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Wurzer, T.; Chroňáková, A.; et al.

Polyenic Antibiotics and Other

Antifungal Compounds Produced by

Hemolytic Streptomyces Species. Int. J.

Mol. Sci. 2022, 23, 15045. https://

doi.org/10.3390/ijms232315045

Academic Editor: Hindra Hindra

Received: 27 September 2022

Accepted: 26 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Polyenic Antibiotics and Other Antifungal Compounds
Produced by Hemolytic Streptomyces Species
Jan Bobek 1,2,* , Eliška Filipová 1, Natalie Bergman 2, Matouš Čihák 1,3, Miroslav Petříček 1, Ana Catalina Lara 4 ,
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370 05 České Budějovice, Czech Republic
* Correspondence: jan.bobek@lf1.cuni.cz

Abstract: Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora
of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their
own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived
strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether
hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound
production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-
associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a
control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the
hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene
compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-
cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified.
The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested
by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could
even serve as a virulence factor when colonizing available host organisms. Additionally, a literature
review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.

Keywords: Actinomycetales; secondary metabolites; polyene antibiotics; Streptomyces; hemolysis;
symbiosis; soil ecosystem

1. Introduction
1.1. The Role of Hemolysis in Streptomyces’ Interactions

Streptomyces produce a large variety of secondary metabolites (SM) that correspond to
their environmental needs [1], of which antibacterial and antifungal agents are of utmost
importance [2]. The chemical diversity of the SMs produced by Streptomyces species has
most likely evolved as a direct result of their interactions with other organisms. Streptomyces’
interactions with plants and animals can be parasitic, as is the case of potato scab-causing
streptomycetes, which infect the plant tuberosphere [3], or S. somaliensis and other strains
that infect humans [4]. However, in most cases, they are beneficial and growth- promoting
organisms. Streptomycetes form numerous mutualistic relationships with invertebrates and
plants [5], and they protect their hosts against infection using antibiotics and antifungals.
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Hemolysis—the rupture of erythrocytes—is a virulence factor of many pathogens with
E. coli, Streptococci, Vibrio, and Staphylococcus aureus being some prominent examples [6]. The
activity of hemolysins, however, is not restricted to erythrocytes only; hemolysins, by acting
on cellular membranes, can also damage other eukaryotic cells [6,7]. Hemolysins are mostly
lytic proteins—enzymes or channel-forming porins [8] or, rarely, polyene compounds (also
referred to as polyene antibiotics or polyene antimycotics) [9].

1.2. Polyenes and Non-Polyene Hemolytic Metabolites: A Literature Review

Polyenes are poly-unsaturated compounds with linear or cyclic structures. Cyclic
polyene antibiotics belong to the macrolide class of SMs, representing a large and variable
group of antibiotics produced mostly by Streptomyces. They have a macrolactone ring
to which typically two sugars and one amino sugar are attached [10]. Antibiotics in the
polyene class possess a macrocyclic ring of carbon atoms closed by lactonization; the
polyene group has, in addition, a series of conjugated double bonds of various length.

We searched the literature extensively to review mostly actinomycete-derived polyenes
identified so far. They are listed in groups based on their structures together with their
chemical formulas, molecular weight (MW), and assessed activities (Table 1); the repre-
sentative structures are shown in Figure S1. Selected non-polyene, human cells-targeting
metabolites included in the study are placed in Table 2. The primary selection criterion was
the origin of compounds in streptomycetes or related bacteria and their reported activity
towards eukaryotic cells. The majority of the compounds were discovered more than
50 years ago, therefore the data often lack sufficient structure determination and complex
activity screenings. Crucial structural characteristics include a combination of a hydropho-
bic polyene region with a hydrophilic polyol part, often glycosylated, which enables the
molecules to enter the cytoplasmic membranes of various organisms, exhibiting either
irreversible destruction of the membrane or transient and reversible channel formation
(e.g., in pentaenes or heptaenes, respectively). They form complexes, in which the polyene
chain faces the lipid environment and the polyol chain is oriented towards the aqueous
environment in the interior of the pores [11]. Polyenes often form complexes with sterols
and exhibit variable specificities to ergosterols and cholesterols [12]. These traits strongly
influence their cytotoxicity and, subsequently, their possible medical application.

