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Abstract: There is no single universal biomarker yet to estimate overall health status and longevity
prospects. Moreover, a consensual approach to the very concept of aging and the means of its
assessment are yet to be developed. Markers of aging could facilitate effective health control, more
accurate life expectancy estimates, and improved health and quality of life. Clinicians routinely use
several indicators that could be biomarkers of aging. Duly validated in a large cohort, models based
on a combination of these markers could provide a highly accurate assessment of biological age
and the pace of aging. Biological aging is a complex characteristic of chronological age (usually),
health-to-age concordance, and medically estimated life expectancy. This study is a review of the most
promising techniques that could soon be used in routine clinical practice. Two main selection criteria
were applied: a sufficient sample size and reliability based on validation. The selected biological age
calculators were grouped according to the type of biomarker used: (1) standard clinical and laboratory
markers; (2) molecular markers; and (3) epigenetic markers. The most accurate were the calculators,
which factored in a variety of biomarkers. Despite their demonstrated effectiveness, most of them
require further improvement and cannot yet be considered for use in standard clinical practice. To
illustrate their clinical application, we reviewed their use during the COVID-19 pandemic.

Keywords: biological age; molecular clock; age-related diseases; life expectancy; COVID-19

1. Introduction

Age is a major risk factor for chronic noncommunicable diseases, such as heart
disease [1], cancer [2], chronic obstructive pulmonary disease [3], Alzheimer’s disease [4],
etc. It is a recognized contributor to severe COVID-19 and associated complications [5].
However, many studies have suggested that it is biological rather than chronological age
that underlies the development of numerous diseases. People age at a different pace,
which is determined not only by genetic predisposition but also by external factors, such
as socioeconomic factors and lifestyle. The likelihood of aging-associated diseases and
mortality varies even among people of the same age; hence, it could be reflective of their
biological age.

The last 15 years saw the emergence of various biological age markers. Ideally, they
should correlate with chronological age and be predictive of age-related diseases and
mortality. Clinicians use several tests as markers of biological age: maximal oxygen
consumption, forced expiratory volume in 1 s, vertical jump, grip strength, whole-body
reaction time, unilateral distance, sit-and-reach test, systolic blood pressure, waist circum-
ference, and soft lean mass [6]. Certain inflammatory markers have also been associated
with age: IL-6, IL-8, IL-15, IL-1β, TNFα [7–9], lipid profile (HDL cholesterol, LDL choles-
terol, triglycerides [7,8,10,11]), glucose metabolism profile (glycohemoglobin (Hba1c) and
glucose (fasted or oral glucose tolerance test (OGTT) [12]), insulin and C-peptide [13].
Kidney function indicators, such as creatinine, cystatin C, urea, and albumin, have also
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been associated with age [14]. Microbiome analysis is another way of assessing biological
age, since the microbiome has been significantly associated with age [15].

Aging leads to increased genome instability, which can be evaluated using micronu-
cleus assay [16]. Age has also been associated with telomere length [17] and an increase in
reactive oxygen species [18]. However, the most common marker of biological age is DNA
methylation. It is widely used in forensic medicine as the most reliable age estimator. Other
age-associated epigenetic markers could be changes in miRNA concentrations [19], histone
modifications [20], and chromatin remodeling [18]. Biological age predictors mentioned in
this review are presented in Figure 1.

Individually, these markers are not informative due to their non-specificity. Moreover,
changes in their levels can be a manifestation of age-associated conditions, rather than an
indication of age. These markers are effective estimators in large study cohorts; however,
they may vary significantly at the individual level in clinical practice [21]. To overcome
these limitations, artificial intelligence has been used to create models that consider a
variety of factors. These models are widely used in clinical practice. They can predict
mortality from all causes and the incidence of major aging-associated diseases, including
hypertension, diabetes, cardio-vascular diseases, stroke, cancer, and dementia [22,23].
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2. Biological Age Predictors
2.1. Clinical Parameters and Blood Biochemistry as Markers of Aging
Blood Biochemistry-Based Calculators

Individually, most clinical biomarkers are insufficiently sensitive to measure the pace
of aging and biological age. Studies, however, have shown that certain combinations of
biomarkers are more reliable predictors of biological age or mortality. Table 1 presents the
main characteristics of the blood biochemistry-based calculators.

Putin E. et al. developed the first blood marker-based model of aging using a group
of 21 deep neural networks (DNNs) that were trained on more than 60,000 samples from
common blood biochemistry and cell count tests [10]. For each patient, they used only
41 biomarkers; nonetheless, the DNN group achieved a rather small interval of mean
absolute error (MAE) = 5.55 years (r = 0.91, R2 = 0.82). The top 10 biomarkers included
albumin, erythrocytes, glucose, alkaline phosphatase, hematocrit, urea, RDW, cholesterol,
alpha-2-globulin, and lymphocytes. Mamoshina P. et al. [24] presented a new aging clock
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trained on the data from several populations. The most effective predictor achieved an
MAE of 5.94 years despite being trained on fewer features (21 vs. 41). It is likely that
ethnically diverse aging clocks are more accurate than conventional ones in predicting
chronological age and measuring biological age. The most important blood biochemistry
parameters for all three populations were albumin, glucose, urea, and hemoglobin.

The models laid the foundation for the following calculators: Aging.AI 1.0 (r = 0.91,
Rsq = 0.82, MAE = 5.5 years), Aging.AI 2.0 (r = 0.79, Rsq = 0.63, MAE = 6.2 years), and
Aging.AI 3.0 (r = 0.8, Rsq = 0.65, MAE = 5.9 years) [25]. The predictors use various combi-
nations of input parameters: albumin, glucose, alkaline phosphatase, urea, erythrocytes,
cholesterol, RDW, alpha-2-globulins, hematocrit, alpha-amylase, lymphocytes, ESR, total
and direct bilirubin, gamma GT, creatinine, LDH, total protein, alpha-1 globulins, beta
globulins, gamma globulins, triglycerides, chlorides, HDL-C, LDL-C, calcium, potassium,
sodium, iron, hemoglobin, MCH, MCHC, MCV, platelets, leukocytes, ALT, AST, basophils,
eosinophils, monocytes, and neutrophils. The parameters are measured in whole blood,
plasma or blood serum.

Several authors have used the above predictors in their studies. Cohen [26] used
10 biomarkers from Aging.AI (albumin, glucose, alkaline phosphatase, urea, erythrocytes,
cholesterol, RDW, alpha-2 globulins, hematocrit, and lymphocytes) to predict chronological
age in cohorts from the Women’s Health and Aging Study I &II (WHAS), the Baltimore
Longitudinal Study on Aging (BLSA), Invecchiare in Chianti (InCHIANTI) and publicly
available cross-sectional data from a representative sample of the American population
from the National Health and Nutrition Examination Survey (NHANES). The perfor-
mance in all four data sets was not as robust, with MAE ranging from 12.7 (NHANES) to
17.4 (BLSA). The authors excluded the possibility that the results were due to the use of
10 biomarkers rather than 41 and suggested that it could be caused by the absence of
children in the cohorts and the differences in ethnic, socioeconomic, and environmental
backgrounds. Overall, the results were consistent with those reported by Putin E. et al. [10]
and showed the model’s tendency to underestimate the age of individuals over 70 years of
age, i.e., it lacked discriminatory power in older age ranges.

