription factor and its responsive gene of type I interferon IFN-α [53]. Similarly,
ORF7b can induce the expression of type I interferon IFN-β, tumor necrosis factor TNF-α,
and interleukin IL-6, and stimulate caspase-mediated apoptosis [54]. ORF9b is localized to
mitochondria in the SARS-CoV-2 infected cell and can interact with mitochondrial importer
receptor Tom70 of the translocase of mitochondrial outer membrane (TOM) complex,
potentially interacting with its preprotein substrate binding site [55,56]. In addition, the
overexpression of ORF9b and SARS-CoV-2 infection lead to reduced expression of Tom70,
thus affecting the functions of Tom70 in mediating translocation of preprotein from cytosol
to mitochondria and in recruiting antiviral proteins in mitochondria antiviral signaling
(MAVS) [57].

2.5. Variants and Mutations

Although there is a proofreading mechanism in SARS-CoV-2 during its genome repli-
cation for the sake of genome conservation, mutations still occurred during the pandemic
and led to the generation of lineages and variants. Especially, mutations in ExoN of nsp14
apparently can cause a higher mutation load [58], and deletion mutations can escape the
correction by proofreading activity [59]. The World Health Organization has assigned sim-
ple labels for the SARS-CoV-2 variants using letters of the Greek alphabet (www.who.int).
Since its initial burst in late 2019, the variants of SARS-CoV-2 considered variants of con-
cern (VOC) include Alpha, Beta, Gamma, Delta, and Omicron, and each contains multiple
PANGO lineages (cov-lineages.org). Omicron is the current variant circulating around
the world, and includes BA1, BA2, BA3, BA4, and BA5 sub-lineages. The mutations can
occur in the spike protein and other proteins, and the mutations in the spike protein may
enhance its cleavage by furin, thus potentially facilitating viral cell entry, increasing viral
transmissibility, and resulting in waning antibody efficacy [60]. The mutations not includ-
ing the insertions and deletions in the spike protein of the Omicron variant with at least
75% prevalence include 20 substitutions, with K417N, S477N, N501Y, P681H being the
mutations of interest [61]. The K417N, S477N, N501Y mutations in the receptor binding
domain of the S protein can strengthen its interaction with the ACE2 receptor [62], and
the P681H mutation resides in the spike S1/S2 cleavage site that potentially increases its
cleavage [63]. However, these mutations are not unique to the Omicron variant.

3. Threat to Marine Animals

It has been reported that SARS-CoV-2 can be transmitted from humans to pet animals,
zoo and farm animals, and wild animals [64]. According to the CDC report, companion
animals such as cats, dogs, hamsters, and ferrets, as well as wildlife such as mink, white-
tailed deer, and mule deer, and animals in zoos and sanctuaries, such as lions and tigers, can
catch SARS-CoV-2 virus, with more than 400 confirmed cases in total in the USA to date. The
report from the World Organization for Animal Health (WOAH) released on 31 July 2022
indicates that a total of 679 outbreaks have been reported worldwide [65]. The transmission
potential has raised the concern that SARS-CoV-2 might be transmitted to more wild
animals with possible susceptibility, and thus precautionary measures should be in practice
for outdoor activities such as wildlife research [66]. Genomic sequencing analysis of SARS-
CoV-2 isolated from mink and white-tailed deer suggests that no significant mutations
or accelerated mutation rate has occurred during the spillover from human to animal for
viral adaption to the animal host, implying the nature of a general mammalian virus of
SARS-CoV-2 [67].

Under the pandemic circumstances, human body fluids, feces, and contaminants,
through close contact containing SARS-CoV-2 particles, may enter the sewage system,
and identification of the viral particles provides an efficient early surveillance of the
emergence of new SARS-CoV-2 variants and an earlier indicator of its rising incidence in
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the community [68,69]. The contaminated wastewater may eventually flow into the sea
without sufficient treatment, or spill over to the saltwater environment. With an attempt
to remove SARS-CoV-2 viral particles from wastewater, an algae-based microrobot was
designed using Chlamydomonas reinhardtii as the self-driven matrix and fusing ACE2 protein
to the algal cell surface, which can effectively adsorb the spike protein and SARS-CoV-2
pseudovirus in the tested aqueous media [70].

