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Abstract: Cervical cancer has a poor prognosis and is the fourth most common cancer among
women. Dihydromyricetin (DHM), a flavonoid compound, exhibits several pharmacological activities,
including anticancer effects; however, the effects of DHM on cervical cancer have received insufficient
research attention. This study examined the antitumor activity and underlying mechanisms of DHM
on human cervical cancer. Our results indicated that DHM inhibits migration and invasion in HeLa
and SiHa cell lines. Mechanistically, RNA sequencing analysis revealed that DHM suppressed S100A4
mRNA expression in HeLa cells. Moreover, DHM inhibited the protein expressions of β-catenin
and GSK3β through the regulated extracellular-signal-regulated kinase (ERK)1/2 signaling pathway.
By using the ERK1/2 activator, T-BHQ, reverted β-catenin and S100A4 protein expression and cell
migration, which were reduced in response to DHM. In conclusion, our study indicated that DHM
inhibited cell migration by reducing the S100A4 expression through the ERK1/2/β-catenin pathway
in human cervical cancer cell lines.

Keywords: β-catenin; cervical cancer; DHM; metastasis; S100A4

1. Introduction

Cervical cancer comprises a malignant tumor of the cervix and is the fourth most diag-
nosed cancer among women [1,2]. It has two histological types, adenocarcinoma (AC) and
squamous cell carcinoma (SCC) [1], of which SCC accounts for 70% of diagnoses [3]. Hu-
man papillomavirus (HPV) infection plays a primary role in cervical cancer [4]. HPV causes
approximately 90–100% of cervical cancer cases, especially in patients aged <35 years [5].
For metastasis to occur, cancer cells must leave their main sites, circulate in the blood,
withstand vascular pressure, adapt to the new cellular environment of the secondary sites,
and withstand attacks from immune cells [6–8]. Metastasis is the primary cause of death
in more than 90% of patients with cancer [9–11]. Although cancer metastasis is a primary
cause of cancer treatment failure and subsequent death, little is known about it.
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S100A4, a member of the S100 family of calcium-binding proteins, was discovered in
1989 and initially named metastasin (Mts1) [12,13]. S100 proteins are involved in numer-
ous cell functions, such as proliferation, differentiation, apoptosis, calcium homeostasis,
metabolism, inflammation, and motility [14]. S100A4 has been reported to influence metas-
tasis [15–17] by promoting the movement and invasion of existing tumor cells, which leads
to invasive metastasis. Therefore, S100A4 is the primary prognostic indicator of numerous
types of cancer [18].

Dihydromyricetin (DHM, C15H12O8), a component of Ampelopsis grossedentata, is a
flavonoid compound [19] that has anti-inflammatory [20], antioxidant [21,22], antihyperten-
sive [23], hypoglycemic [24], hepatoprotective [25,26], anticarcinogenic [27], and antimetas-
tasis effects [28–30]. DHM reportedly inhibits invasion and metastasis in hepatocellular
carcinoma [31]; DHM also inhibits cell migration in human proliferative vitreoretinopathy
cells through the inhibition of MMP-2 expression [30]. However, the molecular mecha-
nism underlying the effects of DHM on cervical cancer remains unclear. Thus, this study
examined the effects of DHM with potential antimetastatic properties in in vitro DHM-
treated HeLa and SiHa human cervical cancer cells to investigate the signaling pathway of
this process.

2. Results
2.1. Cell Viability and Cell Migration and Invasion of DHM on Cervical Cancer Cell Lines

We first investigated the effects of DHM on cervical cancer cell viability. HeLa and
SiHa cells were treated with 0, 25, 50, 75, and 100 µM DHM for 24 h and were analyzed with
an MTT assay. The results indicated no toxic effects on the cervical cancer cells (Figure 1A).
To assess the antimetastatic effects of DHM on cervical cancer, we performed wound
healing and Boyden chamber assays to determine whether DHM can regulate the migration
of cervical cancer cells. In the wound healing assay, the cells were treated with various
concentrations of DHM (0, 25, 50, 75, or 100 µM) for 24 and 48 h. The results revealed
that DHM inhibited the migration of cervical cancer cells in a concentration-dependent
manner (Figure 1B,C). In the Boyden chamber assay, we treated the cell lines with DHM for
24 h; the cervical cancer cell lines were then seeded into the upper chamber (invasion: cells
seeded on Matrigel-coated filter; Figure 2A,B). As shown in Figure 2A,B, the results reveal
that DHM notably reduced the migration and invasion of the cervical cancer cells.
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Figure 1. Effects of DHM on cell viability and wound healing assay in cervical cancer cell lines.
(A) HeLa and SiHa cells were seeded onto 24-well plates and treated with DHM (0, 25, 50, 75, 100 µM)
for 24 h and assessed for cell viability. (B) HeLa and (C) SiHa cells were treated onto 6-well plates and
a line was drawn between cells and cells, then observed for the ability of healing in 24 h and 48 h on
various DHM concentrations by microscope. Cells were photographed using microscope (100×).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 11 
 

