
Citation: Wu, J.; Lin, Z. Non-Small

Cell Lung Cancer Targeted Therapy:

Drugs and Mechanisms of Drug

Resistance. Int. J. Mol. Sci. 2022, 23,

15056. https://doi.org/10.3390/

ijms232315056

Academic Editor: Paolo Cameli

Received: 15 August 2022

Accepted: 28 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Non-Small Cell Lung Cancer Targeted Therapy: Drugs and
Mechanisms of Drug Resistance
Jiajia Wu and Zhenghong Lin *

School of Life Sciences, Chongqing University, Chongqing 401331, China
* Correspondence: zhenghonglin@cqu.edu.cn

Abstract: The advent of precision medicine has brought light to the treatment of non-small cell lung
cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy
through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one
by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK),
and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that
target the critical gene-mediated signaling pathways that regulate tumor growth and development are
anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as
many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly
improved patient prognosis. However, resistance due to cancer drivers’ genetic alterations has given
rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the
main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming
to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
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1. Introduction

Cancer is the second most significant cause of mortality in the United States and
an important global public health issue. In the United States, there are anticipated to be
1,918,030 new cancer cases and 609,360 cancer deaths in 2022, with lung cancer accounting
for around 350 of those fatalities daily and being the primary reason for cancer deaths [1].
According to earlier research, lung cancer killed more men and women under 40 and
women over 60 than breast, prostate, colorectal, and leukemia combined [2]. With 85% of
all new diagnoses, non-small cell lung cancer (NSCLC) is the most prevalent subtype of lung
cancer [3]. The dismal five-year survival rate for NSCLC is 15%. The prognosis of patients
has dramatically improved thanks to chemotherapy and targeted treatments [4]. Molecular
detection has become a mandatory method for the management of NSCLC patients. The
investigation of anaplastic lymphoma kinase (ALK), receptor tyrosine kinase ROS proto-
oncogene 1(ROS1), rearranged in transfection (RET), and neurotrophic tyrosine receptor
kinase (NTRK) translocations, and the identification of epidermal growth factor receptor
(EGFR), V-RAF mouse sarcoma virus oncogene homolog B1 (BRAF), and mesenchymal–
epithelial transition factor (MET) mutations have already been included in the NSCLC
diagnostic standards. These kinase inhibitors are commonly used in clinical practice [5].
The Food and Drug Administration (FDA) has recently approved several medications
for the treatment of NSCLC, of which the primary targets for kinase inhibitor therapy in
NSCLC have now targeted activation of EGFR, ALK, ROS1, and BRAF, MET, and RET
(Figure 1). Other oncogenic driver subtypes of NSCLC are currently being evaluated
for targeted therapy [6]. As a result of receptor tyrosine kinase (RTK) activation, the
intracellular structural domain of EGFR is autophosphorylated, and the phosphotyrosine
residues form to serve as docking points for various adapter molecules, thereby inducing
downstream signaling [7]. In turn, the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma
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(RAF)/mitogen-activated protein kinase (MAPK) pathway, phosphatidylinositol-3 kinase
(PI3K)/protein kinase B (AKT) pathway, and Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway are activated, which in turn stimulate mitosis,
lead to cell proliferation, and inhibit apoptosis [8]. Although significant advances have
been made in available therapies for NSCLC, acquired drug resistance remains a significant
barrier to the treatment. The ability to cure advanced NSCLC has yet to be achieved, despite
our growing understanding of the many oncogenic drivers of this disease. Instead, the
emergence of resistance remains the rule [9].
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Figure 1. Genes and pathways associated with targeted drugs for NSCLC. Four critical signaling
pathways include JAK-STAT, MAPK, PLC-gamma (phospho-lipase C gamma), and PI3K-AKT. These
pathways are well-known controllers of cell cycle progression, proliferation, and apoptosis/cell
survival; deregulation is a frequent characteristic of human malignancies. Alterations in key pathways
will affect DNA methylation modifications, such as increased DNA methyltransferases (DNMTs)
and decreased the ten-eleven translocation methylcytosine dioxygenases (TETs), further allowing
overexpression of mesenchymal homology box 2 (MEOX2), whose expression is negatively correlated
with patient survival. Additionally, post-translational histone modifications were affected. As shown
in the figure, histone acetyltransferases (HATs), histone deacetylases (HDACs, also known as lysine
deacetylases or KDACs), the lysine methyltransferases (KMTs) and lysine demethylases (KDMs)
undergo corresponding up- or downregulation, affecting the expression of P21, P53, nuclear factor
κB (NFκB), and other related proteins that are closely related to the cell cycle. Non-coding RNAs,
such as long non-coding RNAs (LncRNAs) and miRNAs, are produced as a result of abnormal
transcription. The lncRNA is a brand-new class of regulatory RNA. The LncRNA HOX antisense
intergenic RNA (HOTAIR), an oncogene in NSCLC, is one of the significant factors controlling the
growth of malignancies. Unknown are the immunomodulatory pathway and probable molecular
mechanism involved in NSCLC. Notably, the graphic labels current FDA-approved medications that
target EGFR, ALK, MET, RET, VEGF, NTRK, ROS1, KRAS, and BRAF.
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Herein, we summarized the significant targeted therapeutic loci and approved drugs
for NSCLC and introduce their molecular mechanisms of drug resistance, which will be
helpful for the drug design and subsequent treatment of NSCLC.

