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Abstract: A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluorom
ethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds
were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC
29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant
E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC
700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]
prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o)
and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-
bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococ-
cal (MICs/MBCs 0.15–5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34–44.5 µM) activity. The
growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29
to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from
9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind
to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the
inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not
only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening
was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all
effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive
agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most
interesting purely antibacterial compounds within the prepared molecules.

Keywords: cinnamamides; Michael acceptors; antimicrobial activity; cytotoxicity; lipophilicity;
structure–activity relationships; docking study
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1. Introduction

Increasing microbial burden and the development of antimicrobial resistance (AMR)
pose a major threat to human health worldwide. In 2019, it was estimated that there were
almost 5 million deaths associated with bacterial AMR, including approx. 1.3 million deaths
definitively caused by bacterial AMR. Lower respiratory tract infections accounted for more
than 1.5 million resistance-related deaths in 2019, making it the most serious infectious
syndrome. The six main pathogens for resistance-related deaths were Staphylococcus aureus,
Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and
Pseudomonas aeruginosa. Methicillin-resistant S. aureus caused more than 100,000 deaths
attributed to AMR in 2019. Another high number of deaths were caused by resistant (not
multidrug-resistant) M. tuberculosis, and third-generation cephalosporin-resistant E. coli,
carbapenem-resistant A. baumannii, fluoroquinolone-resistant E. coli, carbapenem-resistant
K. pneumoniae, and third-generation cephalosporin-resistant K. pneumoniae [1,2]. In addition
to an increased risk of patient death, AMR represents a longer hospital stay and increased
health care costs [1–3]. This state of affairs is extremely undesirable and, apart from various
approaches [2,4], the most advantageous is of course the design of new entities with a
new/innovative mechanism of action.

One design option of new drugs is inspiration from natural compounds with multiple
activities [5–8]. One such interesting compound is cinnamic acid, which has a long his-
tory of human use as a component of plant fragrances and spices. Cinnamic acid and its
derivatives occur naturally in larger quantities in plants. They are produced by a biochemi-
cal pathway providing phenylpropanoids, coumarins, lignins, isoflavonoids, flavonoids,
stilbenes, aurones, anthocyanins, spermidines, and tannins and act as a plant hormone
regulating cell growth and differentiation [9–11]. In the search for new pharmacologically
active agents, cinnamic acid and its derivatives are promising substances with great poten-
tial for the development of new drugs. Cinnamic acid and its derivatives have attracted
the attention of scientists in recent decades for their low toxicity and wide spectrum of
biological activities, such as antibacterial/antimycobacterial, antiprotozoal, antiviral, anti-
inflammatory, cytotoxic, antidiabetic, hepatoprotective, antioxidant, neuroprotective, and
anxiolytic effects [12–17].

Our research team specializes in the design of multi-target anti-infective agents based
on ring-substituted azanaphthalene bioisosteres; such hydroxynaphthanilides with activity
against Gram-positive bacteria and mycobacteria [18–20]; and quinoline-like compounds
(hydroxyquinolines, benzoxazoles, benzothiazoles) with antifungal, antibacterial, and
antimycobacterial activities [21–25]. As part of the modifications to increase the solubility
of mainly naphthalene derivatives, one ring was dismantled, resulting in the (E)-prop-1-en-
1-ylbenzene scaffold. A number of cinnamic acid anilides were prepared and tested [26,27].
Subsequent chlorination of the benzene ring gave much more potent compounds [28], and
as sufficient lipophilicity was found to be essential for the efficacy of these compounds,
new series were prepared where the chlorine atoms were replaced by a trifluoromethyl
group either in the meta- or para-position of the cinnamic acid benzene ring. Moieties with
electron-withdrawing properties were also chosen as substituents on the anilide ring. Thus,
2 × 16 lipophilic compounds with electron-withdrawing substituents that cause electron
deficiency throughout the conjugated double-bond system, including the amide group,
were prepared. It can be stated that these designed agents meet the definition of so-called
Michael acceptors, i.e., compounds in which generally double/triple bonds are conjugated
with electron-withdrawing groups and which are able to react with nucleophiles, i.e.,
electron-rich substrates (e.g., NH or SH groups) [29], and thus have the ability to interact
with many biological targets [12,13,30]. All the prepared compounds were tested against
Gram-positive and mycobacterial strains and were also docked into the binding site of their
potential intracellular target InhA, which has been previously reported to interact with
similar compounds [31–33].



Int. J. Mol. Sci. 2022, 23, 15090 3 of 22

2. Results and Discussion
2.1. Synthesis and Physicochemical Properties

Anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid
(series 2) were synthesized according to Scheme 1 as described previously by Strharsky et al. [28].
Briefly, acid dissolved in dry chlorobenzene in the presence of phosphorus trichloride and the
appropriate aniline in a microwave reactor yielded targeted N-arylcinnamamides (see Table 1).
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Scheme 1. Synthesis of (2E)-N-phenyl-3-[3-(trifluoromethyl)phenyl]prop-2-enanilides 1a–p and (2E)-
N-phenyl-3-[4-(trifluoromethyl)phenyl]prop-2-enanilides 2a–p. Reagents and conditions: (a) PCl3,
chlorobenzene, MW, 45 min [28].

Table 1. Structures of ring-substituted (2E)-3-[3-(trifluoromethyl)phenyl]-N-arylprop-2-enanilides
1a–p, (2E)-3-[4-(trifluoromethyl)phenyl]-N-arylprop-2-enanilides 2a–p, experimentally determined
(log k, log D6.5 and log D7.4), calculated lipophilicities (log P/Clog P) values of investigated com-
pounds and electronic σ parameters of substituted anilide ring.
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No. R1 R2 R3 log k log D6.5 log D7.4 log P 1 log P 2 Clog P 2 σPh-R3
1

1a CF3 H H 0.5234 0.4663 0.4633 3.93 4.10 4.5470 0.60
1b CF3 H 2-F 0.5375 0.4804 0.4805 3.84 4.26 4.3476 1.02
1c CF3 H 3-F 0.6333 0.5768 0.5775 4.19 4.26 4.9476 0.82
1d CF3 H 4-F 0.5760 0.5178 0.5175 3.77 4.26 4.9476 0.62
1e CF3 H 2-Cl 0.6568 0.6010 0.6012 4.56 4.66 4.6676 1.02
1f CF3 H 3-Cl 0.8016 0.7477 0.7468 4.80 4.66 5.5176 0.85
1g CF3 H 4-Cl 0.7982 0.7431 0.7413 4.67 4.66 5.5176 0.75
1h CF3 H 2-CF3 0.5710 0.5135 0.5119 4.43 5.02 4.4308 0.91
1i CF3 H 3-CF3 0.8807 0.8249 0.8287 5.29 5.02 5.8808 0.89
1j CF3 H 4-CF3 0.9247 0.8706 0.8666 4.60 5.02 5.8808 0.95
1k CF3 H 2,4-F 0.5906 0.5318 0.5326 3.99 4.42 4.5808 1.04
1l CF3 H 3,5-F 0.8186 0.7657 0.7636 4.52 4.42 5.1808 1.12

1m CF3 H 2,4-Cl 0.9782 0.9284 0.9279 5.41 5.22 5.4708 1.12
1n CF3 H 2,5-Cl 0.9612 0.9096 0.9091 5.69 5.22 5.4708 1.22
1o CF3 H 3,5-Cl 1.2028 1.1506 1.1488 5.68 5.22 6.3208 1.11
1p CF3 H 3,5-CF3 1.3648 1.3126 1.3121 6.75 5.94 6.9216 1.05
2a H CF3 H 0.5351 0.4751 0.4684 3.96 4.10 4.5470 0.60
2b H CF3 2-F 0.5515 0.4924 0.4811 3.87 4.26 4.3476 1.02
2c H CF3 3-F 0.6462 0.5877 0.5750 4.23 4.26 4.9476 0.82
2d H CF3 4-F 0.5887 0.5283 0.5159 3.79 4.26 4.9476 0.62
2e H CF3 2-Cl 0.6614 0.6050 0.5917 4.60 4.66 4.6676 1.02
2f H CF3 3-Cl 0.8095 0.7526 0.7402 4.82 4.66 5.5176 0.85
2g H CF3 4-Cl 0.8054 0.7483 0.7351 4.70 4.66 5.5176 0.75
2h H CF3 2-CF3 0.5798 0.5187 0.5081 4.46 5.02 4.4308 0.91
2i H CF3 3-CF3 0.8867 0.8300 0.8177 5.33 5.02 5.8808 0.89
2j H CF3 4-CF3 0.9319 0.8743 0.8617 4.63 5.02 5.8808 0.95
2k H CF3 2,4-F 0.6011 0.5396 0.5225 4.01 4.42 4.5808 1.04
2l H CF3 3,5-F 0.8253 0.7678 0.7516 4.55 4.42 5.1808 1.12

2m H CF3 2,4-Cl 0.9735 0.9196 0.9033 5.44 5.22 5.4708 1.12
2n H CF3 2,5-Cl 0.9583 0.9037 0.8903 5.72 5.22 5.4708 1.22
2o H CF3 3,5-Cl 1.2024 1.1511 1.1440 5.72 5.22 6.3208 1.11
2p H CF3 3,5-CF3 1.3665 1.3169 1.3098 6.80 5.94 6.9216 1.05

1 ACD/Percepta ver. 2012 (Advanced Chemistry Development. Inc., Toronto, ON, Canada, 2012); 2 ChemBio-
DrawUltra 13.0 (CambridgeSoft, PerkinElmer Inc., Waltham, MA, USA).