Psychological status-based calculation of biological age using medical history and
self-estimation of physiological and emotional states.

Currently, there are extremely few papers on psychological markers of aging. However,
they deserve further investigation, particularly due to the non-invasive nature of the
associated procedures. Repeatedly, biological aging has been shown to lead to cognitive
decline. Diagnosed cognitive dysfunction is a predictor of unsuccessful aging and mortality;
however, it has a low predictive power in younger people. Zhavoronkov et al. used deep
neural networks (DNNs) to classify human behavior for biological age prediction [27].
They presented two new models, PsychoAge and SubjAge, which were similar to the
aging clock. To predict chronological and subjective age, they trained the DNNs on a set
of 50 modifiable behavioral features based on anonymous surveys of U.S. residents from
the Midlife in the United States (MIDUS). After filtering and exclusion, the final dataset
comprised 6071 samples. DNNs were able to accurately predict age, with MAE = 6.7 years
for chronological age and MAE = 7.3 years for subjective age. Both PsychoAge and SubjAge
have also been shown to be predictive of the risk of all-cause mortality. For both models,
the top five important variables were related to sex life in the past 10 years, marital status,
health limitations on vigorous activity, and intake of prescription blood pressure drugs.
Headache frequency in the past 30 days ranked 5th in PsychoAge and 9th in SubjAge.
Neuroticism, one of the five most commonly used personality traits, was the only one
present among the top 25 features in PsychoAge. Openness and extraversion, another “big
fiver”, were the only personality traits in SubjAge.
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Table 1. Main characteristics of the blood biochemistry-based and psychological status-based calculators.

Study Sample Validation Strategy and Model Characteristics Model Parameters Comments

Putin E. et al.,
2016 [10]

62,419 samples from the
Eastern European
population (90% of Russia)

1. Highly biased markers excluded.
2. The dataset divided into training and test

sets of 56,177 and 6242 samples, respectively.
3. 40 deep neural networks (DNNs) trained on

56,177 blood test samples.
4. Modular ensemble comprising 21 DNNs of

varying depth, structure and optimization to
predict human chronological age using a
basic blood test.

The full version is based on 41 blood chemistry
parameters.

Best performance (DNN): 81.5%
epsilon-accuracy r = 0.90, R2 = 0.80,
MAE = 6.07 years within a 10-year frame.
Overall performance (ensemble): 83.5%
epsilon-accuracy r = 0.91, R2 = 0.82,
MAE = 5.55 years.

5 most important markers for
chronological age estimation
identified: albumin, glucose,
alkaline phosphatase, urea, and
erythrocytes
An algorithm developed based on a
single source of clinical data.

Mamoshina P.
et al., 2018 [24]

20,699 samples for the
Canadian population,
65,760 samples for the
South Korean population,
and 55,920 samples for
the Eastern European
population

55,751 samples from the NHANES with blood test
values used to measure the predictive power of
the models

The best-performing predictor trained on the
Eastern European population-specific dataset
demonstrated an MAE of 6.25, an R2 of 0.69
Best performing predictors:
Canadian population: MAE = 6.36 years,
R2 = 0.52
South Korean population: MAE = 5.59,
R2 = 0.49 Eastern European population:
MAE = 6.25, R2 = 0.69

Population type identified as a
major feature for age estimation in
all 3 populations

Zhavoronkov A.
et al., 2020 [27]

The final dataset contained
6071 participants
(U.S. residents)

(1) Series of DNNs were trained based on data
from anonymized questionnaire responses
from MIDUS 1, MIDUS 2 and MIDUS
Refresher longitudinal surveys

(2) 50 most important features were selected to
build the final models (modifiable factors)

(3) Final models were trained with five-fold
cross-validation (CV) using all MIDUS 1
samples. MIDUS 2 and MIDUS Refresher
were used for model validation purposes

Best performance (DNN):
MAE = 6.70 years and epsilon accuracy = 0.78
for PsychoAge; MAE = 7.32 years and epsilon
accuracy = 0.74 for SubjAge
Model validation (using other datasets):
MAE = 7.18/7.73 years and
epsilon accuracy = 0.73/0.70 for PsychoAge;
MAE = 8.53/8.56 years and
epsilon accuracy = 0.66/0.65 for SubjAge

Additionally, variables that remain
highly important (top-25) across all
age groups were defined. These
variables form the psychological
aging core.
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2.2. Age Predictors Based on Molecular and Genetic Markers

In terms of current translational medicine, the distinction between predictors based
on clinical and molecular-biological biomarkers is rather arbitrary. Here, we present some
of the models that are most technically and technologically advanced but still feasible in
routine clinical practice. We omitted the models that are accurate but require extensive
invasive procedures and are not easily applicable in clinical practice [28].

2.2.1. Transcriptome-Based Age Predictors

Peters M. et al. were among the first to successfully use transcriptome analysis
to predict age [29]. They investigated 14,983 whole-blood samples from people of Eu-
ropean ancestry. To calculate the “transcriptomic” age based on age-related differen-
tial gene expression, the authors used Illumina HumanHT-12 (v3/v4) and identified
1497 genes that produced highly correlated results in the discovery and replication stages.
The R2-values for chronological age and predicted transcriptomic age were below 0.6;
however, the average absolute difference between the predicted and chronological age was
7.8 years. A limitation of this study and similar studies is the use of bead chip arrays
that only query 1.6% of all CpGs in the genome, and the characteristic background noise
may complicate the reproducibility of results. Fleischer et al. developed a computational
method based on linear discriminant analysis. They analyzed genome-wide RNA-seq
profiles of human dermal fibroblasts from 133 individuals aged 1–94 years [30]. The algo-
rithms produced R2 of 0.81 for the actual versus predicted age, a 4-year median error and a
7.7-year mean absolute error. They also predicted accelerated aging in progeria patients
(patients with Hutchinson-Gilford progeria syndrome). The authors used genome-wide
transcriptome analysis; however, they focused only on one cell type—skin fibroblasts,
which limits the scope of the predictor: changes in the expression of many age-related
genes seem to be tissue-specific, and only a limited number of genes have shown similar
expression changes across tissues [31].

Ren X. et al. developed RNAAgeCalc, an age calculator based on transcriptional
activity across 30 different tissues [32]. They used genome-wide and transcript-level gene
expression data from 9662 samples available from the Genotype-Tissue Expression (GTEx)
Program (V6 release). Tumor samples (n = 102) were omitted. Across all tissues, 1616
genes were identified as age-related. Transcriptional age acceleration was significantly
correlated with mutation burden, mortality risk and cancer stage in several types of cancer
from the TCGA database. Despite the above advantages, RNAAgeCalc produced rather
high median errors for the predicted transcriptional age and chronological age (7–10 years,
for most tissues).