Shellfish are used as sentinels to monitor the potential contamination of SARS-CoV-2 in
marine coastal areas; no apparent contamination of SARS-Co-2 was detected in the French
shores in the summer of 2020 [71]. However, in another similar study, the SARS-CoV-2
RNA was detected in estuarine sediments and in bivalve molluscan species from a natural
clam bank in Spain [72]. By using PMAxxx DNA modifier dye, which can only permeate
dead cells and covalently binds to nucleic acid after photoactivation, to differentiate free
RNA or damaged virion from intact encapsidated viral RNA, the PMAxxx-triton viability
RT-PCR assay demonstrated that no infectious viral particles were detected even though
the SARS-CoV-2 RNA was detected [72]. The absence or under the detection limit of the
viable SARS-CoV-2 virion might be partially explained by the fact the marine high pH and
salinity can affect the infectivity and integrity of SARS-CoV-2 virus [73].

Meanwhile, the possibility of marine animals harboring or getting infected with SARS-
CoV-2 may exist. A novel nidovirus, Pacific salmon nidovirus (PsNV), which is distantly
related to SARS-CoV-2, has been detected in wild keystone salmon of the northeastern
Pacific with high abundance in the gill tissue, potentially causing declines in their pop-
ulation [74]. Additionally, air-breathing marine animals such otters and dolphins may
exposure to SARS-CoV-2 or act as intermediate hosts of SARS-CoV-2, posing the risk of
zoonotic COVID-19 disease [75]. Concerns over the spread of SARS-CoV-2 to marine
wildlife in Antarctica have also been discussed, exploring the transmission potentials
by human activities, human-to-animal-to-animal route, wastewater, and marine animal
migration [76]. Generally, the binding affinity of SARS-CoV-2 spike protein to the ACE2
receptor of animals is a factor in the success of viral infection and the determination of
susceptibility of the host to SARS-CoV-2, while some other factors play a role as well. The
cold temperature of the Antarctic ocean may favor the viability of SARS-CoV-2 for an ex-
tended period of time, and the predicted high binding affinity of ACE2 of Antarctic minke
whales and killer whales, and the medium affinity of the ACE2 of sperm whales, suggest
the infection potentials of these Antarctic mammals by SARS-CoV-2 [76,77]. In addition,
other cetacean species including the bottlenose dolphin, Pacific white-sided dolphin, baiji,
beluga whale, long-finned pilot whale, and vaquita, are predicted to be highly susceptible
to SARS-CoV-2 infection after computational analysis of their ACE2 binding affinity to the
viral spike protein: baiji and vaquita are on the brink of extinction [77,78]. Additionally,
sea otters of Fissipedia and Hawaiian monk seal of Pinnipedia are endangered species with
high susceptibility to SARS-CoV-2 [78]. In a similar study by analysis of the 25 amino
acids of ACE2 interacting with SARS-CoV-2 spike protein, the marine mammals living in
Italian coastal waters are supposed to have medium to high susceptibility to SARS-CoV-2
infection, and the immunohistochemistry for ACE2 protein distribution in lung tissues
of cetacean species suggests that ACE2 is expressed in alveolar and bronchial epithelium,
supporting viral infection potentials [79]. On the other hand, fish such as zebrafish, Nile
tilapia, large yellow croaker, and rainbow trout all are predicted to have very low sus-
ceptibility to SARS-CoV-2 [77], and no fish cell lines or HeLa cells transfected with ACE2
orthologs of some fish species have shown any infection possibility by SARS-CoV-2 [80]. A
comparison of the computed three-dimensional structures of hACE2 and ACE2 proteins of
Nibea albiflora (yellow drum) and Larimichthys crocea (large yellow croaker) marine fishes
shows the differential spatial distribution of the spike-interacting residues (Figure 4), which
may account for the low affinity of marine fish ACE2 proteins to the spike protein of
SARS-CoV-2.
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4. Antiviral Activity against SARS-CoV-2 in Marine Resources