Based on the previous results of our compounds, where lipophilicity was shown to
significantly affect biological activities [26–28], lipophilicities were also experimentally
determined for all the investigated compounds by RP-HPLC, as the logarithm of the
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capacity factor k and the logarithms of the distribution coefficients D at physiological pH
values of 6.5 and 7.4 [34,35]. It is evident from the graphs in Figure 1 that the correlation
coefficients of the dependences of log k/log D6.5/log D7.4 have a value of r = 0.999 (n = 32),
which means that the investigated compounds behave insignificantly differently in aqueous
media with different pH. Moreover, lipophilicity was calculated as log P and Clog P
using two prediction programs. Unfortunately, ChemBioDrawUltra does not distinguish
individual positional isomers, so ortho-, meta-, and para-isomers have the same values of
lipophilicity, which are also the same for compounds from series 1 and 2. Therefore, only
log P values predicted by ACD/Percepta can be used for correlations with experimental
values. These matches are shown in the graphs in Figure 2, and according to the correlation
coefficient r~0.940 (n = 32), it can be argued that even the predicted lipophilicity values
correlate with the experimentally measured ones. However, the largest variations were
observed (no difference for series 1, 2) for compounds substituted with 2-Cl, 2-CF3, 2,5-Cl,
4-F, 4-CF3, and 3,5-F, 3,5-Cl. These are mainly substituents capable of forming hydrogen
and other types of non-bonding interactions both with the surrounding environment and
within the molecule. Overall, series 1 (3-CF3) is less lipophilic than series 2 (4-CF3), but the
differences in the experimental data are insignificant. Unsubstituted derivatives 1a/2a are
the least lipophilic compounds, while derivatives 1o/2o (3,5-Cl) and 1p/2p (3,5-CF3) are
the most lipophilic compounds. Any anilide substitution in the ortho-position significantly
decreases lipophilicity compared to para- or meta-substitution.
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Figure 1. Mutual comparison of experimentally determined values of log k/log D6.5/log D7.4 (A–C) of
prepared compounds 1a–2p. (blue rhombuses = series 1, red triangles = series 2).

In addition to lipophilicity, Table 1 also shows the predicted (ACD/Percepta) electronic
σ parameters of the whole substituted anilide ring characterizing the ability to withdraw
or donate electrons to molecule system.

2.2. In Vitro Antimicrobial Activity

All the investigated compounds were in vitro tested against Gram-positive bacteria
and mycobacteria. First, universally sensitive collection strains of Staphylococcus aureus
ATCC 29213 and Enterococcus faecalis ATCC 29212 were selected. The second aspect
of strain selection was the current state of occurrence of strains with an epidemiolog-
ically significant type of resistance, represented by clinical isolates of human and vet-
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erinary origin, i.e., different sequence types limited to human and animal populations,
e.g., methicillin-resistant Staphylococcus aureus (MRSA) SA 3202, SA 630, 63718 isolates
carrying the mecA gene [36]. In the case of vancomycin-resistant E. faecalis (VRE) 342B,
368, and 725B isolates carrying the vanA gene [37], these were isolates from wild birds that
were colonized from US hospital wastewater. In addition, all the compounds were in vitro
tested against fast-growing Mycobacterium smegmatis ATCC 700084 [38] and slow-growing
Mycobacterium marinum CAMP 5644 [39] as a safe alternative to Mycobacterium tuberculosis.
Activities are expressed as the minimum inhibitory concentrations (MICs) and the min-
imum bactericidal concentrations (MBCs); see Table 2. To establish that a compound
demonstrates a bactericidal effect against a particular tested strain, it must meet the condi-
tion MIC/MBC ≤ 4 [36,40]. MBC values that meet this requirement, i.e., the compound is
bactericidal, are indicated in bold in Table 2.
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Figure 2. Correlation of experimental log k/log D6.5/log D7.4 (A–C) values with predicted log P
(ACD/Percepta) values (A–C) of prepared compounds 1a–2p. (blue rhombuses = series 1, red
triangles = series 2).

Table 2 shows that out of 32 tested compounds, nine compounds showed activity
against the tested microorganisms: seven from series 1 (R1 = 3-CF3) and two from series 2
(R2 = 4-CF3). All other compounds were inactive, i.e., their MICs were ≥256 µg/mL. The
effective compounds are substituted in the meta-positions F, Cl, CF3, only 1g and 1j are
substituted at C(4) of the cinnamic scaffold. Compounds 1j (R3 = 4-CF3), 1o (R3 = 3,5-Cl)
and 2i (R3 = 3-CF3), 2p (R3 = 3,5-CF3) demonstrated activity in the entire spectrum of tested
microorganisms. Compounds 1c (R3 = 3-F), 1f (R3 = 3-Cl), 1g (R3 = 4-Cl), 1i (R3 = 3-CF3),
and 1p (R3 = 3,5-CF3) had only antistaphylococcal activity. The activity of the compounds
significantly exceeded the MIC values of ampicillin against staphylococcal strains and even
for 1o and 2p the activity was comparable to that of ampicillin against enterococcal strains.
It should be noted that compounds showed comparable antistaphylococcal activities both
against methicillin-susceptible S. aureus and MRSA isolates, therefore it can be assumed
that the presence of the mecA gene (which encodes an alternative transpeptidase and causes
methicillin resistance [41]) [36] in MRSA does not affect the activity of these compounds.
Thus, it can be similarly speculated concerning the specific activity against Staphylococcus
sp. that the close activity of the compounds against both E. faecalis and VRE indicates a
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mechanism of action unrelated to vancomycin resistance [37]. It is important to mention
that all compounds demonstrated bactericidal activity; see bolded MBC values in Table 2.

Table 2. In vitro antistaphylococcal, anti-enterococcal, and antimycobacterial activities (MIC/MBC
[µM]) compared to ampicillin (AMP), isoniazid (INH), and in vitro cell viability (IC50 [µM] ± SD,
n = 6) on human monocytic leukemia cell line (THP-1).

No.

MIC [µM]
MBC [µM] IC50 [µM]

THP-1 24 h
SA MRSA1 MRSA2 MRSA3 EF VRE1 VRE2 VRE3 MM MS

1c 12.9
25.9

25.9
25.9

12.9
12.9

12.9
12.9

n.a.
– n.a.

–
n.a.
–

n.a.
–

n.a.
–

51.7
– >30

1f 12.3
12.3

6.14
6.14

6.14
6.14

6.14
12.3 n.a.

–
n.a.
–

n.a.
–

n.a.
–

n.a.
–

24.6
– >10

1g 24.6
49.1

12.3
24.6

6.14
6.14

12.3
24.6 n.a.

–
n.a.
–

n.a.
–

n.a.
–

n.a.
–

24.6
– >10

1i 11.1
22.3

11.1
11.1

2.78
2.78

2.78
22.3 n.a.

–
n.a.
–

n.a.
–

n.a.
–

n.a.
–

11.1
– >10

1j 2.78
2.78

2.78
2.78

1.39
1.39

2.78
5.57

22.3
22.3

22.3
22.3

44.5
44.5

22.3
22.3

0.348
–

11.1
– >30

1o 0.694
0.694

1.39
2.78

0.694
0.694

0.694
1.39

11.1
22.2

22.2
22.2

22.2
22.2

22.2
22.2

22.2
–

11.1
– >30

1p 1.17
1.17

2.34
2.34

1.17
1.17

0.585
1.17 n.a.

–
n.a.
–

n.a.
–

n.a.
–

2.34
–

9.36
– 6.7 ± 1.1

2i 1.39
1.39

2.78
2.78

1.39
1.39

2.78
2.78

11.1
11.1

11.1
22.3

11.1
44.5

11.1
11.1

2.78
–

n.a.
– >10

2p 0.146
0.146

0.585
0.585

0.293
0.585

0.293
0.293

2.34
4.68

2.34
4.68

4.68
9.36

2.34
2.34

0.293
–

1.17
– 8.9 ± 1.3

AMP 5.72
>5.72

45.8
>45.8

45.8
>45.8

45.8
>45.8

2.81
2.81

11.5
11.5

11.5
11.5

11.5
11.5 – – –

INH – – – – – – – – 36.6
–

117
– –

SA = Staphylococcus aureus ATCC 29213; MRSA1–3 = clinical isolates of methicillin-resistant S. aureus SA 3202,
SA 630 (National Institute of Public Health, Prague, Czech Republic), and 63718 (Department of Infectious Diseases
and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic);
EF = Enterococcus faecalis ATCC 29213, and vancomycin-resistant enterococci VRE1–3 = VRE 342B, VRE 368,
VRE 725B, MM = Mycobacterium marinum CAMP 5644; MS = M. smegmatis ATCC 700084; FSB = fetal bovine serum;
n.a. = no activity. The real bactericidal values required by the MBC/MIC ≤ 4 rule are in bold.