Mayer D. et al. developed a binarized transcriptomic aging (BiT age) clock, which is
currently among the most accurate transcriptome-based age predictors [33]. They processed
1020 publicly available RNA-seq samples for adult C. elegans, 900 of which were used to
train and test the model. The transcriptome data were binarized to reduce noise: with a
count per million above the median of the corresponding sample, the value of each gene
was set to 1; otherwise, it was set to 0. BiT age does not require age discretization and
allows assessment of the effect of single gene expression changes on the predicted age.
To demonstrate the applicability of the novel method, the authors used the same human
datasets as Fleischer et al.; however, binarization before calculating the elastic net regression
significantly improved the results: R2 = 0.92; the Pearson correlation = 0.96 (p = 7.87e-73),
the Spearman correlation = 0.96 (p = 9.31e-73); MAE = 6.63 years; MAD = 5.24 years; and
RMSE = 8.41 years. The model also predicted that the patients with Hutchinson-Gilford
progeria syndrome (HGPS) were significantly older. BiT age comprises 141 predictor genes,
among which the forkhead transcription factor FOXO1—a regulator of the aging process
in C. elegans and mammals—is positively correlated with age, which serves as further
evidence of the evolutionary conservation of transcriptional mechanisms that regulate
longevity [34].
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Another promising approach to calculating biological age is examining circRNAs. In
the study by Wang J. et al. [35], regression tree, with an MAE = 8.767 years
(S.rho = 0.6983) and random forest regression (RFR) with an MAE of 9.126 years
(S.rho = 0.660), outperformed five other models. However, RNA-based (circular and
micro) predictors have so far used small samples (up to 100 people) and require significant
improvements. The study did not report on any associations with age-related diseases; how-
ever, recent studies have shown that the number of circRNAs in the brain changes in older
people and could be a major factor for neurodegenerative diseases, such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) [36–38]. Haque et al. [39] investigated circRNA
expression in the blood of an aging person and found that circFOXO3 and circEP300 were
expressed differentially in one or several cell types, which could be interpreted as indirect
evidence of circRNAs’ potential as an age marker.

2.2.2. Predictors Based on the Peripheral Blood Proteome

Lehallier B. et al. developed a bioinformatics approach by analyzing venous plasma
from 4263 healthy people aged 18–95 years [40]. Before processing, plasma was treated
with ethylenediaminetetraacetic acid (EDTA). The authors used the SomaScan aptamer
technology for high-precision proteomic analysis. They found a significant sex-related
difference in 895 out of 1379 proteins that changed with age (q < 0.05). Lehallier et al.
concluded that aging is a series of biologically motivated surges in plasma protein levels.
The test in 1446 individuals provided a 0.97 Pearson correlation coefficient between the
chronological age and predicted age. The authors also demonstrated that deviations from
the plasma proteomic clock were correlated with clinical and functional changes (Table 2).

2.2.3. Metabolome-Based Age Predictors

Van den Akker E. et al. used 56 serum biomarkers and proton nuclear magnetic
resonance (1H-NMR) to build metaboAge, a metabolomics-based age predictor of an
individual’s biological age. The predictor achieved a high correlation coefficient between
the predicted and chronological age, with an average mean absolute error of 7.3 years and
R2 = 0.654. MetaboAge also proved effective in predicting current and future cardiovascular
and metabolic health and functionality in older individuals [41].

2.2.4. Age Predictors Based on T-Cell DNA Rearrangements

With age, the number of episomal DNA molecules, or signal joint T-cell receptor
(TCR) excision circles (sjTREC), declines in a log-linear fashion. This is a manifestation
of a persistent thymus involution that starts soon after birth: the thymus transforms into
adipose tissue and loses its function. Zubakov et al. used the sjTREC number as the only
predictor in a linear regression model, which explained a large share of highly statistically
significant total age variance (R2 = 0.835, p = 8.16 × 10−215, standard error of the estimation
± 8.9 years) [42].

2.2.5. Microbiome-Based Age Predictors

Galkin F., et al. developed an aging clock by analyzing more than 4000 metagenomic
profiles of people aged 18–90 years. Floro’clock (R2 = 0.5, Rsq = 0.3, MAE = 5.9 years) uses
whole-genome sequences of the intestinal lumen microbiota [43].

Huang S. et al. assessed the accuracy of several age prediction models based on oral, gut,
and skin microbiome samples. The prediction ability differed in three models (mean ± standard
deviation): the skin microbiome, 3.8 ± 0.45 years; the oral microbiome, 4.5 ± 0.14 years; the gut
microbiome, 11.5 ± 0.12 [44].

Several promising age prediction strategies, such as those based on the assessment of
DNA damage [45], have not been tested in large cohorts and cannot be considered reliable
methods of evaluating the pace of aging. Certain age prediction methods are no longer in
use. For instance, telomere length is currently not viewed as a biomarker of human aging
due to its hypervariability across human tissues [46].
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Table 2. Main characteristics of the estimators based on molecular and genetic markers.

Reference Methodology Accuracy
Reported

Sample
Types

Number of
Samples (Overall)

Age Range
(Years) Comments Associations with Age-Related

Conditions and Diseases

Fleischer J.
et al. [30]

Linear regression10-fold
cross-validation

MAE = 7.7 years
MAE (median)

= 4 years

Human
dermal fi-
broblasts

133 (people)
10 Hutchinson-

Gilford progeria
syndrome patients

1–94
2–9

Predicts progeria patients as 15–24 years older than
age-matched controls; hence, provides an accurate

estimation of biological age
The only method that predicts accelerated aging in

HGPS patients

No associations reported

Van den
Akker E.
et al. [41]

Linear regression
5-Fold-cross-validation

R2 = 0.65
MAE = 7.3 years

Blood
metabolome 25,000 -

Only a biological sample required; no additional
metadata needed

Participants with current metabolic syndrome or
diabetes mellitus type 2 were estimated older than

healthy counterparts

Cardiometabolic health;
increased risk of hospitalization due to heart failure,

cognitive decline and cardiovascular and all-
cause mortality;

in nonagenarians, lower instrumental activities of daily
living and increased risk of

all-cause mortality during 10 years of follow-up

Ren X. et al.
[32] Elastic net Multiple Multiple 9662 -

Transcriptional age is significantly impacted by race
The first model to perform RNA-Seq-based

identification of differential gene expression for each
individual tissue type

Significant correlation between the transcriptional age
acceleration and mutation burden, mortality risk, and

cancer stage in several types of cancer;
Complementary information to DNA methylation age

Meyer D.
et al. [33] Temporal scaling and binarization

R2 = 0.92
MAE = 6.63 years

MAD = 5.24
Blood 1020 -

Universal applicability, no methylation analysis
required;

Improved accuracy for HGPS patients compared
with Fleischer’s transcriptome-based model;

no DNA methylation in C. elegans, hence the effect
of the epigenetic clocks in gene expression is unclear.