Since the outbreak of COVID-19, tremendous endeavors have been undertaken to
find effective antiviral strategies against SARS-CoV-2 infection. The development and
distribution of COVID-19 (SARS-CoV-2) vaccines have greatly helped people alleviate the
risk of getting seriously ill if contracting SARS-CoV-2. To date, there are four COVID-19
vaccines that have been authorized by the Food and Drug Administration (FDA) in the US,
including Pfizer-BioNTech, Moderna, Johnson & Johnson’s Janssen, and the most recently
approved Novavax, with notable effectiveness [81]. Some new vaccines are also under de-
velopment, such as the plant-based virus-like particle (CoVLP) vaccine by adjuvanting the
purified modified SARS-CoV-2 spike protein expressed in Nicotiana benthamiana with AS03
adjuvant, which has demonstrated notable cross-reactivity against different SARS-CoV-2
variants [82]. However, with the everchanging genomic information of SARS-CoV-2 and the
waning of immunity, breakthrough infections of SARS-CoV-2 have occurred in many cases
in vaccinated people [83]. In addition, some antiviral drugs, monoclonal antibodies, and
immune-modulators have been developed as COVID-19 therapeutics for emergency use.
Veklury (remdesivir) and Olumiant (baricitinib) are so far the two FDA-approved drugs
for treatment of COVID-19 in the US. Remdesivir is a prodrug, an adenosine nucleotide
analogue, which undergoes intracellular phosphorylation to be accommodated by the
RdRp of SARS-CoV-2 to inhibit the viral RNA synthesis process [84]. Baricitinib is a Janus
kinase (JAK) inhibitor with anti-inflammatory property, demonstrating activities in reduc-
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ing receptor-mediated viral endocytosis and suppressing cytokine storm, and has been
repurposed as a medication to treat hospitalized adults with moderate to severe COVID-
19 [85,86]. In the meantime, scientists have devoted tremendous effort to identifying new
compounds targeting SARS-CoV-2 and the post-infection immune system to combat viral
infection and the disease through in silico, in vitro, and in vivo approaches [87,88]. Natural
products with antimicrobial and antiviral properties are of great interest to scientists to
explore their efficiency in combating COVID-19 [89]. It has been known for many decades
that marine products serve as a seemingly limitless bio-resource for combating pathogenic
microbes and cancers [90]. Studies on marine-derived antiviral compounds have discov-
ered a wide collection of bioactive molecules, with different targets of components shaping
SARS-CoV-2 successful infection and proliferation (Table 2), aiming to find alternative
pharmaceuticals with enhanced specificity to SARS-CoV-2 and reduced side effects on the
human body. Here some extensively studied compounds are further discussed with more
details; for brevity, not all the functions of the compounds are mentioned.

Table 2. Marine-derived compounds as potent inhibitors of SARS-CoV-2.

Target Marine Compound Reference

Viral spike protein

Sulfated polysaccharides [91]
Inorganic polyphosphates [92,93]

Phycobilins [94]
Mannose-specific lectins [95]

Mpro and/or PLpro

Polyphenols [96,97]
Alkaloids [98–101]

Phycobilins [102]
Coumarin derivatives [103]

Naphthalene derivatives [104]

RdRp Nucleoside analogues [105]

TMPRSS2 Watasenia preluciferyl β-D-
glucopyranosiduronic acid [106]

hACE2
Inorganic polyphosphates [107]

Mycosporin-like amino acids [108]

Immune system Inorganic polyphosphates [107,109]

Host eEF1A Plitidepsin [110,111]