 

 

Figure 1. Effects of DHM on cell viability and wound healing assay in cervical cancer cell lines. (A) 

HeLa and SiHa cells were seeded onto 24-well plates and treated with DHM (0, 25, 50, 75, 100 μM) 

for 24 h and assessed for cell viability. (B) HeLa and (C) SiHa cells were treated onto 6-well plates 

and a line was drawn between cells and cells, then observed for the ability of healing in 24 h and 48 

h on various DHM concentrations by microscope. Cells were photographed using microscope 

(100×). 

 

Figure 2. Effects of DHM on cell migration and invasion in cervical cancer cell lines. (A,B) HeLa
and SiHa cells were seeded onto a 6 cm dish and treated with DHM (0, 25, 50, 75, 100 µM) for
24 h. Analyzed by Boyden chamber assay. The values represented the mean ± S.D. from three
determinations per condition repeated three times. *, p < 0.05 compared with untreated. Cells were
photographed using microscope (100×).
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2.2. DHM Reduced S100A4 Gene Expression in Cervical Cancer Cells

To identify the target genes that were regulated after being treated with DHM, the
RNA-sequencing analysis of the HeLa cell line with DHM (0 or 100 µM) was performed
(Figure 3A). As illustrated in Figure 3A, S100A4 is the downregulated gene in DHM-treated
cells and there are some reports regarding S100A4 and cancer metastasis [32–34]. Therefore,
we chose the S100A4 gene as the target gene to investigate its anti-metastatic properties. To
validate the RNA sequencing findings of S100A4, we conducted real-time PCR analysis
and Western blotting assay and found that DHM inhibited S100A4 expression in cervical
cancer cells in a concentration-dependent manner (Figure 3B,C). Subsequently, the Boyden
chamber assay indicated that S100A4 overexpression considerably promoted migration in
the HeLa cells and SiHa cells (Figure 3D,E). Furthermore, we examined the effect of DHM
on the crawling ability of human cervical cancer cells by regulating the S100A4 gene. HeLa
cells and SiHa cells were transfected with a CS2-empty vector or CS2-S100A4 for 24 h, then
treated with DHM (0 or 100 µM). The Boyden chamber assay results indicated that S100A4
overexpression was mitigated by DHM; that is, S100A4 expression was reduced in both
HeLa and SiHa cells (Figure 4A,B). The results indicated that DHM mediates cell migration
through the regulation of S100A4 levels in cervical cancer cells.
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Figure 3. Effects of DHM on S100A4 expression in cervical cancer cell lines. (A) Heat map of the
hierarchical clustering of 40 differentially expressed genes identified in HeLa cells after treatment
with DHM (0, 100 µM). (B,C) The RNA level and protein level of S100A4 were detected by real-time
PCR and Western blotting. (D) HeLa and (E) SiHa cells were seeded onto 6 cm dish and transfected
with CS2-vector or CS2-S100A4. The results were analyzed by Boyden chamber assay and Western
blotting. *, p < 0.05 compared with untreated. Cells were photographed using microscope (100×).
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an early step in cancer metastasis. Furthermore, the metastasis-inducing gene S100A4 

Figure 4. S100A4 overexpression and co-treatment with DHM in cervical cancer cell lines. (A,B) HeLa
and SiHa cells were seeded onto 6 cm dish and transfected with CS2-vector or CS2-S100A4. After
24 h, we co-treatment with DHM (0, 100 µM) then analyzed by Boyden chamber assay (*, p < 0.05
compared with untreated; #, p < 0.05 compared with CS2-vector with DHM 100 µM). Cells were
photographed using microscope (100×).