Table 1. Actinomycete polyene SMs. AB—antibacterial; AF—antifungal; AP/I—antiparasitic, insecti-
cidal; HL/CL—hemo-/cytolytic; AC—anti-cancer. Asterisks indicate compounds with clinical (*) or
agricultural (**) application.

Compound Formula Calculated Average Mass Activities Ref.
CYCLIC—TETRAENES AB AF AP/I HL/CL AC
Amphotericin A * C47H75NO17 926.1090 + + [13]

Antifungalmycin 702 C35H60O14 704.8530 + [14]

Arenomycin B (Lucensomycin) C36H55NO13 709.8316 + [15]

Aureofuscin C28H43NO12 585.6490 + [16]

Lucimycin (Lucensomycin,
Etruscomycin) C36H53NO13 707.8158 + + [17]

NPP A1 C55H88N2O22 1129.3040 + [18]

Nystatin A1 (Fungicidin) * C47H75NO17 926.1090
- + [19]Nystatin A2 C47H75NO16 910.1096

Nystatin A3 C53H85NO20 1056.2526

Pimaricin (Natamycin) */** C33H47NO13 665.7351 + - [20]

Polyfungin B C53H85NO19 1040.2532 + [21]

Protocidin C29H45NO13 615.6752 [22]

Rimocidin C39H61NO14 767.9117 - + [23]
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Table 1. Cont.

Compound Formula Calculated Average Mass Activities Ref.
Tetrafungin C47H82NO23 1029.1610 + [24]

Tetramycin A
Tetramycin B

C35H53NO13
C35H53NO14

695.8048
711.8042

+ +
[25]

Tetrin A
Tetrin B
Tetrin C

C34H51NO13
C34H51NO14
C34H49NO13

681.7779
697.7773
679.7620

+ [26]

[27]

Toyamycin (Akitamycin) C41H65NO18 859.9630 + [28]

PA-166 C35H53NO14 711.8042 + [28]
CYCLIC—PENTAENES AB AF AP/I HL/CL AC
Aurenin (1’-Hydroxyisochainin) C33H54O11 626.7852 + [29]

Capacidin C54H85NO18 1050.2716 + [30]

Chainin C33H54O10 610.7858 + [31]

Elizabethin C35H58O12 670.8383 + [32]

Filipin I C35H58O9 622.8401

+ + [33]Filipin II C35H58O10 638.8395
Filipin III C35H58O11 654.8389
Filipin IV C35H58O11 654.8389

Fungichromin (Pentamycin) * C35H58O12 670.8383 + + + [34]

Homochainin C34H56O10 624.8126 + [31]

Isochainin C33H54O10 610.7858 + [35]

Kabicidin C35H60O13 688.8536 + [36]

Lienomycin C67H107NO18 1214.5825 + + + [37]

Moldicidin A C42H81NO19 904.1005 + [16]

Norchainin C32H52O10 596.7589 + [31]

Onomycin-I
Onomycin-II

C43H76NO17
C42H67NO17

879.0730
857.9905 + [38]

Pentacidin C31H50O10 582.7320 + [16]

Pentafungin C41H74NO16 837.0357 + [39]

PA-153 C37H61NO14 743.8897 + [28]

S 728 C56H93NO20 1100.3492 + [16]

Reedsmycin A-E
Reedsmycin F

C36H58O10
C36H58O11

650.8505
666.8499 + [40]

Selvamicin C47H76O18 929,0955 + [41]

Strevertene A
Strevertene B
Strevertene C
Strevertene D
Strevertene E
Strevertene F
Strevertene G

C31H48O10
C32H50O10
C32H50O10
C33H52O10
C33H52O10
C34H54O10
C31H50O9

580.7161
594.7430
594.7430
608.7699
608.7699
622.7968
566.7326

+ [42]

Takanawaene A
Takanawaene B
Takanawaene C

C30H48O8
C32H52O8
C33H51O8

536.7063
564.7601
578.7870

+ [43]

Thailandin A
Thailandin B

C39H62O14
C33H52O10

754.9208
608.7699 + [44]

CYCLIC—HEXAENES AB AF AP/I HL/CL AC

Candihexin A C48H76NO19/C43H76NO19/
C43H77NO19

971.1268/911.0718/912.0797 + [45]