4.1. Targeting Viral Recognition and Interaction
4.1.1. Sulfated Polysaccharides

The entry of SARS-CoV-2 is initialized largely by the interaction between the viral
spike protein and the host ACE2 receptor through attraction by electrostatic forces, in which
the RBD of spike protein is dominantly positively charged while the ACE2 has a negatively
charged surface [112]. Sulfated polysaccharides are highly diverse and abundant in the
ocean, especially in macroalgae and some marine animals harboring polyanion of sulfate
ions, which have been demonstrated to be effective against SARS-CoV-2 entry into host
cells [91]. Three types of marine sulfated polysaccharides including sea cucumber sulfated
polysaccharide (SCSP), fucoidan from brown algae, and ι-carrageenan from red algae have
been shown to be capable of binding the spike protein of SARS-CoV-2, with SCSP exhibiting
the strongest inhibitory effect [113]. A nasal spray containing ι- and κ-carrageenan, and
an oral spray containing ι-carrageenan, showed anti-SARS-CoV-2 activity by preventing
the attachment of viral particles to, and its entry into, TMPRSS2-expressing Vero E6 cells,
while it did not apparently affect the host cell viability [114]. In addition, the λ-carrageenan
from marine red algae was shown to be able to inhibit the entry of SARS-CoV-2 spike-
pseudotyped virus and the infectious SARS-CoV-2 into Vero E6 cells, interfering with the
spike protein-associated entry step [115].
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4.1.2. Inorganic Polyphosphates

Inorganic polyphosphate (polyP) is another negatively charged polymer that has
shown promising antiviral effect against SARS-CoV-2. polyPs with varying lengths are
ubiquitously distributed in all living organisms, and involved in many physiological
functions [116]. The enriched accumulation of polyP has been found in some marine
bacteria and marine sponges [117,118]. A polyP with as short as 3 phosphate (Pi) units
(polyP3) can significantly inhibit the binding of RBD of SARS-CoV-2 to ACE2, potentially
through negatively charged Pi units of polyP interacting with the positively charged
residues of Arg, Lys, and His of RBD through electrostatic interaction, especially since
chemical modification of Arg residues with increased reactivity can enhance the inhibitory
efficiency of polyP on RBD binding to ACE2 [92,93]. Besides its ability to bind RBD of
SARS-CoV-2, long-chain polyP (polyP120) can also bind ACE2 through the interaction
with its positively charged residues His378, His401, Arg393, and Arg514, leading to the
proteasome-mediated degradation of ACE2 [107]. Furthermore, the polymer polyP40
showed activating effects on the expression of MUC1 and MUC5AC, which are membrane-
tethered mucin and the gel-forming secreted mucin, respectively, after the polyP in a
collagen hydrogel-mucin environment was attached to human alveolar basal epithelial
A549 cells, preventing the invasion of SARS-CoV-2 in the epithelium of the airway and
lung [109]. The secretion of mucin can benefit from the generation of ATP through the
hydrolysis of polyP by ALP (alkaline phosphatase) and the phosphorylation of ADP
by ADK (adenylate kinase) [109,119], and quercetin antioxidant and the synthetic anti-
inflammatory dexamethasone in caged nanoparticles with polyP can enhance the effect of
polyP on mucin production [119].

Additionally, polyP is found in dense granules of platelets, which release polyP after
activation, subsequently triggering the initiation of blood clotting and the liberation of
inflammatory mediators [120]. Later studies indicated the activity of polyP in triggering
blood clotting varies depending on the length of the polymer [121], and a conflicting result
was also reported in which the synthetic polyP can inhibit blood clotting by reducing the
levels of Ca2+ and thromboxane affecting platelet aggregation [122]. It has been shown that
severe symptomatic COVID-19 patients have hyperactivated platelets and a noted drop in
the count of platelets, which induce local thrombus formation and a systemic coagulation
defect resulting in serious and even fatal consequence [123,124]. These observations suggest
that exogenous supplementation of polyP might be an option, as the high consumption
of platelets in COVID-19 patients with thrombocytopenia, and a unit length of P50 was
suggested, while further clinical studies are required [125].