2. Major Target Sites and Drugs for NSCLC
2.1. EGFR-TKIs

The ErbB family of RTKs, which also includes ErbB-1 (HER1, EGFR), ErbB-2 (HER2,
Neu), ErbB-3 (HER3), and ErbB-4, comprises the transmembrane glycoprotein known as
EGFR (HER4). When EGFR binds to ligands, specific intracellular signaling pathways,
including PI3K/Akt and MAPK, which are involved in the proliferation, differentiation,
migration, and death of some cells, are stimulated (Figure 1) [10].

Since EGFR is expressed by more than 60% of NSCLCs, it has become a crucial
therapeutic target for treating these malignancies. Inhibitors targeting the structural domain
of tyrosine kinase inhibitors (TKIs) have been developed and are clinically active. Moreover,
these TKIs are especially effective in patients who contain activating mutations in the
tyrosine kinase structural domain of the EGFR gene [11].

Erlotinib and gefitinib are examples of first-generation medications that are reversible
inhibitors. Erlotinib’s group was shown to have a median progression-free survival (PFS)
of 9.7 months, while the group receiving conventional chemotherapy had a median PFS of
5.2 months [12]. Afatinib and dacomitinib are examples of irreversible second-generation
inhibitors that bind to EGFR covalently. In contrast to platinum-based chemotherapy, pa-
tients with EGFR-mutant cancers showed >70% radiological response times and statistically
significantly improved PFS when treated with first-generation (erlotinib and gefitinib) or
second-generation (afatinib) EGFR TKIs (Table 1) [10,13–15].

For metastatic EGFR-mutant NSCLC patients who have developed the EGFR T790M
resistance mutation, osimertinib was the first third-generation EGFR TKI to obtain FDA
and EMA approval [16]. For patients with EGFR-mutant NSCLC, osimertinib is superior to
erlotinib and gefitinib as the first-line treatment [17].

Table 1. Summary of FDA-approved EGFR-TKI.

Generation Drug Approval Status Reversible/Irreversible Median PFS (Months) Ref.

1st
Erlotinib FDA, EMA Reversible 9.7 [13]
Gefitinib FDA, EMA Reversible 10.8 [14]
Icotinib CFDA Reversible 10 [18]

2nd
Afatinib FDA, EMA, CFDA Irreversible 11.0 [19]

Dacomitinib FDA Irreversible 14.7 [20]

3rd
Osimertinib FDA, MEA Irreversible 18.9 [21]
Olmutinib KFDA (Conditional) Irreversible NR [19]

Abbreviations: EMA, the European Medicines Agency; CFDA, the China Food and Drug Administration; KFDA,
the Korea Food and Drug Administration; NR, not reported.

2.2. ALK-TKIs

The ALK gene encodes a tyrosine kinase receptor and is located on the short arm of
chromosome 2 (2p23), belongs to the insulin receptor superfamily, and encodes for the
ALK protein. The oncogenic ALK fusion gene is present in 3–5% of NSCLC patients [22].
ALK is a transmembrane tyrosine kinase receptor that functions similarly to other RTKs
in that it has an extracellular domain, a membrane segment, and a cytoplasmic receptor
kinase region [23,24]. In NSCLC, more than 19 distinct ALK fusion partners, including
EML4, KIF5B, KLC1, and TPR, have been identified [25]. About 85% of all fusion variants
in ALK+ NSCLC are represented by the prevalent fusion variant, EML4-ALK. Additionally,
the most frequent genetic co-alterations in ALK+ NSCLC are TP53 mutations [25].