Candihexin B C48H90NO21/C48H91NO21 1017.2367/1018.2447 + [45]

Candihexin E C38H67NO16 793.9471 + [45]

Cryptocidin C52H84NO17 995.2355 + + [46]

Grecomycin C38H41O10/C38H38O10 657.7375/654.712 + + [47]
CYCLIC—HEPTAENES AB AF AP/I HL/CL AC
Acmycin C36H68NO30 994.9247 + [48]

Amphotericin B C47H73NO17 924.0932 + + [49]

Aureofungin A C59H86N2O19/C59H88N2O19 1127.3339/1129.3498 + [50]

Aureofungin B C57H85NO19/C57H87NO19 1088.2972/1090.3131 + [50]
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Table 1. Cont.

Compound Formula Calculated Average Mass Activities Ref.
Candicidin A1 (VI, Levorin A0,
Ascosin A1) *
Candicidin A2 (D, A, D1, Levorin
A2, Ascosin A2)
Candicidin A3 (V, Levorin A3,
Ascosin A3)

C59H84N2O17
C59H84N2O18
C59H86N2O18

1093.3272
1109.3186
1111.3345

+ + [51]

Candidin C47H71NO17 922.0773 + [52]

Flavumycin A C60H91N2O17/C54H79NO16 1112.3858/998.2184 + [53]

Fungimycin C59H86N2O17 1095.3351 + + + [54]

Hamycin A C58H86N2O19 1115.3229 + + + [55]

Isolevorin A2 C60H86N2O18 1123.3455 + [56]

Levorin A2 C59H86N2O18/C59H89N2O18 1111.3345/1114.3583 + [57]

Levorin B C62H98N2O25 1271.4586 + [58]

Lucknomycin C61H98N2O24/C54H80N2O19 1243.4482/1061.2313 + [59]

Partricin A C59H86N2O9 967.3399 + [60]

Partricin B C55H84N2O19 1077.2740 + [60]

Perimycin A C59H88N2O17 1097.3510 + [61]

Trichomycin A C58H84N2O18/C61H86N2O21 1097.3076/1183.3547 + + [62]

AF-1231 C42H68N2O17 873.0052 + [16]

DJ-400 B1
DJ-400 B2

C65H96N2O21
C58H86N2O20

1241.4781
1131.3223 + [38]

67-121 A
67-121 C

C59H88N2O19
C65H98N2O28

1129.3498
1355.4898 + [38]

NPP B1 C55H86N2O22 1127.2881 + [18]
LINEAR POLYENES AB AF AP/I HL/CL AC
AB023a
AB023b

C31H50O8
C32H52O8

550.7332
564.7601 + [63]

Clethramycin C63H99N3O18S 1218.5545 + [64]

ECO-02301 C70H109N2O20 1298.6369 + [65]

Etnangien C49H76O11 841.1358 + [66]

Linearmycin A
Linearmycin B
Linearmycin C

C64H101NO16
C66H103NO16
C67H105NO16

1140.5031
1166.5410
1180.5678

+ + + [67]

Mediomycin
Mediomycin A
Mediomycin B

C62H99NO16S
C62H97NO18S
C62H97NO15

1146.5312
1176.5141
1096.4499

+ [64]

Meijiemycin C66H105NO19 1216.5550 + [68]

Mycangimycin C20H24O4 328.4082 + [69]

Neotetrafibricin A C67H105NO19 1228.5660 + [64]

Table 2. Non-polyene SMs of actinomycetes targeting human cells.

Compound Formula Calculated Average Mass Activities Ref.
PEPTIDES
Surugamide A C48H81N9O8 912.21428 anticancer, antifungal [70]

Polyoxypeptin C35H60O14 704.84403 pro-apoptotic [71]

Bleomycin C55H84N17O21S3+ 1415.55415 anti-cancer [72]

Actinomycin D C62H86N12O16 1255.41969 anti-cancer [73]

Mirubactin C26H32N6O11 604.56701 siderophore [74]
ANTIMYCINS
Antimycin A C24H40N2O9 548.62641 inhibitor of respiration [75]
NON-POLYENIC MACROLIDES
FK506 (Tacrolimus) C44H69NO12 804.02005 immunosuppressive, antifungal [76]

FK520 (Ascomycin) C43H69NO12 792.00931 immunosuppressive, antifungal [77]
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Table 2. Cont.