4.1.3. Cyanobacteria Molecules

As well as their richness in sulfated polysaccharides, cyanobacteria possess other
bioactive compounds such as pigments and amino acids. Four bioactive molecules (phyco-
erythrobilin, phycocyanobilin, phycourobilin, and folic acid) were identified, by molecular
docking assays, in the microalgae Arthrospira with high binding affinity to the RBD region of
SARS-CoV-2 spike protein and good bioavailability [94]. Additionally, through molecular
docking, ADME (absorption, distribution, metabolism, excretion), and cell toxicity analysis
for isolation of natural inhibitors against ACE2 from cyanobacteria bioactive compounds,
mycosporine-glycine-valine and shinorine demonstrated low binding energy to ACE2,
high solubility, and free of toxicity, providing strong potentials for antiviral drug devel-
opment [108]. Another important group of antiviral molecules is the mannose-specific
lectins, which are found in cyanobacteria and red and green algae [95]. SARS-CoV-2
can use the C-type lectin receptors such as DC-SIGN, L-SIGN and the sialic acid-binding
immunoglobulin-like lectin 1 (SIGLEC1) as attachment receptors to facilitate its presenta-
tion to ACE2 receptor for viral trans infection [126]. The mannose-specific lectins, such as
cyanovirin from cyanobacteria Nostoc ellipsosporum and griffithsin from red algae Griffithsia
sp. can recognize the N-glycosylated spike protein of SARS-CoV-2 with high-mannose
glycans, inhibiting SARS-CoV-2 infection [95].
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4.2. Targeting Viral Replication
4.2.1. Polyphenols against Mpro

Phlorotannins are secondary metabolites in brown algae, and are oligomers of phloroglu-
cinol. Molecular docking analysis predicted that eckol and trifucol with negative higher
binding energy (lower binding energy) to 3CLpro could be good inhibitors of Mpro [96].
By computational modeling to virtually screen a Marine Natural Product (MNP) library
for the interaction with Mpro, 17 compounds out of 180 selected molecular after initial
pharmacophore filtering stood out as the best candidates showing interaction with Mpro,
and phlorotannins represent a major group among these compounds [97]. Further docking
studies suggested that 8,8′-bieckol, 6,6′-bieckol, and dieckol of phlorotannins identified in
the brown algae Ecklonia cava were the most active inhibitors against Mpro. In addition,
some flavonoids, including apigenin-7-O-neohesperidoside, luteolin-7-rutinoside, and
resinoside were also listed as promising inhibitors of Mpro [97].

4.2.2. Alkaloids against PLpro and Mpro

Alkaloids are a large group of structurally diverse natural compounds, that contain at
least one nitrogen atom, with great potential for drug development to treat diseases and
mental disorders [127]. Marine sponges provide an abundant resource of bioactive alkaloid
compounds [128]. Through molecular docking and molecular dynamics simulation studies
to screen polycyclic guanidine alkaloid compounds in marine sponge Monanchora n. sp.
targeting SARS-CoV-2 Mpro and other proteins, two compounds crambescidin 786 and
crambescidin 826, showed high binding affinity to the enzyme pockets of Mpro with very
low toxicity and high bioavailability, rendering them promising candidates as anti-SARS-
CoV-2 drugs [98]. By employing a similar approach to probe marine compounds targeting
Mpro of SARS-CoV-2 as potential inhibitors, an alkaloid compound fistularin 3 (also known
as isofistularin-3; PubChem CID 159041) isolated from marine sponges of the Aplysinidae
family was identified as the most potent candidate with strong bonding with the amino
acid residues in the active site of Mpro [99]. Another virtual screen for anti-SARS-CoV-2
secondary metabolites from marine and terrestrial fungi identified three fumiquinazoline
marine alkaloids scedapin, norquinadoline A, and quinadoline B that showed high affinity
to the putative binding site of PLpro [100]. Another marine algae-derived alkaloid caulerpin
was isolated after virtual screen of 10 bioactive natural compounds for the anti-SARS-CoV-2
potentials targeting Mpro, demonstrating the highest binding affinity to Mpro among
the tested compounds [101]. The high negative free binding energy between caulerpin
molecule and the modelled Mpro suggests caulerpin could be an effective antiviral drug
against SARS-CoV-2.