The first oral ALK TKI approved for the treatment of non-small cell lung cancer
(NSCLC) that was positive for ALK, crizotinib, initially showed promising outcomes
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(Table 2). The initial euphoria, however, was subdued because almost all of the treated
individuals unavoidably developed resistance within a year and experienced disease
progression, mainly in the brain or other parenchymal areas [26]. When crizotinib binds
to the ATP pocket of the MET kinase in a DFG-in conformation, it forms conventional
hydrogen bonds (Hb) with the residues in the hinge area. Additionally, the activation
loop and its phenyl ring interact poorly (A-loop). The medication was discovered to
have unintended effects on ALK and other kinases [8]. Second-generation ALK TKIs
such as crizotinib (LDK378), alectinib (CH5424802/RO5424802), and brigatinib (AP26113)
were developed to combat therapy-induced acquired resistance and boost efficacy in ALK-
positive patients receiving crizotinib pretreatment, even those with metastases to the central
nervous system (CNS) (Table 2). [27,28]. Alectinib forms a classical Hb with M1199 by
attaching to the ATP-binding site of ALK. Additionally, alectinib interacts with several
additional nearby residues from the -helix (K1150, E1167), the catalytic loop (R1253), and
the DFG motif via solvent water molecules (G1269, D1270). As a result, the substance is
a part of a stabilizing global Hb network that may likely make up for any one mutation
at the binding site [8,29]. Furthermore, third-generation ALK TKIs, including lorlatinib
(PF-06463922), entrectinib (RxDx-101), and ensartinib (X-398), provided promising early
findings in terms of both clinical activity and safety, according to recent clinical trials
(Table 2). [30].

Table 2. Summary of FDA-approved ALK-TKIs.

Generation Drug
Objective
Response

Rate (ORR)
Median PFS

(Months) Side Effects Ref.

1st Crizotinib 74% 10.9 Vision disorder/
nausea/diarrhea [31]

2nd
Ceritinib 73% 16.6 Diarrhea/nausea

vomiting [32,33]

Alectinib 83% 25.7 AST elevation/CK
elevation/fatigue [32,33]

Brigatinib 74% 24 nausea/diarrhea/cough [32,33]

3rd Lorlatinib 76% NR Hypercholesterolemia/edema/peripheral
neuropathy/ [33]

Ensartinib 75% 25.8 rash/ALT elevation/AST elevation [33,34]

2.3. Other Targeted Sites and Drugs for NSCLC
2.3.1. ROS1

The ROS proto-oncogene 1 is a member of the insulin receptor subfamily and is
encoded by the ROS1 gene on chromosome 6Q22.1 [35]. It has a sizable hydrophobic single-
pass transmembrane region, an extensive N-terminal extracellular structural domain, and a
C-terminal intracellular tyrosine kinase structural domain [36]. ROS1 rearrangements, a
fusion that encourages tumorigenicity and/or independent growth of different cell lines,
are present in 1–2% of NSCLC patients [37,38], and these patients are more likely to be
female and to have smoked less [39]. The median age of the 29 individuals with ROS1
rearrangement was 51, ranging from 30 to 80 years old, and 68.9% of them had never
smoked [40]. At first glance, the proportion may seem small, but given the massive base
of NSCLC patients, it is estimated that there are 10,000–15,000 new cases of the disease
worldwide each year [35].

Phylogenetic sequence analysis identified that ROS1 has been linked to the ALK/LTK
and insulin receptor RTK families. Homology with ALK is very significant in the develop-
ment of ROS1-directed medications; nevertheless, not all ALK TKI exhibit dual inhibitory
activity against ALK and ROS1. In 2016, the U.S. FDA and the European Medicines Agency
approved the drug crizotinib, a multitargeted MET, ALK, and ROS1 inhibitor that showed
considerable efficacy in NSCLCs with ROS1 rearrangements in a phase I study [41]. The
ROS1 expansion group of crizotinib’s phase I trial had an objective response rate (ORR)
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of 72%. The overall response duration was 17.6 months, whereas the median PFS was
19.2 months [42]. Four drugs with notable action against ROS1+ NSCLC are FDA-approved:
crizotinib, ciritinib, lorlatinib, and entrectinib (Table 3). Entrectinib, lorlatinib, and ciritinib
all had an overall response rate of more than 60%, with entrectinib having an intracranial
activity [43].

2.3.2. BRAF

The serine/threonine protein kinase family includes mutations in the v-RAF murine
sarcoma viral oncogene homolog B (BRAF), a crucial effector molecule for the MAPK/ERK
signaling pathway (Figure 1). BRAF mutations are present in 4% of NSCLC, and 50% of
these mutations are not V600 variants [44]. By breaking the glycine-rich P loop and its
variant domain of the kinase segment, somatic mutations in BRAF that result in the V600E
variation change two major areas of the peptide. In WT BRAF, the transition between the
active and inactive states is accomplished by activating the inhibitory effect caused by the
glycine-rich P loop, which is crucial for incorporating the signal transduction supplied by
RAS [45,46]. There is no preference for race in the prevalence of BRAF mutant lung cancer,
which ranges from 1.5% to 3.5% [47].