Compound Formula Calculated Average Mass Activities Ref.
Meridamycin C45H75NO12 822.07844 neuroprotective [78]

Nemadectin C36H52O8 612.79481 antiparasitic [79]

Sirolimus (Rapamycin)–a cyclic
molecule containing
conjugated triene.

C51H79NO13 914.17404 immunosuppressive, antifungal [80]

Venturicidin B C40H66O10 706.94776 antifungal [81]
NON-POLYENIC POLYKETIDES
Actiphenol C15H17NO4 275.30042 proteosynthesis inhibitor [82]

Kinamycin F C18H14N2O7 370.31373 anti-cancer [83]

Neoansamycin A C30H37NO7 523.61855 antibiotic, antiviral [84]

Nogalamycin C39H49NO16 787.80515 anti-cancer [85]

Reveromycin A C36H52O11 660.79303 EGF inhibitor [86]
OTHER—ACTIVE ON THE HUMAN CELLS
Neocarzinostatin C35H33NO12 659.63751 anti-cancer [87]

Nocardamine C27H48N6O9 600.70599 anti-cancer siderophore [88]

Almost all polyene compounds have been identified due to their antifungal activ-
ity [11] and some have been shown to possess other bioactivities, such as antibacterial
(often targeting cell-wall lacking bacteria), antiparasitic (anti-Trichomonas activity has been
reported most frequently, implying the compounds may find use in the treatment of com-
bined vaginal infections), cytolytic, and anti-cancer activities.

Most of polyene antibiotics, including filipin and candicidin compounds with larger
rings, exhibit hemolytic properties [89]. Filipin forms large aggregates within the erythro-
cyte membrane that render it permeable [90]. Other polyenes, however, impair plasma
membranes by direct binding to ergosterol, as is the case of natamycin [91] or ampho-
tericin [92]. All these polyene compounds are fungicidal and those with lower toxicity are
used in medicine. For example, amphotericin B, natamycin and nystatin A1 are used in
antifungal and antiprotozoal medications [90].

1.3. Hemolysis as a Virulence Factor

Whilst SM production in Actinobacteria has been extensively studied [2,69], the impact
of hemolytic metabolites has not received much attention so far. As hemolysis can be
considered a virulence factor [93,94], it may well be viewed as one of the adaptations
that the bacteria employ to compete with other organisms in their environment. This
theory is further supported by the example of the streptomycete strain S. sp. TR1341,
extracted from the lungs of a senior male patient with relapsing bronchopneumonia, whose
taxonomy indicates a distance from plant and human pathogenic strains [89]. It has been
demonstrated that S. sp. TR1341 possesses a filipin biosynthetic gene cluster responsible
for the bacteria’s hemolytic capabilities [89].

The β-hemolytic activity is not exclusively related to human-associated strains, but
also occurs in soil-dwelling strains. About half of soil-derived Streptomyces strains exhibit
β-hemolytic activity, whereas three out of four clinical Streptomyces isolates are β-hemolytic,
according to Wurzer [95]. The soil-derived strains exhibiting β-hemolysis were collected
(BCCO strains) and used here to search for the β-hemolytic compound production. The
search was focused on polyene antibiotics as their role as hemolysins has not yet been
systematically studied in Streptomyces. In addition, the 16S rRNA phylogeny of the BCCO
strains used in this study was compared to that of well-known polyene producers.

2. Results
2.1. Sequencing Data and Phylogenetic Tree

According to the 16S rRNA-encoding gene similarities, 22 BCCO strains with β-
hemolytic activities clustered with other Streptomyces and one strain with Nocardioides
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(BCCO 10_0486). Phylogenetic analysis showed no clear association between phylogeny
and the production of particular polyene compounds (Figure 1); the clustering seems to cor-
relate more with the isolation source (arthropod or soil) or the country of origin. However,
there are a few clusters that contain strains of various origins (country/source): (i) BCCO
10_1099 (Papua New Guinea/ambrosia beetle) and BCCO 10_2196 (Czechia/millipede)
clustered together with S. albidoflavus DSM40455; (ii) BCCO 10_0670 (Czechia/soil) and
BCCO 10_1092 (Papua New Guinea/ambrosia beetle) clustered together with S. griseus
subsp. griseus KCTC9080; and (iii) BCCO 10_1747 (Czechia/soil) and BCCO 10_2389
(Hungary/soil) clustered as S. drozdowiczii NRRL-B-24297.