The growth of M. marinum was inhibited only by four compounds 1j (R3 = 4-CF3), 1o
(R3 = 3,5-Cl), 1p (R3 = 3,5-CF3), 2i (R3 = 3-CF3), and 2p (R3 = 3,5-CF3) in a wide MIC range
from 0.29 to 22.2 µM, but all compounds were more effective than standard isoniazid. On
the other hand, only 2i (R3 = 3-CF3) had no effect on fast-growing M. smegnatis; the other
derivatives had MICs from 1.17 to 51.7 µM; again, they were more effective than isoniazid.

Since the compounds act more on aerobic staphylococci than on facultatively anaerobic
enterococci [42], known among other things for high resistance to disinfection procedures
and antibiotics [43–45], it was hypothesized that a possible mechanism of action could
be inhibition of respiration, and therefore a standard MTT test was performed with the
most active derivatives. The MTT assay can be used to assess cell growth by measuring
respiration. Respiratory activity of bacterial cells (which is finally reflected in their viability)
less than 70% after exposure to the MIC values for each tested compound is considered as a
positive result of this assay. This low level of cell oxidative metabolism indicates inhibition
of cell growth by inhibition of respiration [46,47]. The lowest multiples of MIC values that
achieved more than 70% inhibition of S. aureus ATCC 29213 viability (%) are shown in
Table 3. It can be noted that compounds 1o (R3 = 3,5-Cl) and 1j (R3 = 4-CF3) showed a
decrease in viability of <70% at half and even a quarter of their MIC value and compounds
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1f (R3 = 3-Cl), 1i/2i (R3 = 3-CF3), and 2p (R3 = 3,5-CF3) showed a decrease in viability
of <70% at their MICs, which suggests that these agents may act through inhibition of
the respiratory chain. Compounds 1c and 2p inhibited respiratory chain by ca. 98% at a
value of 2×MIC, so they are able to significantly affect it, compared to, e.g., ciprofloxacin
or ampicillin.

Table 3. Lowest MIC values with at least 70% inhibition of S. aureus ATCC 29213 respiratory activity.

No. Conc. S. aureus Respiration Inhibition (%)

1c 2×MIC (1×MBC) 97.9
1f 1×MIC (1×MBC) 96.0
1g 4×MIC (2×MBC) 71.1
1i 1×MIC (0.5×MBC) 98.0
1j 0.5×MIC (0.5×MBC) 97.9
1o 0.25×MIC (0.25×MBC) 97.8
1p 1×MIC (1×MBC) 97.7
2i 1×MIC (1×MBC) 98.1
2p 2×MIC (2×MBC) 98.0

AMP 8×MIC (>8×MBC) 90.0
CPX 32×MIC (32×MBC) 92.8

2.3. In Vitro Cell Viability

Preliminary in vitro cytotoxicity screening of the antimicrobially effective compounds
(Table 2) was performed using human monocytic leukemia cell line THP-1 in the culture
medium containing 10% FBS, and it was expressed as IC50 values (see Table 2). The inves-
tigated anilides can be divided into three groups. Compounds 1p and 2p (R3 = 3,5-CF3)
with IC50 of 6.7 and 8.9 µM, respectively, had the most pronounced activity on THP-1 cells.
Insignificant cytotoxic effect (IC50 > 10 µM) was found for 1f (R3 = 3-Cl), 1g (R3 = 4-Cl),
1i/2i (R3 = 3-CF3) and any cytotoxic effect (IC50 > 30 µM) was found for 1j (R3 = 4-CF3) and
1o (R3 = 3,5-Cl). Higher concentrations (than 10 or 30 µM) were not possible to evaluate due
to precipitation of the tested compounds in water medium. Based on all these observations,
it can be concluded that the high antimicrobial activity of 3,5-CF3-substituted compounds
is associated with significant cytotoxic effect against eukaryotic cells. On the other hand,
the other still effective compounds, especially agents 1j and 1o, have an insignificant toxic
effect, which makes them interesting for further study.

2.4. Structure–Activity Relationships

Since only nine (7 + 2) compounds expressed antimicrobial activity, extensive discus-
sions of structure–activity relationships (SAR) are not possible, but certain trends can be
found. The dependence of the activity against S. aureus, expressed as log(1/MIC [M]) or
log(1/MBC [M], on lipophilicity (log k) is illustrated in the graphs in Figure 3A,B. It is
possible to see a bilinear trend where the activity increases with increasing value of log k
up to 1.2 and then decreases. The activity is also significantly affected by the electron-
withdrawing properties of the anilide substituents, as shown in Figure 3C,D. This linear
dependence has a correlation coefficient of r = 0.9824 (bacteriostatic activity) and r = 0.9674
(bactericidal activity) for the seven derivatives of series 1. The dependences of activities
on lipophilicity or electronic σ parameters for MRSA isolates are similar and therefore
not shown.

Only two compounds from each series were effective against E. faecalis/VRE. There-
fore, it can only be stated that compounds with significant lipophilicity and electron-
withdrawing properties seem to be preferred for a stronger effect. The SAR discussion of
activities against M. marinum is similarly brief. Substitution with CF3 groups on C(3,5)’ or
C(4)’, lipophilicity (log k) in the interval from 0.9 to 1.3 and σ ca. 1 seems to be advantageous.
The SAR discussion related to M. smegmatis seems to be more interesting. Only compound
2i is not active, thus series 1 can be discussed. As can be seen from Figure 4, the dependence
of activity expressed as log(1/MIC [M]) on lipophilicity (log k) increases with increasing
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value of log k value to approx. 0.9 and then is constant. The course of the dependence
of activity on electronic σ parameters is the same as the dependence on lipophilicity: it
increases with increasing σ value up to 0.9 and then is linear.
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Figure 3. Dependences of in vitro bacteriostatic log(1/MIC [M]) (A,C) and bactericidal log(1/MBC
[M]) (B,D) activity against S. aureus ATCC 29213 on lipophilicity expressed as log k and electronic
σ parameters of whole substituted anilide of studied compounds (blue rhombuses = series 1, red
triangles = series 2).
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Figure 4. Dependences of in vitro antimycobacterial activity expressed as log(1/MIC [M]) against
M. smegamtis on lipophilicity expressed as log k of studied compounds (blue rhombuses = series 1,
red triangles = series 2).

As mentioned above, this is a follow-up study dealing with the antimicrobial activity
of ring-substituted cinnamanilides. In total, anilides of cinnamic acid [26,27], anilides of 4-
chlorocinnamic acid/3,4-dichlorocinnamic acid [28], and the anilides of 3-(trifluoromethyl)
cinnamic acid/4-(trifluoromethyl)cinnamic acid discussed here were prepared. The elimi-
nation of one of the aromatic rings from the dinuclear aromatic skeleton and the formation
of the (E)-prop-1-en-1-ylbenzene structure improved the overall solubility and enabled,
in addition to the modification of the anilide part, the substitution of the aromatic ring
of cinnamic acid. The substitution of the phenyl core of cinnamic acid with lipophilic
and electron-withdrawing substituents was inspired by our previous studies dealing with
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salicylamide derivatives [36,48–50]. Among these variously substituted cinnamic acid
derivatives, several interesting compounds in terms of bioactivity were found.

Within the primary series with substitutions on the anilide ring only, compounds 3a–c
(Figure 5) were identified as active against S. aureus/MRSA (average MIC ~24 µM). The
compounds were completely inactive against E. faecalis/VRE. The MTT assay showed 86%
inhibition of S. aureus respiration by compound 3c at its MIC value. Compounds 3a and 3b
showed bactericidal effect in concentrations close to MICs and ability to inhibit the growth
of staphylococcal biofilm and disrupted mature biofilm in concentrations close to MICs.
In addition, these compounds were evaluated for their ability to potentiate clinically used
antibiotics. Vancomycin, tetracycline, and ciprofloxacin were chosen, and it was found that
compound 3b showed a synergistic effect with tetracycline and ciprofloxacin and additivity
with vancomycin against MRSA. These three antibiotics have different mechanisms of
action, to which bacteria develop different mechanisms of resistance, so it can be expected
that our compound works by its own, different mechanism of action [26,51]. Based on
these results, it can be assumed that our compounds are able to act as inhibitor of the
S. aureus NorA efflux pump, as was described for ferulic acid derivatives [52,53]. Removal
of fluoroquinolones and tetracyclines from cells by efflux pumps represents one of the
main mechanisms of resistance to them [3]. The additive effect with vancomycin may
be associated with damage to the bacterial membrane [54] including possible inhibition
of peptidoglycan synthesis by affecting the biosynthesis of the peptidoglycan precursor
uridine-diphosphate-N-acetylglucosamine [55]. Compounds 3a, 3b, 3d, and 3e were active
against M. tuberculosis H37Ra (average MIC ~24 µM). MTT assay showed 77% inhibition
of M. tuberculosis respiration by compounds 3b and 3d at their MIC values [26]. Of the
chlorinated compounds representing the next generation of cinnamanilide derivatives,
3,4-dichlorinated derivatives proved to be more effective. Compounds 4a–f (both 4-Cl
and 3,4-Cl derivatives) were active against S. aureus/MRSA (average MIC ~0.7 µM). The
MTT assay demonstrated 95% inhibition of S. aureus respiration by these compounds at
their MICs. The exception was 4f, which inhibited the respiration of S. aureus by 96% at
0.25×MIC. Only derivatives 4c–f (3,4-Cl series) were effective against E. faecalis/VRE (aver-
age MIC ~18 µM). In addition, only 4c–f were active against M. smegmatis and M. marinum
(average MIC ~4.1 µM) safe models mimicking M. tuberculosis. All the effective compounds
showed bactericidal activity [28,56]. Of the compounds discussed in this paper, the ma-
jority of active derivatives were from series 1 (R1 = 3-CF3), although two of the effective
derivatives from series 2 were more potent. Active against all tested microorganisms were
compounds 1j, 1o, 2i, and 2p (average MIC ~1.4 µM against S. aureus/MRSA and ~15 µM
against E. faecalis/VRE). The MTT assay demonstrated 98% inhibition of S. aureus respira-
tion by compounds 1j, 2i, and 2p at their MICs. The exception was 1o, which inhibited the
respiration of S. aureus by 98% at 0.25×MIC. All active compounds showed bactericidal
activity. Inhibition of cellular respiration by inhibiting membrane-bound ATPases result-
ing in a subsequent bactericidal effect of cinnamaldehyde was studied, e.g., by Gill and
Holley [57]. In addition, compounds 1j, 1p, and 2p were active against M. smegmatis and
M. marinum (average MIC ~4.1 µM).