The FDA expanded the use of dabrafenib and trametinib on 22 June 2017, allowing
for the treatment of patients with metastatic NSCLC who have the BRAF(V600E) muta-
tion [48]. A two-cohort phase II study compared patients treated with dabrafenib as a
single agent with dabrafenib in combination with trametinib and found that the ORR
was 33% vs. 67% and the PFS was 5.5 vs. 10.2 months, respectively [49]. Addition-
ally, the French National Cancer Institute (INCA) experiment showed that BRAF(V600E)
mutation-positive NSCLC patients responded well to vemurafenib monotherapy, although
BRAF(nonV600) mutation-positive individuals did not [50]. For patients with advanced
or metastatic melanoma, non-small cell lung cancer, or anaplastic thyroid cancer and
BRAF(V600E/K) mutations, the U.S. FDA has currently approved three RAF and MEK
inhibitor combinations: vemurafenib/cobimetinib (Genentech, San Francisco, CA, USA),
dabrafenib/trametinib (Novartis, Basel, Switzerland), and encorafenib/binimetinib (Array
BioPharma, Boulder, CO, USA) [51].

2.3.3. MET

The MET receptor is located on the long arm of human chromosome 7 (7q31) and is
encoded by the MET oncogene. This oncogene was first identified in a human osteosarcoma
cell line containing the transforming fusion protein TPR–MET, generated by a rearrange-
ment between a translocation promoter region (TPR) located on chromosome 1 at the 5’ end
and the MET gene located on chromosome 7 at the 3’ end [52,53]. HGF ligand binding to
the MET receptor causes homodimerization and phosphorylation of intracellular tyrosine
residues, which activates MET [54]. This triggers the downstream signaling pathways for
RAS/ERK/MAPK, PI3K-AKT, Wnt/catenin, and STAT [55].

Small cell lung cancer was the first disease to be linked to somatic mutations affecting
splicing sites of exon 14 of the MET gene, which codes for the juxtamembrane region [56].
The median age was 61 years for patients with EGFR mutations, 65 years for KRAS mutant
NSCLC, and a significantly older median age of 72.5 years for patients with MET exon
14 mutant NSCLC. Overall, 36% of MET exon 14 mutation patients had never smoked, and
68% were female [57]. At least seven TKIs targeting MET gene mutations are currently
on the market or in clinical trials, including crizotinib, cabozantinib, voritinib, tepotinib,
capmatinib, glesatinib, and merestinib, with additional drugs in preclinical studies [58].
Tepotinib, capmatinib, and savolitinib have all demonstrated potent actions in phase
I/II investigations; in fact, tepotinib and capmatinib were approved for usage by health
authorities [59]. Tepotinib and capmatinib received FDA approval on 3 February 2021, and
6 May 2020, respectively. Patients with metastatic non-small cell lung cancer (mNSCLC)
whose tumors carry an exon 14 skipping mutation associated with the mesenchymal–
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epithelial transition (MET) are advised to take capmatinib. Tepotinib is recommended for
people with mNSCLC who had MET exon 14 skipping mutations [60].

2.3.4. RET

Transmembrane glycoprotein receptor-tyrosine kinase is produced during transfection
by the RET (rearranged during transfection) proto-oncogene, which is located on chromo-
some 10 [61]. The RET gene can be found in 1% to 2% of all NSCLC patients undergoing
chromosomal rearrangement and is involved in various upstream fusion partners, such
as KIF5B, TRIM33, CCDC6, and NCOA4 [62]. Multitarget inhibitors with anti-rearranged
during RET action have been studied in patients with RET-rearranged lung cancer in
several preclinical models, clinical trials, and retrospective investigations to date. The
advantage in terms of response (16–47%) and PFS (2–7 months) in the clinical situation is
not comparable to that reported with other targeted medicines in NSCLC patients with
oncogene addiction [63]. The FDA approved pralsetinib in September 2020 for the treat-
ment of people with metastatic RET fusion-positive NSCLC [64]. This is the first oral
tyrosine kinase inhibitor that can be taken once a day by people with metastatic NSCLC
that is RET fusion positive. Patients who had received platinum-based chemotherapy in
the past or had just started treatment were shown to have response rates of 57% and 70%,
respectively, to pralsetinib [65].