Apparently, filipin, candicidin, nystatin A1, pimaricin, and actiphenol can be produced
by strains from different phylogenetic groups. Our analysis suggests that strains with high
phylogenetic relatedness and originating from the same habitat and country produce either
the same polyene B (strains associated with ambrosia beetle from Papua New Guinea:
BCCO 10_1093, 10_1095, 10_1104) or different compounds (soil strains from Hungary:
BCCO 10_2295, 10_2309, 10_2325), as can be seen in our results below.

2.2. Characteristics of Morphological Differentiation and Hemolytic Activities in the Strains

Investigated strains were streaked on blood agar plates, and after 120 h of cultivation,
pictures of growing mycelia and hemolytic zones were taken from the top and bottom sides
of the dish. All lab-tested strains expressed β-hemolytic activity when grown on blood
agar (Table S2).

2.3. Gamma-Butyrolactone-Induced Polyene Production

Gamma-butyrolactone (GBL) is an activator of SM production in Streptomyces. To test
its capacity to induce polyene production, we inoculated a strain of Streptomyces as one line
on the blood agar. Five microliters of GBL solution (ReagentPlus, ≥99%, Sigma-Aldrich
Co. St. Louis, MO, USA) were dropped on a sterile filter paper strip which was then
inserted perpendicularly to the line of Streptomyces. An increase in the hemolytic zone was
observed after O/N cultivation on the cross-sections with the GBL-soaked paper strip in
BCCO 10_0524, BCCO 10_0670, BCCO 10_1093, BCCO 10_1747, BCCO 10_2179, and BCCO
10_2389 (Figure S2). Remaining strains did not reveal any phenotypic difference in the
presence of GBL.

2.4. Hemolytic Activity of Ethyl Acetate Extracts

To determine whether SMs produced by Streptomyces spp. into the medium could
cause hemolysis, the culture supernatants were subjected to ethyl acetate extraction. A
similar approach has already been used [89] to demonstrate that the polyene compound
filipin is the only compound responsible for the hemolytic activity of their tested strain.
The crude extracts (5 µL) were dropped on blood agar plates and incubated for 3 days
with 5 µL of chloroform in the middle as a negative control (Figure S3). These experiments
were performed in duplicate. Hemolytic activity was spotted on the blood agar for BCCO
10_1093, BCCO 10_1094, BCCO 10_1095, BCCO 10_1106, and BCCO 10_1499 strains. No
hemolytic zone was observed in samples isolated from the BCCO 10_1099 strain and
from the negative control. Nevertheless, the ethyl acetate extraction procedure led to
a considerable reduction in the hemolytic activity when compared to hemolytic zones
produced by the cell-free supernatants shown in Figure 2 (see below).
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Figure 1. Phylogeny of Streptomyces strains involved in the study inferred from 16S rRNA gene
similarity. Color codes represent the type of a polyene produced by the strain, the isolation source,
and the country of origin. Only bootstraps above 50 are shown. The question mark indicates
metabolites detected in a co-culture. The sequences of type strains closely related to the sequences of
known polyene producers and BCCO strains were included to support topography of phylogenetic
tree. The strains were selected according to Labeda et al. [96]. Abbreviations: A.–Amycolatopsis,
N.–Nocardioides, S.–Streptomycces.
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2.5. LC-MS Analysis of the Supernatant Extracts

After cultivation in liquid medium with or without blood, SPE was performed using
the supernatants, followed by LC-MS. The presence of the polyenes listed in Table 1
was assayed in the metabolic extracts of selected beta-hemolytic streptomycete strains.
The length of the polyene part influences the typical three-peak UV-VIS spectrum of the
compounds [42]. This was used as a clue to identify putative, so far uncharacterized,
polyenes in some extracts. The LC-MS analysis results are summarized in Table S3. The
metabolites found are also listed in Figure 1 and Table S2.