Based on these observations, it can be concluded that the substitution of the anilide
with Cl or CF3 in the meta-position (preferably in the C(3,5)

′ positions) or in the para-position
is essential for antibacterial/antimycobacterial activity. The simultaneous substitution of
the phenyl ring of cinnamic acid with 3,4-Cl, 3-CF3, or 4-CF3 increases the effect and broad-
ens the spectrum of activity. Overall, however, these are electron-deficient (σ range 0.9–1.2)
and lipophilic compounds (log k range 1.2–1.4/log P range 5.5–6.5), which penetrate well
through the membranes of pathogens and have the ability to bind to electron-rich targets.
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Figure 5. Structures of investigated ring-substituted cinnamanilides with significant antimicrobial (3a–e,
4a–f, 1j,o,p, 2i,p) and antiplasmodial (3f) activity or anti-inflammatory (3g) potential [26–28,58,59].

However, in the recently published study describing the antiplasmodial activity of the
basic series of cinnamanilides (type 3 compounds), the C(3)

′/C(3,5)
′ substituted derivatives

showed only moderate activity and the compounds having at least one substituent in the
C(2)

′ anilide position were the most active [58], e.g., compound 3f with IC50 = 0.58 µM
against Plasmodium falciparum 3D7. Similar findings regarding the need for substitution
at the C(2)

′ anilide position were found for NF-κB inhibition, when compound 3g showed
the anti-inflammatory potential comparable to that prednisone [59]. However, even in
these cases, the physicochemical characteristics are similar (a lipophilic electron-deficient
molecule with a conjugated amide bond), only the position of the substituents for optimal
activity differs, which may be due to the different target site and specific steric conditions
of the binding pocket. Therefore, it can be stated that all these active compounds can be
considered Michael acceptors [29,60–62].

Due to their structure (overall electronic parameters, electron-withdrawing substituents,
and conjugated –C(=O)–N(H)– bond), ring-substituted cinnamanilides are able to inter-
act with a variety of biological targets in many signaling pathways in cells, as reported
recently [12,13,30,63–65], and thus meet the requirement of being therapeutically useful
multi-target agents. The theory of the dependence of activity on the ability of compounds
to act as Michael acceptors would be clearly confirmed by the preparation and biological
evaluation of hydrogenated analogues of active cinnamanilides. There is also an additional
question about activity modification if the configuration of the derivatives were not trans
(E-isomers) but cis (Z-isomers), since the physiological activity of cis-cinnamic acid was
higher than that of trans-cinnamic acid in many respects [66–69].

2.5. Docking Study

The compounds exhibiting antimicrobial activity against tested microorganisms (Table 3)
were docked into the binding site of their potential target—enzyme InhA. The protein has
been shown to interact with ligands that have similar size and structural features as our
compounds [31–33,70]. In the study by Sabbah et al. [15], the binding mode and structural
features of triclosan were employed in the fragment-based design of InhA inhibitors, of which
the activity was also experimentally evaluated. Enzyme InhA, part of the fatty acid synthase II
(FAS II) complex, is an NADH-dependent enzyme involved in the reduction of long-chain fatty
acids, which are essential components of the unique cell envelope of mycobacteria [15]. Re-
cently, the protein has become an interesting target for the development of antituberculotic
drugs [15,31].

Software AutoDock Vina was employed for the docking; structure 4OYR was used
for InhA. The source organism for the protein is M. tuberculosis. The suitability of the
used docking procedure was verified on a set of InhA ligands with available experimental
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data and X-ray structures [31]. The details are provided in Supplementary Materials
(Tables S1 and S2 and Figures S1 and S2). Figure 6 shows the binding mode of compounds
1c, 1f, and 1o in the binding site of InhA. They show π-interactions with TYR158 and
PHE149, and hydrophobic interactions with LEU218, VAL203, and ALA198. Comparisons
of these complexes with X-ray structures of diaryl ether derivatives from Chollet and
others [31–33] or triclosan X-ray structure [70] reveal that all these compounds have very
similar binding mechanisms (Figure 7, Table S3 and Figure S3). This supports the theory
that our compounds could interact with InhA.
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Figure 7. Superposition of compound 1f (magenta) docked into the binding site of InhA with
NAD (green) and ligand from X-ray structure 4OYR (violet) (A). Superposition of compound 1o
(orange) and X-ray structure 3FNH (violet) on the right (B). Structural alignment of the proteins
was performed.

Figure 8A shows the binding mode of compounds 1g, 1j, and 2i in the binding site of
InhA, and Figure 8B shows the binding mode of compounds 1i, 1p, and 2p. The binding



Int. J. Mol. Sci. 2022, 23, 15090 12 of 22

modes for these six compounds are slightly different from those observed with compounds
1c, 1f, and 1o. However, the compounds interact with similar residues.
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The binding mode of our compounds in InhA is consistent with the published X-ray
structures; therefore, InhA is a possible target of our compounds.

A different potential target of our compounds is subunit c of ATP synthase. It is the
transmembrane portion of the protein (F0 rotor). Compounds binding to this protein have
shown antituberculotic activity [71] but also activity against Streptococcus spp. [72]. Such
an activity was also observed with our compounds. There are, however, only limited
experimental and structural data available for this protein. Moreover, it is not surrounded
by water since it is a transmembrane domain. Therefore, it is not suitable for docking (see
Supplementary Materials and Figure S4 for details).

3. Materials and Methods
3.1. General Methods

All reagents were purchased from Merck (Sigma-Aldrich, St. Louis, MO, USA) and
Alfa (Alfa-Aesar, Ward Hill, MA, USA). Reactions were performed using an Anton-Paar
Monowave 50 microwave reactor (Graz, Austria). The melting points were determined
on a Kofler hot-plate apparatus HMK (Franz Kustner Nacht KG, Dresden, Germany) and
are uncorrected. All 1H- and 13C-NMR spectra were recorded on a JEOL ECZR 400 MHz
NMR spectrometer (400 MHz for 1H and 100 MHz for 13C, Jeol, Tokyo, Japan) in dimethyl
sulfoxide-d6 (DMSO-d6). 1H and 13C chemical shifts (δ) are reported in ppm. High-
resolution mass spectra were measured using a high-performance liquid chromatograph
Dionex UltiMate® 3000 (Thermo Scientific, West Palm Beach, FL, USA) coupled with an LTQ
Orbitrap XLTM Hybrid Ion Trap-Orbitrap Fourier Transform Mass Spectrometer (Thermo
Scientific) equipped with a HESI II (heated electrospray ionization) source in the positive
and negative mode.

3.2. Synthesis
General Procedure for Synthesis of Carboxamide Derivatives 1a–2q

The 3-trifluoromethylcinnamic acid/4-trifluoromethylcinnamic acid (1.0 mM) was
suspended in dry chlorobenzene (6.0 mL) at ambient temperature and phosphorus trichlo-
ride (0.5 mM, 0.5 eq.), and the corresponding substituted aniline (1.0 mM, 1 eq.) were
added dropwise. The reaction mixture was transferred to the microwave reactor, where
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the synthesis was performed (30 min, 130 ◦C). Then the mixture was cooled to 40 ◦C, and
then the solvent was removed to dryness under reduced pressure. The residue was washed
with hydrochloride acid and water. The crude product was recrystallized from ethanol.

(2E)-N-Phenyl-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1a) [73]. Yield 68%; Mp
141–143 ◦C; 1H-NMR (DMSO-d6), δ: 10.25 (s 1H), 7.98 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H),
7.94 (d, J = 7.8 Hz, 1H), 7.72–7.66 (m, 4H), 7.36–7.32 (m, 2H), 7.10–7.06 (m, 1H), 6.97 (d,
J = 16.0 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.1, 139.1, 138.3, 135.9, 131.5, 130.2, 129.8, (q,
J = 31.8 Hz), 128.8, 126.0, (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz), 124.0 (q, J = 3.9 Hz), 119.2
(Figure S5); HR-MS: for C16H11ONF3, [M-H]− calculated 290.0798 m/z, found 290.0802 m/z.