No associations reported

Wang J.
et al. [35]

Multivariate linear regression (MLR)
Regression tree (best performing)
Bagging regressionRandom forest
regression (RFR, best performing)
Support vector regression (SVR)

MAE = 8.767 years
(S.rho = 0.6983)

MAE = 9.126 years
(S.rho = 0.660)

Blood 100 19–73
Significantly smaller prediction MAE values for

males than females (MAE = 6.133 years for males and
10.923 years for females in the regression tree model)

No associations reported

Peters M.
et al. [29] Meta-analysis Multiple Blood 14,983

(individuals) - Lower predictive accuracy compared to
epigenetic clocks

Higher systolic and diastolic blood pressure, total
cholesterol, HDL cholesterol, fasting glucose levels and

body mass index (BMI)

Zubakov D.
et al. [42]

Linear regression with sjTREC as a
single predictor

R2 = 0.835,
p = 8.16 × 10−215

Standard error of
the estimate
± 8.9 years;

Blood 195 (individuals) 0–80

Storage time analysis showed no statistically
significant difference between the sjTREC

quantifications in fresh and 1.5-year-old blood
samples of the same individuals

No associations reported

Galkin F.
et al. [43]

Elastic Net (EN)
Random Forest (RF)

Gradient Boosting (XGB)
Deep Neural Networks (DNNs)

MAE = 5.91 years Stool 4000 18–90

Accuracy comparable to the existing DNAm
solutions (MAE < 5 years)

The microbiome composition (such as Akkermansia
muciniphila, a marker of obesity, glucose

metabolism, and overall intestinal health) could be
used in diagnosing gut metabolism disorders;

further research needed due to inconsistent results

No associations reported

Lahallier B.
et al. [40] SomaScan assay Multiple Plasma 2925 18–95

At peaks 2 and 3 (at the ages of 60 and 78), the proteins
were associated with cardiovascular diseases, as well

as Alzheimer’s disease and Down syndrome
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Currently, the predictors based on molecular and genetic markers present a promising
approach to biological age prediction. However, further research is needed for their
clinical application.

2.3. Epigenetic Clocks

Epigenetic clocks predict biological age based on DNA methylation levels (cytosine-5
methylation within CpG dinucleotides). The review and comparison of epigenetic clocks is
presented in Table 3.

The first generation of epigenetic clocks comprised a set of CpG sites and used chrono-
logical age as reference. Bocklandt S. et al. were the first to calculate biological age by
measuring methylation in CpG loci [47]. They identified 88 loci in or near 80 age-correlated
genes. Methylation in three sites had the highest correlation with age and the widest distri-
bution of values. The findings were validated in a different cohort. The authors developed
a regression model based only on loci located in EDARADD and NPTX2 (error = 5.2 years).
In 2013, Hannum G. et al. developed an epigenetic clock based on 71 methylation markers
and clinical parameters (gender and BMI). The Hannum’s model produced an error of
3.9 years for the primary cohort and 4.9 years for the validation cohort. Although the
authors focused on white blood cells (WBC), the model proved applicable to other human
tissue types [48]. Horvath S. et al. carried out a more comprehensive analysis of methy-
lation and developed a multi-tissue predictor measuring methylation levels in various
types of tissues, such as whole blood, peripheral blood WBC, umbilical cord blood, brain
tissues, neurons and glial cells, buccal epithelium, gastrointestinal tract, heart, lungs, kid-
neys, saliva, placenta, etc. Using multivariate regression, the model automatically selected
353 methylation sites, which make up the predictor. It showed a fairly high accuracy on both
the training set (age correlation = 0.97, error = 2.9 years) and test set (age correlation = 0.96,
error = 3.6 years). The pace of aging in different tumor tissues was significantly accelerated
(by an approximate average of 36 years), while the pluripotent stem cells had a DNAm
age close to zero [49]. In 2014, Weidner et al. [50] developed a model based on 102 CpG
methylation sites in blood. To facilitate clinical application, they focused on three methy-
lation sites in the highly age-correlated genes—ITGA2B, ASPA, and PDE4C (training set,
MAD = 5.4 years; validation set, MAD = 4.5 years). In 2018, Horvath S. et al. were able
to improve their model [51]. They used different tissue; specifically, they increased the
sensitivity for fibroblasts, since skin biopsy and isolation of fibroblasts are widely used
in progeria research. The new age estimator comprised 391 CpGs. It has been used in
several studies to calculate life expectancy or assess all-cause mortality [52–54] and analyze
the association between biological age and aging-associated diseases [55–58]. Hun Y. et al.
carried out a comparative analysis of biological age models based on various methods of
measuring CpGs, such as 450 k Beadchip platform, CpG pyrosequencing, droplet digital
PCR (ddPCR), and bisulfite barcoded amplicon sequencing. The ddPCR-based model was
the most accurate in predicting epigenetic age in an independent validation sample, which
could be due to the fact that the PCR is generally characterized by low error rates [59].
Galkin F. et al. used deep neural networks and data from 17 studies to develop an aging
model comprising 1000 sites, with an MAE of 2.77 years [60].
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Table 3. Epigenetic clocks based solely on methylation sites.

Epigenetic Clocks (Based Solely on Methylation Sites)

Title Sample Aged Biomaterial Methods Regression Model Results Model Parameters

Bocklandt S. et al.,
2011 [47] 128 21–55 Saliva

Microarray analysis: Illumina Human
Methylation 27 microarrays

Validation: Mass Array (Sequenom) and
pyrosequencing

Multivariate regression and leave-one-out analysis
A total of 88 CpGs identified

A linear model built based on 2 methylation sites in
Edaradd и NPTX2

MAE for males only, 5.3 y.
MAE for females only, 6.2 y.

MAE combined, 5.2 y.

Hannum J. et al.,
2013 [48] 656 19–101 Whole blood Illumina Human Methylation

450 BeadChip assay.
Penalized multivariate regression method

(Elastic Net) combined with a bootstrap approach
A linear model built based on 71 CpGs and included

gender and BMI
Training data: R = 96%, RMSE = 3.9 y.

Validation data: R = 91%, RMSE = 4.9 y.

Horvath S., 2013
[49]

7844 non-cancer
5826 cancer 0–100 Various human tissues and

cell types
Illumina 27 K and Illumina 450 K platforms (for

21,369 CpGs present in both)
Penalized multivariate regression method

(Elastic Net)
An aging clock formed by 353 CpGs

automatically selected
Training data: R = 0.97, error = 2.9 y.

Validation data: R = 0.96, error = 3.6 y.

Weidner C. et al.,
2014 [50] 575 0–78 Whole blood

Human Methylation 27 BeadChip platform,
Illumina Human Methylation 450 BeadChip

assayBisulfite pyrosequencing for the 3
CpGs-based model

Multivariate linear regression

A predictive model developed by training on
102 CpGs and validated on 3 datasets and data from

Hannum et al., covering 99 CpGs
3 CpGs selected by the multivariate linear model

Training data: MAD = 3.34 years, RMSE = 4.26 years, R2 = 0.98.
Validation data: 3 datasets—MAD = 5.79, 5.52, and 4.02 years,

respectively, Hannum et al. dataset—MAD = 4.12 years,

RMSE = 5.34 years, R2 = 0.87.
3 CpG model:

MAD = 5.4 years, RMSE = 7.2 years; validation, MAD = 4.5 years
and RMSE = 5.6 years

Horvath S. et al.,
2018 [51] 2222 0–92

Whole and cord blood, skin
and buccal epithelium,

fibroblasts
Infinium 450 K и EPIC array 850 K ElasticNet regression Epigenetic age estimator based on 391 CpGs.