Out of the 23 β-hemolytic tested strains, known polyene substances were likely de-
tected in 12 strains (Table S2). Of these, candicidins A1–A3 were detected in two strains
(BCCO 10_0524, BCCO 10_1099). Strevertene A was detected in two strains (BCCO 10_1499,
BCCO 10_2155) and filipin III in BCCO 10_2155. Tetrafungin and tetrin A were found in
BCCO 10_2325, BCCO 10_1092, BCCO 10_1093, BCCO 10_1094, BCCO 10_1095, BCCO
10_1104, and BCCO 10_2179.

A new polyene (retention time (tR) = 9.42 min, [M+H]+ m/z = 745.4166, UV/VIS
wavelength of maximum absorbance: (289 nm), 327 nm, 343 nm, 362 nm), designated
here as polyene B, was likely detected in 10 strains (BCCO 10_1092, BCCO 10_1093, BCCO
10_1094, BCCO 10_1095, BCCO 10_1097, BCCO 10_1104, BCCO 10_2179, BCCO 10_2282,
BCCO 10_2325, and BCCO 10_2389). Its absorption spectrum suggests the presence of a
pentaene structure, and the production is often associated with the formation of tetrafungin
and tetrin A compounds (Table S2). The second novel polyene compound (tR = 8.23 min,
UV/VIS wavelength of maximum absorbance: 311 nm, 326 nm, 343 nm) was designated
polyene A and was present only in the extract of BCCO 10_1106 strain. The third, polyene D,
tR = 10.6 min, UV/VIS wavelength of maximum absorbance: 287 nm, 345 nm, 362 nm,
384 nm, most probably has hexaene or methylhexaene structure [42]. No polyene-like
compound was detected in individual cultures of five β-hemolytic strains (BCCO 10_0670,
BCCO 10_1331, BCCO 10_2259, BCCO 10_2295, BCCO 10_2309), in both 7% blood-containing
and blood-free media.

Besides the above-described polyenes, the extracts were screened for the presence of
non-polyene, human cells-targeting SMs (Table 2). Of these, we identified Surugamide
A, a non-ribosomal peptide with cathepsin B-inhibitory activity [70], in BCCO 10_0524
and BCCO 10_1099, the two strains that also produced candicidin A1-A3. The latter strain
belongs to the S. albidoflavus clade according to our phylogenetic tree. In a recent study,
S. albidoflavus J11074 has also been reported as a surugamide producer during cultivation
under stress conditions [68].

2.6. Selected Hemolytic Activity Is Likely Not Due to Lytic Proteins

Four β-hemolytic strains (BCCO 10_1331, BCCO 10_2259, BCCO 10_2295, BCCO
10_2309), in which no polyene metabolite, and no other metabolites with possible hemolytic
activity, were detected following standard cultivation, were further tested to show whether
their hemolytic activity could be caused by extracellular protein(s). Each cell-free super-
natant from these four 72-h-old cultures was split into three thirds: one was treated by
proteinase K (1 µg/mL) for 60 min at 37 ◦C (to degrade extracellular hemolytic proteins),
the second was incubated in the same conditions without the enzyme (serving as a negative
control in which hemolytic activity was expected), and the third sample was incubated at
100 ◦C for 5 min (we expected it to lose its hemolytic activity completely). All samples lost
their hemolytic activity after boiling, but not after the proteinase K treatment, suggesting
that the hemolytic activity is associated with the SMs production rather than hemolytic
proteins [97] in the tested streptomycetes (Figure 2).
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Figure 2. Hemolytic activity of supernatants after proteinase K treatment or boiling. Cell-free
supernatants from 72-h-old cultures of strains BCCO 10_1331, BCCO 10_2259, BCCO 10_2295, BCCO
10_2309 (listed from left) were treated by proteinase K (upper discs on each plate) or were boiled
(discs on the left of each plate), or no additional treatment have been performed (control discs on the
right side of each plate).