(2E)-N-(2-Fluorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1b). Yield 71%; Mp
115–117 ◦C; 1H-NMR (DMSO-d6), δ: 9.97 (s, 1H), 8.16 (td, J = 7.9, 2.1 Hz, 1H), 7.98 (s, 1H),
7.92 (d, J = 7.8 Hz, 1H), 7.76–7.65 (m, 3H), 7.30–7.12 (m, 4H); 13C-NMR (DMSO-d6), δ: 163.5,
153.2 (d, J = 244.7 Hz), 138.8, 135.9, 131.6, 130.1, 129.8 (q, J = 31.8 Hz), 126.4 (d, J = 11.6 Hz),
126.0 (q, J = 3.9 Hz), 125.0 (d, J = 7.7 Hz), 124.4 (d, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz), 124.1,
123.9 (q, J = 3.9 Hz), 123.3, 115.4 (d, J = 19.3 Hz) (Figure S6); HR-MS: for C16H10ONF4
[M-H]− calculated 308.0704 m/z, found 308.0708 m/z.

(2E)-N-(3-Fluorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1c) [74]. Yield 69%;
Mp 113–115 ◦C; 1H-NMR (DMSO-d6), δ: 10.45 (s, 1H), 7.97 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H),
7.74–7.65 (m, 4H), 7.38–7.34 (m, 2H), 6.94 (d, J = 15.8 Hz, 1H), 6.90–6.87 (m, 1H); 13C-NMR
(DMSO-d6), δ: 163.4, 162.2 (d, J = 240.8 Hz), 140.9 (d, J = 10.6 Hz), 138.9, 135.8, 131.6, 130.5
(d, J = 8.7 Hz), 130.2, 129.8 (q, J = 31.8 Hz), 126.2 (q, J = 3.9 Hz), 124.0, 124.1 (q, J = 3.9 Hz),
124.0 (q, J = 271.7 Hz), 115.0 (d, J = 2.9 Hz), 110.0 (d, J = 21.2 Hz), 106.1 (d, J = 27.0 Hz)
(Figure S7); HR-MS: for C16H10ONF4 [M-H]− calculated 308.0704 m/z, found 308.0701 m/z.

(2E)-N-(4-Fluorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1d). Yield 75%; Mp
149–151 ◦C; 1H-NMR (DMSO-d6), δ: 10.32 (s, 1H), 7.98 (s, 1H), 7.94 (d, J= 7.6 Hz, 1H), 7.76
(d, J = 8.2 Hz, 1H), 7.73–7.67 (m, 4H), 7.20–7.17 (m, 2H), 6.93 (d, J = 15.8 Hz, 1H); 13C-NMR
(DMSO-d6), δ: 163.0, 158.1 (d, J = 241.3 Hz), 138.4, 135.9, 135.5 (d, J = 2.9 Hz), 131.5, 130.2,
129.8 (q, J = 31.8 Hz), 126.0 (q, J = 2.9 Hz), 124.3, 124.0 (q, J = 4.3 Hz), 124.0 (q, J = 273.1 Hz),
120.9 (d, J = 7.2 Hz), 115.5 (d, J = 21.7 Hz) (Figure S8); HR-MS: for C16H10ONF4 [M-H]−

calculated 308.0704 m/z, found 308.0706 m/z.
(2E)-N-(2-Chlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1e). Yield 72%; Mp

118–120 ◦C; 1H-NMR (DMSO-d6), δ: 9.68 (s, 1H), 8.02 (s, 1H), 7.99 (dd, J = 8.2, 1.4 Hz,
1H), 7.95 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.73–7.67 (m, 2H), 7.52 (dd, J = 7.8,
1.4 Hz, 1H), 7.36 (td, J = 7.8, 1.8 Hz, 1H), 7.28 (d, J = 15.6 Hz, 1H), 7.20 (td, J = 7.8, 1.8 Hz,
1H); 13C-NMR (DMSO-d6), δ: 163.5, 139.1, 135.9, 134.9, 131.8, 130.1, 129.8 (q, J = 31.8 Hz),
129.5, 127.5, 126.1 (q, J = 3.9 Hz), 126.1, 125.5, 125.2, 124.0, 124.0 (q, J = 271.7 Hz), 124.0 (q,
J = 3.9 Hz) (Figure S9); HR-MS: for C16H10ONClF3, [M-H]− calculated 324.0409 m/z, found
324.0412 m/z.

(2E)-N-(3-Chlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1f). Yield 68%; Mp
126–128 ◦C; 1H-NMR (DMSO-d6), δ: 10.44 (s, 1H), 7.99–7.94 (m, 3H), 7.77 (d, J = 7.8 Hz,
1H), 7.72–7.67 (m, 2H), 7.53 (d, J = 8.7 Hz, 1H), 7.37 (t, J = 8.2 Hz, 1H), 7.14 (dd, J = 8.0,
1.1 Hz, 1H), 6.93 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.4, 140.6, 139.0, 135.8,
133.2, 131.6, 130.5, 130.2, 129.8 (q, J = 31.8 Hz), 126.1 (q, J = 3.9 Hz), 124.1 (q, J = 3.9 Hz),
124.0, 124.0 (q, J = 271.7 Hz), 123.21, 118.7, 117.6 (Figure S10); HR-MS: for C16H10ONClF3,
[M-H]− calculated 324.0409 m/z, found 324.0414 m/z.

(2E)-N-(4-Chlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1g). Yield 62%; Mp
162–164 ◦C; 1H-NMR (DMSO-d6), δ: 10.39 (s, 1H), 7.99 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H),
7.77–7.67 (m, 5H), 7.42–7.38 (m, 2H), 6.94 (d, J = 16.0 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.2,
138.7, 138.1, 135.8, 131.5, 130.2, 129.8 (q, J = 31.8 Hz), 128.8, 127.1, 126.1 (q, J = 3.9 Hz), 124.2,
124.0 (q, J = 272.6 Hz), 124.0 (q, J = 3.9 Hz), 120.7 (Figure S11); HR-MS: for C16H10ONClF3,
[M-H]− calculated 324.0409 m/z, found 324.0406 m/z.

(2E)-N-[2-(Trifluoromethyl)phenyl]-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1h). Yield
78%; Mp 111–113 ◦C; 1H-NMR (DMSO-d6), δ: 9.74 (s, 1H); 8.01 (s, 1H); 7.95 (d, J = 7.8 Hz,
1H); 7.77 (d, J = 7.8 Hz, 2H), 7.73–7.65 (m, 4H), 7.47 (t, J = 7.8 Hz, 1H); 7.16 (d, J = 16.0 Hz, 1H);
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13C-NMR (DMSO-d6), δ: 164.2, 139.1, 135.8, 135.2, 133.0, 131.7, 130.1, 129.8 (q, J = 31.8 Hz),
129.5, 126.6, 126.3 (q, J = 4.8 Hz), 126.1 (q, J = 3.9 Hz), 124.1 (q, J = 29.9 Hz), 124.1 (q,
J = 3.9 Hz), 124.0 (q, J = 271.7 Hz), 123.6 (q, J = 273.6 Hz), 123.6 (Figure S12); HR-MS: for
C17H10ONF6, [M-H]− calculated 358.0672 m/z, found 358.0668 m/z.

(2E)-N,3-bis[3-(Trifluoromethyl)phenyl]prop-2-enamide (1i) [75]. Yield 64%; Mp 136–138
◦C; 1H-NMR (DMSO-d6), δ: 10.60 (s, 1H), 8.22 (s, 1H), 8.00 (s, 1H), 7.95 (d, J = 7.8 Hz,
1H), 7.86 (d, J = 8.7 Hz, 1H), 7.78–7.67 (m, 3H), 7.59 (t, J = 8.0 Hz, 1H), 7.44–7.42 (m, 1H),
6.94 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.6, 139.9, 139.1, 135.7, 131.6, 130.2,
130.1, 129.8 (q, J = 31.8 Hz), 129.5 (q, J = 31.8 Hz), 126.2 (q, J = 3.9 Hz), 124.2 (q, J = 3.9 Hz),
124.1 (q, J = 272.6 Hz), 124.0 (q, J = 272.6 Hz), 123.9, 122.8, 119.8 (q, J = 3.9 Hz), 115.2 (q,
J = 3.9 Hz) (Figure S13); HR-MS: for C17H10ONF6, [M-H]− calculated 358.0672 m/z, found
358.0669 m/z.

(2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j). Yield
72%; Mp 118–120 ◦C; 1H-NMR (DMSO-d6), δ: 10.61 (s, 1H), 8.00 (s, 1H), 7.95 (d, J = 7.8 Hz,
1H), 7.91 (d, J = 8.7 Hz, 2H), 7.76–7.67 (m, 5H), 6.97 (d, J = 16Hz, 1H); 13C-NMR (DMSO-d6),
δ: 163.6, 142.7, 139.2, 135.7, 131.6, 130.2, 129.8 (q, J = 31.8 Hz), 126.2 (multiplet), 124.4
(q, J = 271.7 Hz), 124.1 (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz), 124.0, 123.5 (q, J = 31.8 Hz),
119.1; (Figure S14); HR-MS: for C17H10ONF6, [M-H]− calculated 358.0672 m/z, found
358.06738 m/z.