2.3.5. KRAS

The proto-oncogene KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) produces
the small GTPase transductor protein KRAS [66]. Overall, KRAS accounts for 85% of
RAS mutations observed in human cancers, and KRAS(G12C) mutation occurs in 13% of
NSCLCs [67]. Although the panorama of treatment for advanced NSCLC has been sig-
nificantly altered in recent years by the use of targeted therapies and immune checkpoint
inhibitors, past attempts to target KRAS (direct and indirect approaches) have not been
particularly successful [67]. The RAF-MEK-ERK pathway is one of the cell growth and divi-
sion pathways that is promoted by KRAS(G12C) mutations [68]. For the treatment of adult
patients with locally advanced or metastatic NSCLC with KRAS (G12C) mutations who
have undergone at least one prior systemic therapy as established by the FDA-approved
test, sotorasib was given accelerated approval by the FDA in May 2021 [69]. In a phase I
study, sotorasib demonstrated antitumor effects in patients with advanced solid tumors
bearing the KRAS (G12C) mutation. In a single-arm phase II trial, 33.9% of patients had par-
tial remissions and 4.2% had complete remissions, making up the total number of patients
who had objective remissions. The average length of remission was 11.1 months [70,71].
Sotorasib, an oral small molecule inhibitor of the RAS GTPase family, irreversibly binds to
the P2 pocket of inactive GDP-bound KRAS. The cysteine in KRAS (G12C) establishes an
irreversible covalent bond with sotorasib, immobilizing the protein in an inactive state. By
preventing KRAS signaling, sotorasib inhibits both in vitro and in vivo cell growth as well
as tumor growth, and it only causes apoptosis in KRAS (G12C) tumor cell lines [68,72].

2.3.6. VEGF

The growth factor known as vascular endothelial growth factor (VEGF) has significant
pro-angiogenic activity and affects endothelial cells in a mitogenic and anti-apoptotic
manner. It also enhances vascular permeability and encourages cell migration. These
results mean that it actively contributes to the regulation of both healthy and unhealthy
angiogenic processes [73].

The first VEGF inhibitor to be authorized for cancer treatment is bevacizumab. The
U.S. FDA, the European Medicines Agency (EMEA), and numerous other regulatory bodies
have approved bevacizumab for treating malignancies such as NSCLC at this time [73].
Bevacizumab or ramucirumab added to EGFR TKIs significantly increased PFS in patients
with EGFR-mutant NSCLC in recently published large extensive randomized studies [74],
In a phase III trial, the inclusion of bevacizumab significantly increased the PFS endpoint
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from 11.2 months when erlotinib was used alone to 17.9 months when it was used in
combination therapy [75].

Table 3. Summary of other FDA-approved drugs targeting NSCLC.

Targeted Genes Drug Objective Response
Rate (ORR)

Median PFS
(Months) Side Effects Ref.

ROS1

Crizotinib 72.4% 19.2 Visual
impairment/nausea/edema/ [35,76]

Ciritinib 62% (67%) * 19.3 diarrhea/nausea/anorexia/ [43]
Lorlatinib 41% (62%) * 8.5 dyslipidemia [43]
Entrectinib 77% 15.7 weight increase/neutropenia [77,78]

BRAF Dabrafenib and
trametinib 64% (68%) * 10.8 Fatigue/pyrexia/nausea [79]

MET Tepotinib 46% 8.5 Peripheral edema/amylase
increased/nausea [80]

Capmatinib 41% (68%) 5.4 peripheral edema/Nausea [81]

RET Selpercatinib 64% (85%) 18.4 Dry
mouth/diarrhea/hypertension [82,83]

Pralsetinib 61% (73%) * 16.5 (13) * anemia/hypertension/neutropenia/ [83]

KRAS Sotorasib 32% 6.3 diarrhea/nausea/elevated
LFT/fatigue [71]

NTRK Larotrectinib 75% 35.4 myalgia/hypersensitivity/weight
increase [84]

Entrectinib 70% NR taste disorder/
constipation/fatigue [84]

HER2 T-DM1 55% 5 Infusion reactions/
thrombocytopenia [85,86]

T-DXd 62% 14 nausea
/alopecia/anemia [87]

Abbreviations: ORR, overall response rate; NR, not reported; data outside parentheses are for patients previously
treated with platinum-based drugs; data in parentheses with * are for patients who have not previously received
systemic therapy.

3. Resistance Mechanisms
3.1. Mechanisms of Resistance to EGFR TKIs

T790M mutation in exon 20 is present in 50–60% of individuals who are resistant to
first-generation EGFR TKIs such as erlotinib [88]. The EGFR protein’s ATP-binding pocket
contains the T790 residue, which increases the protein’s affinity for ATP and mediates TKI
resistance. T790M decreases Km [ATP], the amount of ATP required to reach a half-maximal
response rate when it co-occurs with activating mutations. The effectiveness of first- and
second-generation EGFR TKIs is decreased as a result of these biochemical alterations,
which restore ATP affinity to a level that is more similar to wild-type EGFR [89]. However,
the concurrent decline in kcat results in a reduction in ATP throughput and an increase
in enzymatic turnover. This likely explains why the T790M mutation confers a growth
disadvantage in cells with classical EGFR-activating mutations in the absence of EGFR
TKIs [90]. The majority of the secondary mutations that are not T790M are D761Y, L747S,
and T854A. They lessen the sensitivity of mutant EGFR to EGFR-TKIs; however, it is yet
unclear how they overcome resistance. One possibility would be that these secondary
resistance mutations alter how EGFR is configured and how it interacts with TKIs [8]. Other
mechanisms of resistance include MET gene amplification, including EGFR amplification
and PIK3CA gene mutations, and conversion to SCLC [91] (Figure 2). Small cell lung
cancer (SCLC) can histologically convert into NSCLC in up to 14% of instances, and this
transformation is typically accompanied by resistance to the original TKIs [92].