Fibroblasts: R2 = 0.91, err = 2.6;
Epithelium: R2 = 0.94, err = 6.3)

Buccal cells: R2 = 0.88, err = 2);
Keratinocytes: R2 = 0.99, err = 1);

Skin: R2 = 0.99, err = 2.9

Han et al., 2020
[59]

973
40
38

1–101 Whole blood
450 K Illumina Bead Chip

Pyrosequencing Droplet digital PCR
Bisulfite barcoded amplicon sequencing

Linear correlation with the logarithm of age
A multivariable linear regression model

A multivariable model
A multivariable linear regression model

65 CpGs-based model
6 CpGs-based models
7 CpGs-based models
9 CpGs-based models

Training set R2 = 0.95; MAE = 3.0 years; Validation on 3674 samples:

R2 = 0.82; MAE = 3.3 years.

Validation on 40 samples: R2 = 0.86; several months later median error
= 6.8 years.

Validation on 40 samples: R2 = 0.89; median error = 2.9 years.

The training set (R2 = 0.95; median error = 2.8 years); validation on

39 samples: R2 = 0.87; median error = 2.4 years.

Galkin et al. [60] 6411 ≈0–100 Whole blood Infinium Human Methylation 450 K and 27 K
BeadChip platforms Deep neural network 1000 CpG-based model

MAE = 3.80 y.
MedAE = 2.77 y.

R2 = 0.93

Combination Clocks (Epigenetic + Clinical Biomarkers)

Levine M. et al.,
2018 [61] 456 21–100 Whole blood Illumina 27 K and Illumina 450 K platforms,

EPIC array 850 K (20,169 CpGs) Elastic-net regression 513 CpGs-based model

Strong associations between DNAm PhenoAge and
all-cause mortality, mortality from aging-related diseases, CVD and

coronary heart disease (CHD) mortality, cancer incidence and
mortality, and Alzheimer’s disease.

Lu A. et al., 2019
[62] 2356 Whole blood Illumina 450 K platforms, EPIC array 850 K Elastic-net regression 1030 CpGs-based model Accurate prediction of time-to-death, time-to-cancer, time-to-CVD

diseases, time-to-fatty liver, and time-to-menopause
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Second-generation epigenetic clocks were the next step in the quest for more accurate
and robust biomarkers of aging, including clinical characteristics. Researchers were not
satisfied with the existing epigenetic clocks that used chronological age as a surrogate
measure of biological age and did not factor in CpG sites, the methylation of which was
not strongly associated with age. In 2018, Levine M. et al. developed a new epigenetic
biomarker of aging—DNA-m PhenoAge [61]. First, they built a model that calculated
phenotypic age based on nine clinical markers most significantly associated with mortality
(albumin, creatinine, serum glucose, c-reactive protein, lymphocyte percentage, mean
cell volume, red cell distribution width, and alkaline phosphatase) and chronological
age. During the second stage, they selected 513 CpG sites that were the most accurate
in predicting phenotypic age and that formed DNA-m PhenoAge. The model showed a
significant correlation with all-cause mortality, age-related diseases, cardiovascular diseases,
coronary artery disease, incidence of and mortality from lung cancer, Alzheimer’s disease,
etc. Out of 513 CpGs, 41 CpGs were the same as in the Horvath DNAm age measure
and six CpGs as in Hannum’s clock. In 2019, Lu A. et al. proposed a modified GrimAge
model that was developed in two stages [62]. First, they identified DNAm biomarkers
of physiological risk and stress factors (adrenomedullin, C-reactive protein, plasminogen
activation inhibitor 1 (PAI-1), and growth differentiation factor 15 (GDF15)). They then
combined them into one complex biomarker, DNAm GrimAge, and carried out a large-scale
meta-analysis. The authors demonstrated that DNAm GrimAge was an accurate predictor
of time-to-death, time-to-cancer, time-to-CVD, time-to-fatty liver, and time-to-menopause.

Thus, epigenetic clocks are among the most promising biomarkers of biological age
and powerful predictors of lifespan. However, there are approximately 28 million CpGs in
the human genome, and the above models only used approximately 20,000 CpGs available
in 27 K, 450 K, and EPIC. Publicly available whole-genome bisulfite sequencing databases
would greatly facilitate the development of even more accurate epigenetic clocks [63].

3. Clinical Application of Biological Age Predictors

The clinical implications of biological age calculators cannot be overstated. Numerous
studies have shown that accelerated biological aging is associated with a shorter lifespan,
early menopause, the onset and progression of cardiovascular and metabolic diseases, fatty
liver, cancer, etc. Age was identified as a primary determinant of the course of COVID-19
early in the pandemic; hence, establishing the patient’s age is ever more relevant for
accurate prediction of the course of infection. Furthermore, it has been hypothesized that
the effect of biological age on the course of the disease may be even greater than that of
chronological age.

Galkin F. et al. used BloodAge, a deep learning aging clock, to calculate the pace
of aging in 5315 COVID-19 patients. They found that the pace of aging was a stronger
determinant of lethal outcome than chronological age [64].

Corley M. et al. used PhenoAge to evaluate the acceleration of epigenetic age and
GrimAge to assess the risk of mortality in patients with severe COVID-19. Epigenetic age
was much more accelerated in the patients with severe COVID-19 than in the controls and
influenza patients. The DNA methylation analysis, however, showed no significant reduction
in telomere length in the patients with severe COVID-19 [65]. Ying K. et al. assessed three
different risk-based biological age predictors for UK Biobank subjects. Phenotypic Age and
Dynamic Organism State Indicator (DOSI) provided 1.28- and 1.31 odds ratios of COVID-19
infection (95% CI: 1.25–1.31; p = 8.4 × 10−82; 95% CI: 1.26–1.38; p = 9.5 × 10−32, respectively)
for every 10-year add-on to biological age [66]. Kuo C-L. et al. concluded that PhenoAge
estimates were better predictors of COVID-19 severity than chronological age. After adjusting
for current chronological age and pre-existing diseases or conditions, positive COVID-19
tests were associated with accelerated aging 10–14 years before the COVID-19 pandemic
(OR = 1.15 for every 5-year acceleration, 95% CI: 1.08 to 1.21, p = 3.2×10−6) and all-cause
mortality (OR = 1.25, for every 5-year acceleration, 95% CI: 1.09 to 1.44, p = 0.002) [67].
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The impact of SARS-CoV-2 on epigenetic age has been another widely discussed
topic. Pang A. et al. [68] used a novel principal component version of epigenetic clocks
in longitudinal studies [69] to measure the epigenetic aging in non-hospitalized pre- and
post-COVID-19 patients and healthy controls. In the post-COVID-19 patients aged over
50, they observed an average 2.1-year increase in PCPhenoAge estimates and an average
increase of 0.84 years in PCGrimAge estimates. Under the age of 50, PCPhenoAge estimates
were, on average, 2.06 years lower, while PCGrimAge showed no significant differences.
Cao et al. reported accelerated epigenetic aging in COVID-19 patients, particularly in severe
COVID-19 cases, irrespective of age. The findings were based on Hannum, PhenoAge,
skinHorvath, GrimAge clocks, and DNAm TL. However, acceleration was observed during
the initial and most critical phases of COVID-19, and the pace of epigenetic aging returned
to normal during recovery [70].