(2E)-N-(2,4-Difluorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1k). Yield 63%;
Mp 143–145 ◦C; 1H-NMR (DMSO-d6), δ: 9.99 (s, 1H), 8.08 (td, J = 8.9, 6.4 Hz, 1H), 7.99
(s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.71–7.67 (m, 2H), 7.38–7.32
(m, 1H), 7.17 d, J = 15.6 Hz, 1H), 7.13–7.07 (m, 1H); 13C-NMR (DMSO-d6), δ: 163.5, 158.3
(dd, J = 243.7, 11.6 Hz), 153.5 (dd, J = 248.5, 12.5 Hz), 138.9, 135.9, 131.6, 130.2, 129.8 (q,
J = 31.8 Hz), 126.1 (q, J = 3.9 Hz), 124.8 (dd, J = 9.6, 2.9 Hz), 124.0 (q, J = 272.6 Hz), 124.0 (q,
J = 3.9 Hz), 123.8, 122.9 (dd, J = 11.6, 3.9 Hz), 111.2 (dd, J = 21.2, 3.9 Hz), 104.2 (dd, J = 27.0,
24.1 Hz) (Figure S15); HR-MS: for C16H9ONF5 [M-H]− calculated 326.0610 m/z, found
326.0606 m/z.

(2E)-N-(3,5-Difluorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1l). Yield 61%;
Mp 131–133◦C; 1H-NMR (DMSO-d6), δ: 10.62 (s, 1H), 8.00 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H),
7.77 (d, J = 7.8 Hz, 1H), 7.74–7.67 (m, 2H), 7.42–7.40 (m, 2H), 6.96–6.87 (m, 2H); 13C-NMR
(DMSO-d6), δ: 163.6, 162.5 (dd, J = 242.8, 15.4 Hz), 141.6 (t, J = 13.5 Hz), 139.5, 135.6, 131.6,
130.2, 129.8 (q, J = 31.8 Hz), 126.3 (q, J = 3.9 Hz), 124.2 (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz),
123.6, 102.3–102.0 (multiplet), 98.7 (t, J = 26.0 Hz) (Figure S16); HR-MS: for C16H9ONF5
[M-H]− calculated 326.0610 m/z, found 326.0605 m/z.

(2E)-N-(2,4-Dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1m). Yield 68%;
Mp 134–136 ◦C; 1H-NMR (DMSO-d6), δ: 9.75 (s, 1H), 8.03 (d, J = 8.7 Hz, 1H), 8.01 (s, 1H),
7.95 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.73–7.67 (m, 3H), 7.45 (dd, J = 8.9, 2.5 Hz,
1H), 7.27 (d, J= J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.6, 139.4, 135.8, 134.1, 131.8,
130.2, 129.8 (q, J = 31.8 Hz), 129.1, 128.9, 127.6, 126.2, 126.2 (q, J = 3.9 Hz), 126.0, 124.0 (q,
J = 272.6 Hz), 124.0 (q, 3.9 Hz), 123.7 (Figure S17); HR-MS: for C16H9ONCl2F3 [M-H]−

calculated 358.0019 m/z, found 358.0026 m/z.
(2E)-N-(2,5-Dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1n). Yield 72%;

Mp 145–147 ◦C; 1H-NMR (DMSO-d6), δ: 9.77 (s, 1H), 8.18 (d, J = 2.7 Hz, 1H), 8.02 (s,
1H), 7.95 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 16.0 Hz, 1H), 7.69 (t,
J = 7.8 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 7.32 (d, J = 16.0 Hz, 1H), 7.27 (dd, J = 8.7, 2,7 Hz,
1H); 13C-NMR (DMSO-d6), δ: 163.8, 139.6, 136.1, 135.8, 131.9, 131.6, 130.9, 130.2, 129.8
(q, J = 31.8 Hz), 126.2 (q, J = 3.9 Hz), 125.5, 124.0 (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz),
123.8, 123.7, 123.4 (Figure S18); HR-MS: for C16H9ONCl2F3 [M-H]− calculated 358.0019
m/z, found 358.0021 m/z.

(2E)-N-(3,5-Dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o). Yield 65%;
Mp 124–126 ◦C; 1H-NMR (DMSO-d6), δ: 10.59 (s, 1H), 8.00 (s, 1H), 7.96–7.94 (m, 1H),
7.79–7.75 (m, 3H), 7.74 (d, J = 15.6 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.30 (m, 1H), 7.24 (d,
J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.7, 141.4, 139.6, 135.6, 134.2, 131.6, 130.2, 129.8
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(q, J = 31.8 Hz), 126.3 (q, J = 3.9 Hz), 124.3 (q, J = 3.9 Hz), 124.0 (q, J = 271.7 Hz), 123.6, 122.7,
117.3 (Figure S19); HR-MS: for C16H9ONCl2F3 [M-H]− calculated 358.0019 m/z, found
358.0012 m/z.

(2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1p).
Yield 70%; Mp 147–149 ◦C; 1H-NMR (DMSO-d6), δ: 10.90 (s, 1H), 8.34 (s, 2H), 7.99 (s, 1H),
7.95 (d, J = 7.8 Hz, 1H), 7.78–7.73 (m, 3H), 7.69 (t, J = 7.8 Hz, 1H), 6.89 (d, J = 16 Hz, 1H);
13C-NMR (DMSO-d6), δ: 164.0, 141.0, 139.9, 135.5, 131.6, 130.8 (q, J = 32.8 Hz), 130.2, 129.8 (q,
J = 31.8 Hz), 126.4 (q, J = 3.9 Hz), 124.4 (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz), 123.3, 123.2 (q,
J = 272.6 Hz), 118.9 (q, J = 3.9 Hz), 116.2 (multiplet) (Figure S20); HR-MS: for C18H9ONF9,
[M-H]− calculated 426.0546 m/z, found 426.0552 m/z.

(2E)-N-Phenyl-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (2a) [76]. Yield 69%; Mp 154–
157 ◦C; 1H-NMR (DMSO-d6), δ: 10.30 (s, 1H), 7.85–7.79 (m, 4H), 7.71 (d, J = 7.8 Hz, 2H),
7.66 (d, J = 15.6 Hz, 1H), 7.35 (t, J = 8.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 15.6 Hz,
1H); 13C-NMR (DMSO-d6), δ: 163.0, 139.1, 138.8, 138.4, 129.4 (q, J = 31.8 Hz), 128.9, 128.4,
125.9 (q, J = 3.9 Hz), 125.1, 124.1 (q, J = 272.6 Hz), 123.6, 119.3 (Figure S21); HR-MS: for
C16H11ONF3, [M-H]− calculated 290.0798 m/z, found 290.0791 m/z.

(2E)-N-(2-Fluorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2b) [74]. Yield 68%;
Mp 164–166 ◦C; 1H-NMR (DMSO-d6), δ: 10.03 (s, 1H), 8.11 (td, J = 7.8, 2.3 Hz, 1H), 7.85–7.80
(m, 4H), 7.68 (d, J = 15.6 Hz, 1H), 7.31–7.26 (m, 1H), 7.23–7.14 (m, 3H); 13C-NMR (DMSO-d6),
δ: 163.4, 153.3 (d, J = 244.7 Hz), 138.9, 138.8, 129.5 (q, J = 32.8 Hz), 128.4, 126.2 (d, J = 11.6 Hz),
125.9 (q, J = 3.9 Hz), 125.2 (d, J = 6.7 Hz), 124.7, 124.4 (d, J = 3.9 Hz), 124.1 (q, J = 272.6 Hz),
123.6, 115.5 (d, J = 19.3 Hz) (Figure S22); HR-MS: for C16H10ONF4 [M-H]− calculated
308.0704 m/z, found 308.0690 m/z.

(2E)-N-(3-Fluorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2c) [74]. Yield 66%;
Mp 146–148 ◦C; 1H-NMR (DMSO-d6), δ: 10.53 (s, 1H), 7.86–7.80 (m, 4H), 7.74–7.72 (m,
1H), 7.68 (d, J = 15.6 Hz, 1H), 7.40–7.36 (m, 2H), 6.94 (d, J = 15.6 Hz, 1H), 6.93–6.90 (m,
1H); 13C-NMR (DMSO-d6), δ: 163.3, 162.1 (d, J = 241.6 Hz), 140.8 (d, J = 10.4 Hz), 139.0,
138.6, 130.5 (d, J = 9.2 Hz), 129.5 (q, J = 31.2 Hz), 128.4, 125.9 (q, J = 3.5 Hz), 124.7, 124.1 (q,
J = 272.8 Hz), 115.1(d, J = 2.3 Hz), 110.0 (d, J = 20.8 Hz), 106.1 (d, J = 26.6 Hz) (Figure S23);
HR-MS: for C16H10ONF4 [M-H]− calculated 308.0704 m/z, found 308.0708 m/z.

(2E)-N-(4-Fluorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2d) [74]. Yield 72%;
Mp 149–151 ◦C; 1H-NMR (DMSO-d6), δ: 10.35 (s, 1H), 7.85–7.79 (m, 4H), 7.75–7.71 (m, 2H),
7.66 (d, 15.6 Hz, 1H), 7.21–7.15 (m, 2H), 6.93 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6),
δ: 162.9, 158.2 (d, J = 239.9 Hz), 138.7 (d, J = 1.9 Hz), 138.4, 135.5 (d, J = 1.9 Hz), 129.4 (q,
J = 31.8 Hz), 128.3, 125.8 (q, J = 3.9 Hz), 124.9, 124.0 (q, J = 271.7 Hz), 121.0 (d, J = 7.7 Hz),
115.4 (d, J = 22.2 Hz) (Figure S24); HR-MS: for C16H10ONF4 [M-H]− calculated 308.0704
m/z, found 308.0701 m/z.