In a recent retrospective analysis of the FLAURA trial, the C797S mutation in EGFR
exon 20, which occurs at a frequency of 7% when axitinib was used as first-line therapy and
accounts for 10–26% of cases of resistance to second-line axitinib therapy, was examined
for the mechanisms of acquired resistance to first-line osimertinib in advanced NSCLC
with EGFR mutations [93]. The osimertinib-EGFR covalent link is broken by the EGFR
(C797S) mutation, which occurs when the cysteine at codon 797 within the ATP binding
site is changed to a serine [94]. By inhibiting their binding to the EGFR active site, the
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C797S mutation also imparts cross-resistance to other irreversible third-generation TKIs,
such as roxitinib, omutinib, and nizatinib [95,96]. MET amplification (15–19%), PIK3CA
(6–7%), KRAS (3%), and HER2 amplification (2–5%) were the mechanisms most often
found to have acquired resistance [94,97]. Bypass pathway activation, which results in
oxitinib resistance through sustained activation of signaling pathways downstream of
EGFR, including those mediated by MAPK, STAT, and PI3K-Akt, is most frequently caused
by MET gene amplification, which is unrelated to EGFR activation and signaling [98,99].
Recently published early trials for the combination of MET inhibitors with osimertinib
showed encouraging outcomes when resistance developed [100].
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Figure 2. Mechanisms and frequency of resistance to EGFR-TKIs. MET gene amplification, PIK3CA
gene mutations, bypass pathway activation, downstream pathway activation, EGFR modification
mutations or amplification, and development of small cell lung cancer are examples of resistance
mechanisms to EGFR-TKIs (SCLC). Third-generation EGFR-TKIs used as first-line therapy result in
C797S mutations.

3.2. Mechanisms of Resistance to ALK TKIs

There are three different types of ALK gene mutations: point mutation, amplification,
and rearrangement (ALK-R/ALK-A) [101]. The majority of ALK gene mutations take
the form of a translocation to another partner gene, creating an overexpressed fusion
oncogene in cancer [101]. The oncogenic mechanism of ALK-A in the NB cell line was
discovered for the first time in 2002. ALK-A has been shown to cause constitutive activation,
which only activates the docking protein SHcC, a member of the Shc family of protein
adaptors when it is near ALK receptor substrates [102]. A series of findings in patients
with acquired crizotinib resistance were described in which mutations in the ALK TK
domain were found in 4 (22%) of 18 patients biopsied after the recurrence of the first-
generation crizotinib, including three new mutations and one amplification of the ALK
fusion gene [103]. The acquired resistance point mutations identified by ALK included
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G1269A, C1156Y, I1171T/N/S, S1206C, E1210K, L1152P/R, V11180L, G1128A, F1174V,
and L1196M [104–107]. Patients with crizoltinib-resistant circulating tumor cells (CTC)
had repeated mutations in the RTK-KRAS (EGFR, KRAS, BRAF genes), TP53, and other
genes in the ALK-independent pathway, according to single CTC sequencing [108]. The
activation of bypass signaling pathways such as the activation of transcription co-regulator
YAP, EGFR signaling, KIT amplification, the insulin-like growth factor-1 receptor (IGF-1R)
pathway, MAPK amplification, BRAF (V600E) mutation, and MET amplification is another
component of the resistance mechanism of ALK-TKIs [103,109–113]. MET amplification
was present in 15% of tumor samples from patients who were relapsing on next-generation
ALK inhibitors, compared to 12% and 22% of tumor biopsies from patients who were
progressing on second-generation inhibitors or lorlatinib, respectively. Alteration of MET
is a prevalent functional resistance mechanism in lung cancer that is ALK-positive [114].