4. Conclusions

Average life expectancy has increased over the past one hundred years. Today, more
people live to be the middle- and oldest-old. However, this global aging trend entails a higher
prevalence of aging-associated diseases—some of the major causes of disabilities and mortality.
Although aging is natural, it impairs some of the most vital biological functions, which may
lead to death. The pace of aging is both individual and multifactorial. Therefore, assessment
of biological age as an indicator of overall health is crucial. Accurate and straightforward age
assessment tools would aid clinicians in providing personalized care, improved estimates of
the current health and health risks, and individualized prevention strategies.

Routine clinical assessments of the pace of aging must measure age-related changes
and must be simple, accurate, noninvasive, and inexpensive. They must rely on modifiable
criteria that could be used as therapeutic targets.

We believe that age calculators meet the above requirements for routine clinical prac-
tice. Age calculators based on clinical markers are optimal for health screening. They
facilitate the identification of risk groups for accelerated aging and development of indi-
vidualized prevention strategies. The reviewed models could be used in routine clinical
practice in their current forms. However, they still should be tested in various populations.

Mixed-type calculators have emerged in the past few years. They combine clinical and
epigenetic features and provide a more comprehensive and reliable assessment of the pace
of aging. These calculators, however, are more expensive, which could impede their routine
application. Many calculators are still being improved and tested. We believe that analysis
of epigenetic changes may soon become widely available in routine clinical practice.

Author Contributions: Conceptualization ideas: D.A.K., V.V.E., A.Y.Y., Z.V.B., D.V.S. and M.V.I.;
Methodology: D.A.K., V.V.E., A.Y.Y., Z.V.B., D.V.S. and M.V.I.; Project administration: V.S.Y., V.V.M.,
S.A.K. and S.M.Y.; Supervision: D.A.K., V.S.Y., A.A.K., S.A.K. and S.M.Y., Writing—original draft:
D.A.K., V.V.E., A.Y.Y., Z.V.B., D.V.S., M.V.I. and L.R.M.; Writing—review and editing: D.A.K., V.V.E.,
A.Y.Y., Z.V.B., D.V.S., M.V.I., V.S.Y. and L.R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The study was funded by the Centre for Strategic Planning and Management of Biomedical
Health Risks from its own funds.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Panguluri, S.K. Cardiovascular Risks Associated

with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [CrossRef] [PubMed]
2. Age and Cancer. Cancer Research UK. Available online: https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/

age-and-cancer (accessed on 30 August 2022).

http://doi.org/10.3390/jcdd6020019
http://www.ncbi.nlm.nih.gov/pubmed/31035613
https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/age-and-cancer
https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/age-and-cancer


Int. J. Mol. Sci. 2022, 23, 15103 12 of 14

3. Osman, S.; Ziegler, C.; Gibson, R.; Mahmood, R.; Moraros, J. The Association between Risk Factors and Chronic Obstructive
Pulmonary Disease in Canada: A Cross-sectional Study Using the 2014 Canadian Community Health Survey. Int. J. Prev. Med.
2017, 8, 86. [PubMed]

4. Risk Factors: Who Gets Alzheimer’s Disease? Alzheimer’s Society. Available online: https://www.alzheimers.org.uk/about-
dementia/types-dementia/who-gets-alzheimers-disease (accessed on 30 August 2022).

5. Molani, S.; Hernandez, P.V.; Roper, R.T.; Duvvuri, V.R.; Baumgartner, A.M.; Goldman, J.D.; Ertekin-Taner, N.; Funk, C.C.; Price,
N.D.; Rappaport, N.; et al. Risk factors for severe COVID-19 differ by age for hospitalized adults. Sci. Rep. 2022, 12, 6568.
[CrossRef] [PubMed]

6. Jee, H.; Jeon, B.H.; Kim, Y.H.; Kim, H.-K.; Choe, J.; Park, J.; Jin, Y. Development and application of biological age prediction
models with physical fitness and physiological components in Korean adults. Gerontology 2012, 58, 344–353.

7. Engelfriet, P.M.; Jansen, E.H.J.M.; Picavet, H.S.J.; Dollé, M.E.T. Biochemical markers of aging for longitudinal studies in humans.
Epidemiol. Rev. 2013, 35, 132–151. [CrossRef]

8. Wagner, K.-H.; Cameron-Smith, D.; Wessner, B.; Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients
2016, 8, 338. [CrossRef]

9. Khan, S.S.; Singer, B.D.; Vaughan, D.E. Molecular and physiological manifestations and measurement of aging in humans. Aging
Cell. 2017, 16, 624–633. [CrossRef]

10. Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A.
Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 2016, 8, 1021–1033.
[CrossRef]

11. Niedernhofer, L.J.; Kirkland, J.L.; Ladiges, W. Molecular pathology endpoints useful for aging studies. Ageing Res. Rev. 2017, 35,
241–249. [CrossRef]

12. Dubowitz, N.; Xue, W.; Long, Q.; Ownby, J.G.; Olson, D.E.; Barb, D.; Rhee, M.K.; Mohan, A.V.; Watson-Williams, P.I.; Jackson, S.L.;
et al. Aging is associated with increased HbA1c levels, independently of glucose levels and insulin resistance, and also with
decreased HbA1c diagnostic specificity. Diabet. Med. 2014, 31, 927–935. [CrossRef]

13. Chandni, R.; Paul, B.J.; Udayabhaskaran, V.; Ramamoorthy, K.P. A study of non-obese diabetes mellitus in adults in a tertiary care
hospital in Kerala, India. Int. J. Diabetes Dev. Ctries 2013, 33, 83–85. [CrossRef]

14. Weinstein, J.R.; Anderson, S. The aging kidney: Physiological changes. Adv. Chronic Kidney Dis. 2010, 17, 302–307. [CrossRef]
[PubMed]

15. Maffei, V.J.; Kim, S.; Blanchard, E., 4th; Luo, M.; Jazwinski, S.M.; Taylor, C.M.; Welsh, D.A. Biological Aging and the Human Gut
Microbiota. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1474–1482. [CrossRef] [PubMed]