2.3. DHM Inhibited Cell Migration by Reducing S100A4 Expression through ERK1/2/β-Catenin
Pathway

Dahlmann et al. determined that the abnormal activity of Wnt signal transduction
is an early step in cancer metastasis. Furthermore, the metastasis-inducing gene S100A4
was identified as a transcriptional target of β-catenin [32]. Therefore, we conducted a
Western blotting assay and found that DHM inhibited the β-catenin expression and GSK3β
phosphorylation in cervical cancer cells while DHM had no obvious influence on Wnt 3
and Wnt 11 expression (Figure 5A). Moreover, after the DHM treatment, the nucleation of
β-catenin was also inhibited (Figure 5B). We subsequently examined whether DHM could
reduce the activation of three major mitogen-activated protein kinases, namely ERK1/2,
JNK1/2, and p38. As illustrated in Figure 5C, DHM inhibited ERK1/2 phosphorylation in
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HeLa cell lines. However, the phosphorylation of JNK1/2 and p38 was not altered by DHM
treatment. Moreover, the HeLa cell lines were pretreated with T-BHQ, an ERK1/2 activator,
for 1 h, treated with 100 µM DHM for another 24 h, and then analyzed with Western
blot assay and Boyden chamber assay. Our results demonstrated that T-BHQ reversed
the inhibitory effects of DHM in expressions of β-catenin and S100A4 (Figure 5D) and
cell migration (Figure 5E). These findings implicate a causal involvement of the ERK1/2
signaling pathway in the molecular mechanisms underlying DHM-mediated cervical cancer
cell migration.
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Figure 5. Effects of DHM on β-catenin, p-GSK3β, and MAPK pathway level. (A) HeLa cells were
seeded onto a 6 cm dish and treated with DHM (0, 25, 50, 75, 100 µM). The results were analyzed
by Western blotting. (B) HeLa cells were seeded onto a 10 cm dish and treated with DHM (0, 50,
100 µM). The results were analyzed by Western blotting. (C) HeLa cells were seeded onto a 6 cm dish
and treated with DHM (0, 25, 50, 75, 100 µM) and assessed for the phosphorylation status of ERK1/2,
JNK1/2, and p38-MAPK by Western blotting with indicated antibodies. (D) HeLa cells were seeded
onto a 6 cm dish and treated with DHM (0, 100 µM) for 1h and co-treatment with T-BHQ (30 µM) for
23 h. The results were analyzed by Western blotting. (E) HeLa cells were seeded onto a 6 cm dish
and treated with DHM (0, 100 µM) for 1h and co-treatment with T-BHQ (30 µM) for 23 h. The results
were analyzed by Boyden chamber assay (*, p < 0.05 compared with untreated; #, p < 0.05 compared
with T-BHQ 0 µM). Cells were photographed using microscope (100×).
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3. Discussion

Cervical cancer is a malignant tumor of the cervix, the fourth most diagnosed can-
cer among women, and the second leading cause of cancer mortality in women aged
20–39 years [35]. Although surgery, radiotherapy, and chemotherapy benefit patients with
metastases [36], chemotherapy often has a detrimental effect on patients. Chemotherapy
effectively treats cancer, but many patients with cancer are either insensitive or resis-
tant to chemotherapy. Therefore, effective mechanisms that enhance tumor sensitivity to
chemotherapy are necessary [37].

DHM is a flavonoid compound that has been widely studied in the food and medicine
industries. DHM reportedly inhibits metastasis in multiple cancers, including hepato-
cellular carcinoma, and human proliferative vitreoretinopathy cells. Furthermore, DHM
induces apoptosis and reverses multidrug resistance in ovarian cancer cells through the
downregulation of survivin [38]. Fan et al. indicated that DHM promotes autophagy and
apoptosis through ROS-STAT3 signaling in head and neck SCC [39]. The present study
provided additional evidence for the inhibitory effect of DHM on the cell migration of
human cervical cancer cells. DHM also reduced the expression of the S100A4 protein
level. S100A4 is an oncogene in several cancers. In glioblastoma, S100A4 is a novel marker,
regulator, and critical upstream regulator of the mesenchymal transition [40]. Moreover,
S100A4 might induce tumor progression through the stimulation of angiogenesis [41].
S100A4 accelerates tumorigenesis and the invasion of human prostate cancer through the
transcriptional regulation of matrix metalloproteinase-9 [42]. We determined that DHM
may inhibit the RNA and protein expression of S100A4 in human cervical cancer as well as
S100A4 overexpression, which induces cell migration. When treated cells were exposed to
DHM and S100A4 overexpression, the overexpression of S100A4 reversed the cell crawling
ability inhibited by the DHM (Figure 4).

The molecular structure of the Wnt/β-catenin pathway and its role in signal modula-
tion has been researched extensively [43–46]. Abnormal activity in Wnt signaling is an early
step in the transformation of healthy intestinal cells into malignant tissues, leading to more
aggressive tumors and eventual metastasis [32]. In human colorectal cancer, Wnt/β-catenin
signaling is a primary signaling pathway [47]. The present study revealed another signaling
pathway of DHM regulation: ERK1/2/β-catenin. Yamaguchi et al. indicated that the AKT,
ERK1/2, and IKK signaling pathways regulate FOXO3 and β-catenin [48]; these results are
consistent with those of our study. When we combined DHM and the ERK1/2 activator
T-BHQ in the HeLa cell line, cell migration and the expressions of S100A4 and β-catenin
were reversed. Our results indicated that DHM regulated S100A4 gene expression through
the ERK/β-catenin pathway, thus inhibiting cell migration. Moreover, a study reported
that S100A4 is a direct transcription target of the Wnt/β-catenin/TCF-mediated signaling
pathway. The use of new therapeutic interventions or screening of pharmacologically
active compounds is strongly recommended to reduce the expression of S100A4 in colorec-
tal cancer [32]. The results of our study indicated that DHM inhibited the expression of
translocated β-catenin into nuclear β-catenin. We surmised that DHM regulated the level
of β-catenin that translocated into nuclear to target S100A4.