Numerous studies have demonstrated that the second-generation medicines alectinib,
ceritinib, brigatinib, and ensatinib can be more effective than chemotherapy when first-
generation ALK inhibitors failed to treat NSCLC patients [115–118]. In patients treated with
second-generation ALK inhibitors, the G1202R mutation is the most prevalent secondary
resistant ALK mutation, appearing in 21%, 29%, and 43% of patients treated with ceritinib,
alectinib, and brigatinib, respectively [119]. A mid-term review of outcomes in previously
untreated patients with advanced ALK-positive NSCLC found that lorlatinib, a third-
generation inhibitor of ALK, had significantly longer PFS and more significant proportion
of intracranial responses [120]. According to a study, gilteritinib, a TKI approved for
the treatment of acute myeloid leukemia (AML) that has relapsed or become resistant to
treatment, suppresses both single ALK-TKI-resistant mutants and compound mutants with
the mutation I1171N both in vitro and in vivo [121].

3.3. Mechanisms of Resistance to ROS1 Inhibitors

Point mutations in the ROS1 kinase domain that render ROS1 fusion-positive can-
cers resistant to ROS1 TKIs have been identified through studies in both preclinical and
clinical settings [122,123]. Point mutations in the ROS1 kinase domain, such as D2033N,
G2032 series, L2026M, L2155S series, and S1986F/Y, can cause acquired resistance to
crizotinib [35,124]. This mutation reduces the potency of kinase inhibition [42,123,125].
In one study, 55 people’s post-crizotinib and post-lorlatinib biopsies were examined. In
42 post-crizotinib biopsies and 28 post-lorlatinib biopsies, respectively, that were ana-
lyzed at various timepoints, ROS1 mutations were discovered in 38% and 46% of the
samples. Nearly one-third of patients had the most common mutation, ROS1(G2032R).
Post-crizotinib, there were additional ROS1 mutations such as D2033N (2.4%) and S1986F
(2.4%) as well as L2086F (3.6%), G2032R/L2086F (3.6%), G2032R/S1986F/L2086F (3.6%).
In addition, the increased point mutation with lorlatinib was S1986F/L2000V (3.6%) [124].
Due to the D2033N mutation, which causes the kinase hinge region of ROS1 to change from
aspartic acid to asparagine, crizotinib demonstrates significant in vitro drug resistance (in-
side the ATP binding site) [126,127]. The ROS1 kinase domain mutation L2026M is similar
to G2032R in that it results in resistance to crizotinib by altering the gatekeeper position of
the binding pocket for the ROS1 inhibitor [123,128]. At codon 2032 in the structural domain
of ROS1 kinase, glycine is changed to arginine. This mutation gives resistance to ROS1
kinase inhibition by interfering with drug binding through a spatial site block, while not
being present at the gatekeeper residue [129]. Furthermore, the substitution S1986F/Y in
the kinase domain blocks important activation sites, increasing kinase activity. L2155S is
expected to impart crizotinib resistance through protein failure [130].

Through mutations and/or copy number increases, other RTKs or downstream MAPK
pathway effectors are implicated in ROS1-extrinsic resistance mechanisms, showing MAPK
system reactivation as a convergent mechanism of resistance [131]. KRAS, NRAS, EGFR,
HER2, MET, KIT, BRAF, and MEK are mediators involved in this pathway either as down-
stream or bypass mediators [122,123,125,127]. KIT and catenin mutations, as well as HER2-
mediated bypass signaling, were found to be non-ROS1-dominant resistance pathways
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in the ROS1 cohort [123]. The study suggests that the unused bypass signaling pathway
SHP2 is also associated with the development of drug resistance [123]. Data also suggested
that activation of RAS family members can confer resistance to ROS1 inhibitors [132].
KRAS(G12D) and BRAF(V600E) mutations have been linked to crizotinib treatment in the
clinical setting, whereas NRASQ61K has been linked to entrectinib treatment [133].

3.4. Mechanisms of Resistance to BRAF Inhibitors

Approximately 50% of BRAF mutations are BRAF(V600E) [47]. Other typical BRAF
mutations are BRAF(D594G) and BRAF(G469A/V) mutations, which are present in 35%
and 6%, respectively, of BRAF mutant NSCLC patients [134]. The V600E mutation greatly
increases the kinase activity of BRAF independent of Ras by stabilizing the active confor-
mation of BRAF by establishing a salt bridge with K507 [135]. BRAF(V600E) mutation
causes constitutive BRAF activation in its monomeric form, which promotes MEK-ERK
signaling downstream [136]. Although the BRAF(V600) gene-targeting drugs vemurafenib
and dabrafenib are clinically effective as monotherapies [137,138], the addition of MEK
inhibitors dramatically improves results. The combination of BRAFi and MEKi was su-
perior to the single agent, increasing the ORR rate to 67% and the median PFS to 10.2
months [49]. There is also a therapeutic need for BRAF inhibitors that are effective
against non-BRAF(V600E) mutations, which are present in about 50% of BRAF-mutated
NSCLC cancers. Increased EGFR signaling through autocrine activation caused by BRAF-
independent c-Jun signaling or loss of full-length BRAF (V600E) consistent with the expres-
sion of a truncated form of the mutant protein has been the mechanisms of acquired resis-
tance in NSCLC cell lines that were sequentially treated with vemurafenib for BRAF(V600E)
mutations [139]. Notably, it has been shown that second-generation BRAF inhibitors
(BRAFi) or a combination of BRAF and MEK inhibition can prevent resistance brought on
by the production of BRAF(V600E) splice variants (e.g., PLX8394) [139,140]. CRAF kinase
expression was one of the resistance mechanisms discovered by Montagut et al. According
to this study, mutant cells with high amounts of the CRAF protein may have reduced
drug bioavailability [141]. Furthermore, according to these authors, a subpopulation of
BRAF-mutant cancer cells may develop that is resistant to the primary inhibitor elevated
levels of CRAF protein [141]. A study has shown for the first time how the loss of PTEN
results in intrinsic BRAF inhibitor resistance by inhibiting BIM-mediated apoptosis [142].