(2E)-N-(2-Chlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2e). Yield 71%; Mp
171–173 ◦C; 1H-NMR (DMSO-d6), δ: 9.77 (s, 1H), 7.94 (dd, J = 8.1, 1.1 Hz, 1H), 7.87–7.80 (m,
4H), 7.69 (d, J = 15.6 Hz, 1H), 7.53 (dd, J = 8.2, 1.4 Hz, 1H), 7.37 (td, J = 7.8, 1.4 Hz, 1H), 7.25
(d, J = 15.6 Hz, 1H), 7.21 (td, J = 7.8, 1.4 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.5, 139.0, 138.8,
134.8, 129.5, 129.5 (q, J = 31.8 Hz), 128.4, 127.5, 126.2, 125.8 (q, J = 3.9 Hz), 125.5, 124.6, 124.0
(q, J = 272.6 Hz) (Figure S25); HR-MS: for C16H10ONClF3, [M-H]− calculated 324.0409 m/z,
found 324.0403 m/z.

(2E)-N-(3-Chlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2f). Yield 64%; Mp
150–152 ◦C; 1H-NMR (DMSO-d6), δ: 10.49 (s, 1H), 7.94 (t, J = 2.1 Hz, 1H), 7.86–7.79 (m, 4H),
7.68 (d, J = 15.6 Hz, 1H), 7.55–7.52 (m, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.14 (ddd, J = 8.0, 2.1,
0.9 Hz, 1H), 6.93 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.3, 140.5, 139.0, 138.6,
133.2, 130.5, 129.6 (q, J = 31.8 Hz), 128.4, 125.9 (q, J = 3.9 Hz), 124.6, 124.1 (q, J = 272. 6 Hz),
123.3, 118.7, 117.7 (Figure S26); HR-MS: for C16H10ONClF3 [M-H]− calculated 324.0409
m/z, found 324.0412 m/z.

(2E)-N-(4-Chlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2g). Yield 61%; Mp
185–187 ◦C; 1H-NMR (DMSO-d6), δ: 10.44 (s, 1H), 7.86–7.79 (m, 4H), 7.73 (d, J = 9.1 Hz,
2H), 7.67 (d, J = 15.6 Hz, 1H), 7.40 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 15.6 Hz, 1H); 13C-NMR
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(DMSO-d6), δ: 163.1, 138.7, 138.02, 129.5 (q, J = 31.8 Hz), 128.8, 128.4, 127.11, 125.9 (q,
J = 3.9 Hz), 124.8, 124.1 (q, J = 271.7 Hz), 120.8 (Figure S27); HR-MS: for C16H10ONClF3
[M-H]− calculated 324.0409 m/z, found 324.0409 m/z.

(2E)-N-[2-(Trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2h). Yield
67%; Mp 189–191 ◦C; 1H-NMR (DMSO-d6), δ: 9.84 (s, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.81 (d,
J = 8.7 Hz, 2H), 7.77 (d, J = 8.2 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.67 (d, J = 15.6 Hz, 1H),
7.66–7.63 (m, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6),
δ: 164.2, 139.1, 138.7, 135.2, 133.0, 129.7, 129.5 (q, J = 31.8 Hz), 128.4, 126.7, 126.3 (q,
J = 5.8 Hz), 125.9 (q, J = 3.9 Hz), 124.4 (q, J = 28.9 Hz), 124.2, 124.1 (q, J = 271.7 Hz), 123.6
(q, J = 272.6 Hz) (Figure S28); HR-MS: for C17H10ONF6, [M-H]− calculated 358.0672 m/z,
found 358.0662, m/z.

(2E)-N-[3-(Trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2i). Yield
69%; Mp 134–136 ◦C; 1H-NMR (DMSO-d6), δ: 10.64 (s, 1H), 8.21 (s, 1H), 7.88–7.84 (m, 3H),
7.79 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 15.8 Hz, 1H), 7.58 (t, J = 8.1 Hz, 1H), 7.42 (d, J = 7.6 Hz,
1H), 6.94 (d, J = 15.8 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.5, 139.8, 139.1, 138.5, 130.1, 129.6
(q, J = 32.4 Hz), 129.6 (q, J = 32.4 Hz), 128.4, 125.9 (q, J = 3.5 Hz), 124.5, 124.1 (q, J = 272.8 Hz),
124.0 (q, J = 271.7 Hz), 122.8, 119.8 (q, J = 3.5 Hz), 115.3 (q, J = 3.5 Hz) (Figure S29); HR-MS:
for C17H10ONF6 [M-H]− calculated 358.0672 m/z, found 358.0667 m/z.

(2E)-N,3-bis[4-(Trifluoromethyl)phenyl]prop-2-enamide (2j). Yield 72%; Mp 192–194 ◦C;
1H-NMR (DMSO-d6), δ: 10.66 (s, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.2 Hz. 2H), 7.81
(d, J = 8.7 Hz, 2H), 7.71 (d, J = 16.0 Hz, 1H), 7.71 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 16.0 Hz,
1H); 13C-NMR (DMSO-d6), δ: 163.6, 142.6, 139.3, 138.6, 129.6 (q, J = 31.8 Hz), 128.5, 126.2 (q,
J = 3.9 Hz), 125.9 (q, J= 3.9 Hz), 124.6, 124.4 (q, J= 270.7 Hz), 124.1 (q, J= 272.6 Hz), 123.5 (q,
J= 31.8 Hz), 119.2 (Figure S30); HR-MS: for C17H10ONF6 [M-H]− calculated 358.0672 m/z,
found 358.0667 m/z.

(2E)-N-(2,4-Difluorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2k). Yield 66%;
Mp 141–143 ◦C; 1H-NMR (DMSO-d6), δ: 10.07 (s, 1H), 8.08–8.02 (m, 1H), 7.85–7.80 (4H), 7.67
(d, J = 15.6 Hz, 1H), 7.36 (ddd, J = 11.3, 8.8, 2.7 Hz, 1H), 7.16 (d, J = 15.6 Hz, 1H), 7.14–7.08
(m, 1H); 13C-NMR (DMSO-d6), δ: 163.5, 158.4 (dd, J = 243.7, 11.6 Hz), 153.7 (dd, J = 247.6,
12.5 Hz), 139.0, 138.7, 129.5 (q, J = 31.8 Hz), 128.4, 125.9 (q, J = 3.9 Hz), 125.0 (multiplet),
124.4, 124.1 (q, J = 272.6 Hz), 122.8 (dd, J = 11.6, 3.9 Hz), 111.2 (dd, J = 22.2, 2.9 Hz), 104.2
(dd, J = 27.0, 24.1 Hz) (Figure S31); HR-MS: for C16H9ONF5 [M-H]− calculated 326.0610
m/z, found 326.0611 m/z.

(2E)-N-(3,5-Difluorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2l). Yield 63%;
Mp 188–190 ◦C; 1H-NMR (DMSO-d6), δ: 10.67 (s, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.80 (d,
J = 8.2 Hz, 2H), 7.70 (d, J = 15.6 Hz, 1H), 7.44–7.38 (m, 2H), 6.93 (tt, J = 9.6, 2.3 Hz, 1H),
6.89 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.6, 162.5 (dd, J = 242.8, 15.4 Hz),
141.5 (t, J = 13.5 Hz), 139.5, 138.5, 129.7 (q, J = 31.8 Hz), 128.5, 125.9 (q, J = 3.9 Hz), 124.2,
124.0 (q, J = 271.7 Hz), 102.3–102.0 (multiplet), 98.7 (t, J = 27.0 Hz) (Figure S32); HR-MS: for
C16H9ONF5, [M-H]− calculated 326.0610 m/z, found 326.0606 m/z.

(2E)-N-(2,4-Dichlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2m). Yield 68%;
Mp 188–190 ◦C; 1H-NMR (DMSO-d6), δ: 9.84 (s, 1H), 7.99 (d, J = 9.1 Hz, 1H), 7.87–7.80
(m, 4H), 7.69 (d, J = 15.6 Hz, 1H), 7.69 (d, J = 2.7 Hz, 1H), 7.45 (dd, J = 8.7, 2.3 Hz,
1H), 7.25 (d, J = 15.6 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.6, 139.4, 138.7, 134.0, 129.6 (q,
J = 31.8 Hz), 129.2, 129.0, 128.5, 127.6, 126.5, 126.4, 125.9 (q, J = 3.9 Hz), 124.4, 124,1 (q,
J = 271.7 Hz) (Figure S33); HR-MS: for C16H9ONCl2F3 [M-H]− calculated 358.0019 m/z,
found 358.0017 m/z.