16. Bonassi, S.; Coskun, E.; Ceppi, M.; Lando, C.; Bolognesi, C.; Burgaz, S.; Holland, N.; Kirsh-Volders, M.; Knasmueller, S.; Zeiger, E.;
et al. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): The role of life-style, host factors, occupational
exposures, health status, and assay protocol. Mutat. Res. Mol. Mech. Mutagen. 2011, 728, 88–97. [CrossRef]

17. Lulkiewicz, M.; Bajsert, J.; Kopczynski, P.; Barczak, W.; Rubis, B. Telomere length: How the length makes a difference. Mol. Biol.
Rep. 2020, 47, 7181–7188. [CrossRef]

18. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [CrossRef]
19. Noren Hooten, N.; Abdelmohsen, K.; Gorospe, M.; Ejiogu, N.; Zonderman, A.B.; Evans, M.K. microRNA expression patterns

reveal differential expression of target genes with age. PLoS ONE 2010, 5, e10724. [CrossRef]
20. Han, S.; Brunet, A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012, 22, 42–49. [CrossRef]
21. Zhavoronkov, A.; Mamoshina, P.; Vanhaelen, Q.; Scheibye-Knudsen, M.; Moskalev, A.; Aliper, A. Artificial intelligence for aging

and longevity research: Recent advances and perspectives. Ageing Res. Rev. 2019, 49, 49–66. [CrossRef]
22. Kang, Y.G.; Suh, E.; Lee, J.-W.; Kim, D.W.; Cho, K.H.; Bae, C.-Y. Biological age as a health index for mortality and major age-related

disease incidence in Koreans: National Health Insurance Service-Health screening 11-year follow-up study. Clin. Interv. Aging
2018, 13, 429–436. [CrossRef]

23. Wu, J.W.; Yaqub, A.; Ma, Y.; Koudstaal, W.; Hofman, A.; Ikram, M.A.; Ghanbari, M.; Goudsmit, J. Biological age in healthy elderly
predicts aging-related diseases including dementia. Sci. Rep. 2021, 11, 15929. [CrossRef]

24. Mamoshina, P.; Kochetov, K.; Putin, E.; Cortese, F.; Aliper, A.; Lee, W.-S.; Ahn, S.-M.; Uhn, L.; Skjodt, N.; Kovalchuk, O.; et al.
Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European
Patient Populations. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1482–1490. [CrossRef] [PubMed]

25. Insilico Medicine. Aging.AI. Available online: http://aging.ai/ (accessed on 25 November 2022).
26. Cohen, A.A.; Morissette-Thomas, V.; Ferrucci, L.; Fried, L.P. Deep biomarkers of aging are population-dependent. Aging 2016, 8,

2253–2255. [CrossRef] [PubMed]
27. Zhavoronkov, A.; Kochetov, K.; Diamandis, P.; Mitina, M. PsychoAge and SubjAge: Development of deep markers of psychological

and subjective age using artificial intelligence. Aging 2020, 12, 23548–23577. [CrossRef] [PubMed]
28. Alkass, K.; Buchholz, B.A.; Ohtani, S.; Yamamoto, T.; Druid, H.; Spalding, K.L. Age estimation in forensic sciences: Application of

combined aspartic acid racemization and radiocarbon analysis. Mol. Cell. Proteomics. 2010, 9, 1022–1030. [CrossRef] [PubMed]
29. Peters, M.J.; Joehanes, R.; Pilling, L.C.; Schurmann, C.; Conneely, K.N.; Powell, J.; Reinmaa, E.; Sutphin, G.L.; Zhernakova, A.;

Schramm, K.; et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 2015, 6, 8570. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/29142652
https://www.alzheimers.org.uk/about-dementia/types-dementia/who-gets-alzheimers-disease
https://www.alzheimers.org.uk/about-dementia/types-dementia/who-gets-alzheimers-disease
http://doi.org/10.1038/s41598-022-10344-3
http://www.ncbi.nlm.nih.gov/pubmed/35484176
http://doi.org/10.1093/epirev/mxs011
http://doi.org/10.3390/nu8060338
http://doi.org/10.1111/acel.12601
http://doi.org/10.18632/aging.100968
http://doi.org/10.1016/j.arr.2016.09.012
http://doi.org/10.1111/dme.12459
http://doi.org/10.1007/s13410-013-0113-7
http://doi.org/10.1053/j.ackd.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20610357
http://doi.org/10.1093/gerona/glx042
http://www.ncbi.nlm.nih.gov/pubmed/28444190
http://doi.org/10.1016/j.mrrev.2011.06.005
http://doi.org/10.1007/s11033-020-05551-y
http://doi.org/10.1016/j.cell.2013.05.039
http://doi.org/10.1371/journal.pone.0010724
http://doi.org/10.1016/j.tcb.2011.11.001
http://doi.org/10.1016/j.arr.2018.11.003
http://doi.org/10.2147/CIA.S157014
http://doi.org/10.1038/s41598-021-95425-5
http://doi.org/10.1093/gerona/gly005
http://www.ncbi.nlm.nih.gov/pubmed/29340580
http://aging.ai/
http://doi.org/10.18632/aging.101034
http://www.ncbi.nlm.nih.gov/pubmed/27622833
http://doi.org/10.18632/aging.202344
http://www.ncbi.nlm.nih.gov/pubmed/33303702
http://doi.org/10.1074/mcp.M900525-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/19965905
http://doi.org/10.1038/ncomms9570


Int. J. Mol. Sci. 2022, 23, 15103 13 of 14

30. Fleischer, J.G.; Schulte, R.; Tsai, H.H.; Tyagi, S.; Ibarra, A.; Shokhirev, M.N.; Huang, L.; Hetzer, M.W.; Navlakha, S. Predicting age
from the transcriptome of human dermal fibroblasts. Genome Biol. 2018, 19, 221. [CrossRef]

31. Glass, D.; Viñuela, A.; Davies, M.N.; Ramasamy, A.; Parts, L.; Knowles, D.; A Brown, A.; Hedman, K.; Small, K.S.; Buil, A.; et al.
Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013, 14, R75. [CrossRef]

32. Ren, X.; Kuan, P.F. RNAAgeCalc: A multi-tissue transcriptional age calculator. PLoS ONE 2020, 15, e0237006. [CrossRef]
33. Meyer, D.H.; Schumacher, B. BiT age: A transcriptome based aging clock near the theoretical limit of accuracy. Aging Cell. 2021,

20, e13320. [CrossRef] [PubMed]
34. Martins, R.; Lithgow, G.J.; Link, W. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity. Aging Cell.