Unfortunately, the majority of NSCLC patients will experience disease progression
within a year of starting BRAF and MEK inhibition as a treatment strategy. According to
preclinical and clinical data, in addition to BRAF mutations, resistance mechanisms include
the activation of bypass pathways, including the PI3/AKT/mTOR, and the restoration of
MAPK signaling that has become ineffective for suppression due to upstream or down-
stream changes [143] (Figure 3). Mechanisms by which reactivation of MAPK pathway
signaling mediates acquired BRAFi resistance have begun to emerge [144]. According to
reports, the overexpression or upregulation of RTKs such as PDGFR and EGRF was the first
modification that led to RAF inhibitor resistance. Since these modifications stimulate RAS
and activate CRAF-MEK-ERK signaling, the proliferation of cancer cells is not dependent
on BRAF(V600E) [145–147]. RAS mutations, which function similarly to RTK alterations,
were identified as the second factor downstream of RTKs contributing to RAF inhibitor
resistance [145–148]. As soon as cancer cells have a large amount of active Ras, the drug-
loaded BRAF(V600E) will dimerize with CRAF and activate its catalytic activity [149,150],
which has been referred to as the paradoxical effect of RAF inhibitors [151]. As a result,
work is still being carried out on the next iteration of BRAFi.
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Figure 3. BRAF medication resistance mechanisms and mutation probability. BRAF mutations
resulted in altered mitogen-activated protein kinase (MAPK) molecules. The approximate frequencies
of frequent driver mutations discovered in the MAPK pathway in lung cancer are shown on the left
side of the figure. BRAF valence at codon 600 (V600E) mutations, which cause native activation of
BRAF, is only found in 1–2% of lung cancers. In patients with activating BRAF mutations, clinical
study of BRAF alone or in combination with downstream MEK inhibition is continuing. On the
right, prominent BRAF inhibitors are described. BRAF inhibitor resistance is conferred through cRAF,
ARAF, the MAP kinase family member COT, and the pro-survival members of the BCL-2 family
MCL-1. Despite BRAF inhibition, increased production of the alternative RAF isoforms (ARAP and
CRAF) and MAP3K8/COT can still activate the MAPK pathway. The PI3K and MAPK pathways,
which may offer paths around BRAF inhibition and apoptosis, also activate MCL-1.

4. Discussion

Since lung cancer continues to have the highest mortality rate worldwide, researchers
have focused a substantial amount of attention on it. Lung cancer is also a cancer for
which targeted therapy development and marketing are most prevalent. In this article,
we summarized the eight main NSCLC targeted loci as well as the resistance mechanisms
that have been identified. These factors could be important in the future development of
targeted treatments. In addition to the targeted loci described in this article, the FDA has
also approved other loci such as NTRK and HER2 (Table 3). For patients with advanced
NSCLC, anti-PD1/PD-L1 immunotherapy has become a standard treatment option in
addition to targeted drugs over the past 10 years. Patients are often chosen based on the
tumor mutation burden and/or PD-L1 expression in tumor cells. Mutations in oncogenic
factors including EGFR, ALK, BRAF, or MET, which can change the immunological tumor
micro-environment, can enhance tolerance to PD1/PD-L1 [152]. Additionally, various
cancer patients may develop medication resistance through multiple pathways. To cus-
tomize targeted therapy for each patient, it is crucial to evaluate their specific resistance
mechanisms at the molecular level. Repeating tissue samples is one method for tracking
the genetic evolution of therapeutic effects. However, this method is highly invasive,
necessitates a high level of patient cooperation, and may be complicated by intra-tumor
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heterogeneity [153]. In conclusion, individualized medicine has begun to provide sub-
stantial benefits for patients with oncogene-driven NSCLC [144], but the treatment of this
notorious malignancy still has a long way to go.
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