4. Materials and Methods
4.1. Cell Lines and Culture

Human HeLa and SiHa cervical cancer cell lines were cultured in Dulbecco’s modified
Eagle’s medium (Gibco-BRL, Gaithersburg, MD, USA) supplemented with 10% fetal bovine
serum (FBS; HyClone Laboratories, Inc., South Logan, UT, USA) and 100 ng/mL each of
penicillin and streptomycin (Sigma, Aldrich Corporation, St. Louis, MO, USA) as previously
described [49]. All cell lines were cultured at 37 ◦C in a humidified atmosphere of 5% CO2.
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4.2. Cell Viability Assay

The HeLa and SiHa cells were seeded onto 24-well plates and incubated overnight.
Subsequently, cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-25-
diphenyltetrazolium bromide assay as previously described [50].

4.3. Wound Healing Assay

The HeLa and SiHa cells were seeded onto 6-well plates and incubated overnight.
Subsequently, the cells were scratched using pipette tips. We observed cell healing at
various time points through microscopy [51].

4.4. Quantitative Real-Time PCR

Total RNAs were isolated from SiHa and HeLa cells by using the Total RNA Mini Kit
(Geneaid Biotech Ltd., Sijhih City, Taiwan), and cDNAs were reverse transcribed from isolated
total RNA by using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA) [52]. SYBR primers used were as follows: S100A4 sense 5′-GAT GAG
CAA CTT GGA CAG CAA-3′, antisense 5′-CTG GGC TGC TTA TCT GGG AAG-3′.

4.5. Cell Migration and Invasion Assay

We collected the cells using trypsin–ethylenediaminetetraacetic acid (Gibco), and the
tumor metastasis assay in vitro was conducted with the Boyden chamber (Neuro Probe,
Cabin John, MD, USA) [53]. Treated cells in a 0% FBS medium were loaded into the upper
well of the chamber and incubated for 24 h (migration) or 48 h (invasion) at 37 ◦C. The
invasion membrane filters were coated with 10 µL Matrigel (25 mg/50 mL; BD Biosciences,
San Diego, CA, USA) and air dried for 5 h in a laminar flow hood. The migration cells were
fixed using methanol, stained with Giemsa, and counted using light microscopy.

4.6. Western Blot Assay

Total cell lysates were collected with 100 µL of lysis buffer (50 mM Tris-HCl, pH 7.5,
0.5 M NaCl, 5 mM MgCl2, 0.5% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride,
1 µg/mL pepstatin, and 50 µg/mL leupeptin) on ice. After being centrifuged at 13,200× g
at 4 ◦C for 30 min, the protein lysates were separated using 10% agarose gel, and trans-
ferred onto a nitrocellulose membrane [54]. They were then blocked with 5% nonfat milk
in Tris-buffered saline (20 mM Tris, 137 mM NaCl, pH 7.6) for 1 h at room temperature and
overnight with first antibodies at 4 ◦C and second antibodies for 1 h at room temperature.

4.7. CS2-S100A4 Transfection

The plasmid of CS2-S100A4 was generously provided by Dr. Isao Matsuura of the
National Health Research Institutes. The HeLa and SiHa cells were seeded into 6-cm plates.
After being cultured overnight, 5 µg of the empty CS2-vector (GenDiscovery Biotechnology,
Taipei, Taiwan) or CS2-S100A4 was transfected into the cells and left for 6 h before the
reagent was removed and the cells were cultured with fresh medium overnight.

4.8. Statistical Analysis

Significant differences were calculated using the Student’s t-test (SigmaPlot 10.0, Jandel
Scientific, and San Rafael, CA, USA). Significance was set at p < 0.05. The values reported
are the means ± standard deviation of at least three independent experiments.

5. Conclusions

In conclusion, we discovered that treating cervical cancer with DHM may inhibit
cell migration and invasion through the regulation of S100A4 expression through the
ERK1/2/β-catenin pathway. DHM regulates the translocating ability of β-catenin through
the ERK1/2 pathway, thereby affecting the performance of the target S100A4 and ultimately
inhibiting the migration ability of cervical cancer cells. This study presents a new option
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for restricting S100A4-induced cell motility and metastasis. Thus, DHM may serve as a
potential therapeutic target for adjuvant therapy in the future.
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