(2E)-N-(2,5-Dichlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2n). Yield 75%;
Mp 180–182 ◦C; 1H-NMR (DMSO-d6), δ: 9.86 (s, 1H), 8.14 (d, J = 2.7 Hz, 1H), 7.86 (d,
J = 8.7 Hz, 2H), 7.82 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 15.6 Hz, 1H), 7.57 (d, J = 8.7 Hz, 1H),
7.30 (d, J = 15.6 Hz, 1H), 7.27 (dd, J = 8.7, 2.7 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.7, 139.6,
138.6, 136.1, 131.6, 130.9, 129.6 (q, J = 31.8 Hz), 128.5, 125.9 (q, J = 3.9 Hz), 125.6, 124.3, 124.2,
124.1 (q, J = 272.6 Hz), 123.7 (Figure S34); HR-MS: for C16H9ONCl2F3, [M-H]− calculated
358.0019 m/z, found 358.0012 m/z.
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(2E)-N-(3,5-Dichlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2o). Yield 73%;
Mp 177–179 ◦C; 1H-NMR (DMSO-d6), δ: 10.63 (s, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.80 (d,
J = 8.2 Hz, 2H), 7.75 (d, J = 1.8 Hz, 2H), 7.70 (d, J = 16.0 Hz, 1H), 7.29 (t, J = 2.1 Hz, 1H),
6.87 (d, J = 16.0 Hz, 1H); 13C-NMR (DMSO-d6), δ: 163.6, 141.4, 139.6, 138.4, 134.2, 129.7 (q,
J = 31.8 Hz), 128.5, 125.9 (q, J = 3.9 Hz), 124.0 (q, J = 272.6 Hz), 124.2, 122.7, 117.4 (Figure S35);
HR-MS: for C16H9ONCl2F3 [M-H]− calculated 358.0019 m/z, found 358.0018 m/z.

(2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]prop-2-enamide (2p).
Yield 65%; Mp 207–209 ◦C; 1H-NMR (DMSO-d6), δ: 10.95 (s, 1H), 8.34 (s, 2H), 7.87–7.85
(m, 2H), 7.81–7.77 (m, 3H), 7.73 (d, J = 15.6 Hz, 1H), 6.89 (d, J = 15.6 Hz, 1H); 13C-NMR
(DMSO-d6), δ: 163.9, 140.9, 139.9, 138.3, 130.8 (q, J = 32.8 Hz), 129.8 (q, J = 31.8 Hz), 128.6,
125.9 (q, J = 3.9 Hz), 124.0 (q, J = 271.7 Hz), 123.9, 123.2 (q, J = 273.6 Hz), 118.9 (q, J = 3.9 Hz),
116.3 (multiplet) (Figure S36); HR-MS: for C18H9ONF9, [M-H]− calculated 426.0546 m/z,
found 426.0534 m/z.

3.3. Lipophilicity Determination by HPLC

Experimental determination of lipophilicity values (log k, log D6.5, and log D7.4)
was performed under the same conditions and on the same device as described by
Strharsky et al. [28]. The log k values of individual compounds are shown in Table 1.

3.4. In Vitro Antibacterial Evaluation

In vitro antibacterial activity of the synthesized compounds was investigated against
reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and
representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus [36,41]
and vancomycin-resistant E. faecalis [37]. The minimum inhibitory concentrations (MICs)
were evaluated by the microtitration broth method according to the CLSI [77,78] as described
recently [50]. The results are summarized in Table 2.

3.5. Determination of Minimum Bactericidal Concentrations

For the above-mentioned strains/isolates, the agar aliquot subculture method [79,80]
was used as a test for bactericidal agents, as described recently [50].

3.6. MTT Assay

The percent inhibition of respiration of S. aureus ATCC 29213 was determined through
the MTT assay. The assay was performed as described recently [50]. The percent viability is
calculated through the comparison of a measured value and that of the uninhibited control:
% viability = OD570E/OD570P × 100, where OD570E is the reading from the compound-
exposed cells, while OD570P is the reading from the uninhibited cells (positive control).
Cytotoxic potential is determined by a percent viability of <70% [46,47]. The results are
summarized in Table 3.

3.7. In Vitro Antimycobacterial Evaluation

The evaluation of in vitro antimycobacterial activity of the compounds was performed
against Mycobacterium marinum CAMP 5644 and M. smegmatis ATCC 700084 as previously
described [28]. The MIC value is routinely and widely used in bacterial assays and is a
standard detection limit according to the CLSI [78]. The results are summarized in Table 2.

3.8. In Vitro Cell Viability Analysis

Human monocytic leukemia THP-1 cells obtained from the European Collection of
Cell Cultures (ECACC, Salisbury, UK) were used for in vitro antiproliferative assays. A
recently described procedure [81] was used. The results are shown in Table 2.

3.9. Docking Study

Receptors preparation: The X-ray structure of InhA (4OYR) [31] was obtained from
RCSB PDB. The structures were checked, and water residues and other small molecules
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were removed with the use of PyMOL 2.5.4 [82]. For InhA, nicotinamide adenine din-
ucleotide (NAD) was left in the structure as a part of the receptor since it is present in
X-ray structures of InhA-ligand complexes [31]. Leap (AmberTools in version 22 [83])
was employed to fill missing atoms in the structures. Since HIS residues are not in the
binding site of any of the used structures, the protonation state of HIS residues was not
adjusted. The input files for docking were prepared with the use of ADFR suite 1.0 (Center
for Computational Structural Biology, The Scripps Research Institute, La Jolla, CA, USA).

Ligands preparation: The structures of ligands published by Chollet et al. [31] were
downloaded from BindingDB [84], processed with the use of Open Babel [85] and manually
revised in Avogadro 1.2. The compounds from Table 3 were modeled in Avogadro. The
input files for docking were subsequently prepared with the use of the ADFR software suite.

Docking: Autodock Vina in version 1.2.3 was employed for the docking [86,87]. The
Vina scoring function was used. For InhA, the center of the box for generating Vina grid
was placed at the center of mass of the ligand in chain A of structure 4OYR; a box size of
50 × 55 × 50 grid points was used with the grid spacing of 0.375 Å. To ensure that the
minimum energy docking pose is found correctly, the exhaustiveness of the search was
increased from the default value.

Visualization and verification: The structures of complexes from docking were visu-
alized with the use of PyMOL. Each time, only the pose with the best docking score was
considered. The interactions were identified with the help of AutoDock Tools. To verify
that the procedure correctly identifies the binding modes of ligands, the complexes from
docking were compared to the available X-ray structures of InhA from RCSB PDB: 4OHU,
4OYR, 4OXY, 5COQ, 4BNN, 4OXK, and 3FNH. For this purpose, structural alignment in
PyMOL was used, and Cα atoms of the protein were aligned.

4. Conclusions

A series of 2 × 16 anilides was synthesized from 3-(trifluoromethyl)cinnamic acid
(series 1) and 4-(trifluoromethyl)cinnamic acid (series 2). All the compounds were sub-
jected to extensive antimicrobial screening against Gram-positive bacteria and two my-
cobacterial strains. Of the prepared compounds, nine derivatives demonstrated activity.
Substitution with CF3 in C(3) of the cinnamic scaffold appears to be more favorable. Com-
pounds 1j (R1 = CF3, R2 = H, R3 = 4-CF3), 1o (R1 = CF3, R2 = H, R3 = 3,5-Cl), 2i (R1 = H,
R2 = CF3, R3 = 3-CF3), and 2p (R1 = H, R2 = CF3, R3 = 3,5-CF3) showed antistaphylococ-
cal (MICs/MBCs 0.146–5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34–44.5 µM)
activity. Compounds 1c (R1 = CF3, R2 = H, R3 = 3-F), 1f (R1 = CF3, R2 = H, R3 = 3-Cl), 1g
(R1 = CF3, R2 = H, R3 = 4-Cl), 1i (R1 = CF3, R2 = H, R3 = 3-CF3), and 1p (R1 = CF3, R2 = H,
R3 = 3,5-CF3) expressed only antistaphylococcal activity. The growth of M. marinum was
strongly inhibited by compounds 1j, 1p, 2i, and 2p in an MIC range from 0.29 to 2.34 µM,
while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36
to 51.7 µM). The compounds had a significant effect on inhibiting proliferation by modulat-
ing bacterial respiration as demonstrated by the MTT assay; compounds 1o and 1j reducing
S. aureus viability by more than 97% at half or even a quarter of their MIC values were the
most active. The compounds showed not only bacteriostatic activity but also bactericidal
activity, which is very valuable. Two of the most potent compounds 1p and 2p possessed
cytotoxic effect against THP-1 cancer cells (IC50 6.7 and 8.9 µM), making them at least from
2p remarkable anti-invasive agents with dual (cytotoxic and antibacterial) activity. The
other compounds did show insignificant cytotoxic effect (IC50 > 10 µM and >30 µM), thus
compounds 1j and 1o are the most interesting purely antibacterial compounds within the
prepared molecules. In general, it can be stated that the antimicrobial activity increases with
lipophilicity (optimum log k ~1.2) and with increasing electron-withdrawing properties of
the anilide substituent. The antiproliferative effect on THP-1 cancer cells is associated with
3,5-CF3-disubstitution of anilide. The performed docking study, together with the similarity
of our compounds with known InhA inhibitors, indicate that our compounds may target
the mycobacterial enzyme InhA, which is involved in the biosynthesis of mycolic and other
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long-chain fatty acids contained in the mycobacterial cell wall, and thereby prevent the
proliferation of mycobacteria.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232315090/s1.
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