4.2.3. Plitidepsin against Host Factor eEF1A

Plitidepsin, also known as dehydrodidemnin B, is a cyclic depsipeptide. It is a
marine-derived compound extracted from Mediterranean tunicate Aplidium albicans, which
has shown anticancer activity potentially targeting the eukaryotic elongation factor 1A2
(eEF1A2) [110]. Evaluation of the antiviral effect of plitidepsin as a repurposed drug against
SARS-CoV-2 showed that plitidepsin can significantly inhibit SARS-CoV-2 replication post
viral entry in Vero E6 cells and hACE2-293T cells with a substantially lower IC90 compared
to remdesivir, while cytostatic impact on cell proliferation was observed [111]. The antiviral
and antiproliferative actions of plitidepsin are mediated by its inhibitory activity on eEF1A
by introduction of the mutated version eEF1A-A399V into hACE2-293T imparts the cells
resistance to plitidepsin treatment, and the refractory effects can be rescued by transfection
with the wild-type eEF1A [111]. The antiviral activity of plitidepsin was shown by its
marked inhibition of SARS-CoV-2 viral genomic RNA replication and sub-genomic N RNA
synthesis and the N protein expression after initial viral infection, with a stronger effect
than remdesivir. In vivo data obtained from the infection of hACE2-sensitized or hACE2-
transgenic mouse further supported antiviral effect of plitidepsin against SARS-CoV-2 [111].
Further investigation of the antiviral activity of plitidepsin on SARS-CoV-2 by transmission
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electron microscopy and immunohistochemistry was performed to examine its effect on
viral replication [129]. It was evident that plitidepsin treatment induced the disappearance
of DMVs structure for viral genome replication, and the absence of viral particle distri-
bution in single-membrane vesicles, in the large vacuole, and on the extracellular side of
the plasma membrane in Vero E6 cells at 24–D48 h post infection. In addition, the viral N
protein and dsRNA were not detected by immunostaining in plitidepsin-treated Vero E6
cells at 48 h post infection [129]. A more recent study showed that plitidepsin can virtually
bind to the main protease of SARS-CoV-2 and inhibit its activity [130].

5. Conclusions

This review aimed to provide an update on our understanding of SARS-CoV-2 genome
composition and viral components for virion replication and assembly, and to present an
overview of SARS-CoV-2 infection mechanism in host cells. The viral genome largely
encodes structural proteins of spike, envelop, membrane, and nucleocapsid proteins, and
some nonstructural and accessory proteins facilitating SARS-CoV-2 proliferation and in-
fection. Given the complexity of SARS-CoV-2 genome composition, the translation and
function of the molecular fragments are not fully understood yet and more in vivo studies
are required to explore the unknowns. In addition, the potential of spreading SARS-CoV-2
to marine mammals has been reviewed largely based on the compatibility of host ACE2
receptor to the spike of SARS-CoV-2 while other entry routes may exist, at least in an auxil-
iary manner. Precaution and monitoring are necessary to avoid spillover to marine animals,
although there has been no report about infection of marine mammals by SARS-CoV-2 yet.
Antiviral drug development has driven enormous efforts in discovering natural products
such as marine metabolites with anti-SARS-CoV-2 properties through in silico, in vitro,
and in vivo approaches. One compound may target more than one protein component of
SARS-CoV-2 to mitigate its infection. The most promising bioactive compounds, such as
inorganic polyphosphates and plitidepsin, are to undergo comprehensive and thorough
evaluation for their eventual application in clinical treatment.
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