2016, 15, 196–207. [CrossRef] [PubMed]
35. Wang, J.; Wang, C.; Wei, Y.; Zhao, Y.; Wang, C.; Lu, C.; Feng, J.; Li, S.; Cong, B. Circular RNA as a Potential Biomarker for Forensic

Age Prediction. Front. Genet. 2022, 13, 825443. [CrossRef] [PubMed]
36. Constantin, L. Circular RNAs and Neuronal Development. Adv. Exp. Med. Biol. 2018, 1087, 205–213. [PubMed]
37. Zhang, Z.; Yang, T.; Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 2018, 34, 267–274. [CrossRef]
38. Hanan, M.; Simchovitz, A.; Yayon, N.; Vaknine, S.; Cohen-Fultheim, R.; Karmon, M.; Madrer, N.; Rohrlich, T.M.; Maman, M.;

Bennett, E.R.; et al. A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO
Mol. Med. 2020, 12, e11942. [CrossRef]

39. Haque, S.; Ames, R.M.; Moore, K.; Pilling, L.C.; Peters, L.L.; Bandinelli, S.; Ferrucci, L.; Harries, L.W. circRNAs expressed in
human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan. Geroscience 2020,
42, 183–199. [CrossRef]

40. Lehallier, B.; Gate, D.; Schaum, N.; Nanasi, T.; Lee, S.E.; Yousef, H.; Losada, P.M.; Berdnik, D.; Keller, A.; Verghese, J.; et al. Undulating
changes in human plasma proteome profiles across the lifespan are linked to disease. Alzheimers Dement. 2020, 16, e043868. [CrossRef]

41. van den Akker, E.B.; Trompet, S.; Barkey Wolf, J.J.H.; Beekman, M.; Suchiman, H.E.D.; Deelen, J.; Asselbergs, F.W.; Boersma,
E.; Cats, D.; Elders, P.M.; et al. Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of
Age-related Disease. Circ. Genom. Precis. Med. 2020, 13, 541–547. [CrossRef]

42. Zubakov, D.; Liu, F.; van Zelm, M.C.; Vermeulen, J.; Oostra, B.A.; van Duijn, C.M.; Driessen, G.; Van Dongen, J.; Kayser, M.;
Langerak, A. Estimating human age from T-cell DNA rearrangements. Curr. Biol. 2010, 20, R970–R971. [CrossRef]

43. Galkin, F.; Mamoshina, P.; Aliper, A.; Putin, E.; Moskalev, V.; Gladyshev, V.N.; Zhavoronkov, A. Human Gut Microbiome Aging
Clock Based on Taxonomic Profiling and Deep Learning. iScience 2020, 23, 101199. [CrossRef]

44. Huang, S.; Haiminen, N.; Carrieri, A.-P.; Hu, R.; Jiang, L.; Parida, L.; Russell, B.; Allaband, C.; Zarrinpar, A.; Vázquez-Baeza, Y.;
et al. Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. mSystems 2020, 5, e00630-19. [CrossRef] [PubMed]

45. Velegzhaninov, I.; Mezenceva, V.; Shostal, O.; Baranova, A.; Moskalev, A. Age dynamics of DNA damage and CpG methylation in
the peripheral blood leukocytes of mice. Mutat. Res. Mol. Mech. Mutagen. 2015, 775, 38–42. [CrossRef] [PubMed]

46. Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al.
Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [CrossRef] [PubMed]

47. Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic predictor of age. PLoS ONE 2011,
6, e14821. [CrossRef]

48. Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al.
Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013, 49, 359–367. [CrossRef]

49. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [CrossRef]
50. Weidner, C.I.; Lin, Q.; Koch, C.M.; Eisele, L.; Beier, F.; Ziegler, P.; Bauerschlag, D.O.; Jöckel, K.-H.; Erbel, R.; Mühleisen, T.W.; et al.

Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014, 15, R24. [CrossRef]
51. Horvath, S.; Oshima, J.; Martin, G.M.; Lu, A.T.; Quach, A.; Cohen, H.; Felton, S.; Matsuyama, M.; Lowe, D.; Kabacik, S.; et al.

Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 2018, 10,
1758–1775. [CrossRef]

52. Lin, Q.; Weidner, C.I.; Costa, I.G.; Marioni, R.E. DNA Methylation Levels at Individual Age-Associated CpG Sites Can Be
Indicative for Life Expectancy. In Aging. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4789590/ (accessed
on 30 August 2022).

53. Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al.
DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [CrossRef]

54. Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.-C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.;
Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging 2016, 8,
1844–1865. [CrossRef]

55. Horvath, S.; Erhart, W.; Brosch, M.; Ammerpohl, O.; von Schönfels, W.; Ahrens, M.; Heits, N.; Bell, J.T.; Tsai, P.-C.; Spector, T.D.;
et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA 2014, 111, 15538–15543. [CrossRef] [PubMed]

56. Marioni, R.E.; Shah, S.; McRae, A.F.; Ritchie, S.J.; Muniz-Terrera, G.; Harris, S.E.; Gibson, J.; Redmond, P.; Cox, S.R.; Pattie, A.; et al.
The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 2015, 44,
1388–1396. [CrossRef] [PubMed]

57. Levine, M.E.; Hosgood, H.D.; Chen, B.; Absher, D.; Assimes, T.; Horvath, S. DNA methylation age of blood predicts future onset
of lung cancer in the women’s health initiative. Aging 2015, 7, 690–700. [CrossRef]

http://doi.org/10.1186/s13059-018-1599-6
http://doi.org/10.1186/gb-2013-14-7-r75
http://doi.org/10.1371/journal.pone.0237006
http://doi.org/10.1111/acel.13320
http://www.ncbi.nlm.nih.gov/pubmed/33656257
http://doi.org/10.1111/acel.12427
http://www.ncbi.nlm.nih.gov/pubmed/26643314
http://doi.org/10.3389/fgene.2022.825443
http://www.ncbi.nlm.nih.gov/pubmed/35198010
http://www.ncbi.nlm.nih.gov/pubmed/30259368
http://doi.org/10.1016/j.ebiom.2018.07.036
http://doi.org/10.15252/emmm.202013551
http://doi.org/10.1007/s11357-019-00120-z
http://doi.org/10.1002/alz.043868
http://doi.org/10.1161/CIRCGEN.119.002610
http://doi.org/10.1016/j.cub.2010.10.022
http://doi.org/10.1016/j.isci.2020.101199
http://doi.org/10.1128/mSystems.00630-19
http://www.ncbi.nlm.nih.gov/pubmed/32047061
http://doi.org/10.1016/j.mrfmmm.2015.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25867117
http://doi.org/10.1126/science.aaz6876
http://www.ncbi.nlm.nih.gov/pubmed/32913074
http://doi.org/10.1371/journal.pone.0014821
http://doi.org/10.1016/j.molcel.2012.10.016
http://doi.org/10.1186/gb-2013-14-10-r115
http://doi.org/10.1186/gb-2014-15-2-r24
http://doi.org/10.18632/aging.101508
https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4789590/
http://doi.org/10.1186/s13059-015-0584-6
http://doi.org/10.18632/aging.101020
http://doi.org/10.1073/pnas.1412759111
http://www.ncbi.nlm.nih.gov/pubmed/25313081
http://doi.org/10.1093/ije/dyu277
http://www.ncbi.nlm.nih.gov/pubmed/25617346
http://doi.org/10.18632/aging.100809


Int. J. Mol. Sci. 2022, 23, 15103 14 of 14

58. Levine, M.E.; Lu, A.T.; Bennett, D.A.; Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques,
amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 2015, 7, 1198–1211. [CrossRef] [PubMed]
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