2.7. Hemolytic Compounds Identified in Paired Co-Cultures

Four β-hemolytic strains (BCCO 10_1331, BCCO 10_2259, BCCO 10_2295, BCCO
10_2309), in which no polyene compound was detected, nor was hemolytic activity unique
for extracytoplasmic proteins in those strains (see Section 2.7), were subjected to paired co-
cultures to promote the production of SMs in these strains. In the sample isolated from the
paired co-culture [BCCO 10_1331 + BCCO 10_2309] we detected a fourth novel polyene-like
compound (UV/VIS wavelength of maximum absorbance: 346 nm, 364 nm, and 386 nm;
tR = 7.77 min, acquired [M+H]+ = 743.4131), here designated as polyene C, with a putative
(methyl-)hexaene structure. The second paired co-culture [BCCO 10_2259 + BCCO 10_2295]
revealed a known hemolytic compound, namely actiphenol (a non-polyene antibiotic with
MW 275; tR = 4.65 min, identified pseudomolecular ion [M+H]+ = 276.1219 and after the
loss of hydroxyl group as a water molecule 258.1144), with antifungal effects [82] (Table S3).
We were not able to detect any compound in other paired co-cultures (BCCO 10_2259 +
BCCO 10_2309; BCCO 10_2259 + BCCO 10_1331; BCCO 10_2295 + BCCO 10_2309; BCCO
10_2295 + BCCO 10_1331).

2.8. Inhibitory Activity of Streptomyces against Candida albicans or Filamentous Fungi

C. albicans and filamentous micromycetes were cultured with streptomycetes to verify
that the hemolytic streptomycetes also possess antifungal properties. The strains of Strepto-
myces were inoculated in lines and cultivated for 72 h. Then, lines of C. albicans were added
perpendicularly to those of Streptomyces and the culture was continued for an additional
24 h. Pictures of the results were taken and the inhibitory zone of C. albicans was measured
(Table 3).

Subsequently, strains of Streptomyces were cultured with Aspergillus niger, Aspergillus
fumigatus, Fusarium spp., and Paecilomyces spp. to test for the antifungal activity of the
produced SMs. The results of this experiment are summarized in Table 4. Based on
these results, we may briefly conclude that streptomycetes producing polyene B are, to
some extent, able to inhibit the growth of Paecilomyces spp. and Aspergillus niger, whereas
Aspergillus fumigatus was mostly resistant. Fusarium spp. did not grow in the proximity
of some polyene B-producing species (BCCO 10_1092, BCCO 10_1093, BCCO 10_1094),
whereas it grew in the proximity of others (BCCO 10_1095, BCCO 10_1097, BCCO 10_1104,
BCCO 10_2282, and BCCO 10_2389). The polyene A-producing BCCO 10_1106 inhibited
only the growth of Paecilomyces spp., as was also the case of BCCO 10_2259, the strain which
probably produces actiphenol. Strain BCCO 10_2309, the probable producer of polyene C,
inhibited the growth of Paecilomyces spp. and Aspergillus niger but not that of Fusarium spp.
and Aspergillus fumigatus. The candicidin-producing strain BCCO 10_1099 inhibited the
growth of Aspergillus niger, Fusarium spp., and Paecilomyces spp., but it had no impact on
that of Aspergillus fumigatus.
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Table 3. Inhibitory activity of Streptomyces spp. against Candida albicans.

BCCO Strain No. Metabolite Produced Streptomyces sp. (Vertical Line)
Candida albicans (Horizontal Line)

Size of Inhibitory Zone
(mm)

Size of Hemolytic Zone
(mm)

10_1099 candicidin A, A1, A3;
surugamide A
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Subsequently, strains of Streptomyces were cultured with Aspergillus niger, 
Aspergillus fumigatus, Fusarium spp., and Paecilomyces spp. to test for the antifungal 
activity of the produced SMs. The results of this experiment are summarized in Table 4. 
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Table 4. Inhibitory activity of Streptomyces spp. against filamentous fungi. Streptomycetes were
inoculated in a square shape and the fungi were inoculated in lines. The size of the observed inhibitory
zones is presented in mm above each picture. Pictures of hemolytic zones of streptomycetes were
taken from the bottom of the dishes.

BCCO Strain
No./Found Metabolite Paecilomyces spp. Fusarium spp. Aspergillus fumigatus Aspergillus niger

Cultivation
Timing/Streptomycete

Hemolysis

10_2259 6 0 0 0 Streptomyces 144 h;
fungus 72 h

actiphenol (?)
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have, however, largely been overlooked, as the organisms are generally considered non-
pathogenic. Nevertheless, hemolysis remains a natural part of the secondary metabolism 
of a substantial number of streptomycetes [90]. Recent studies have suggested that 
hemolysis may serve as a virulence factor [99,100], with filipin produced by Streptomyces 
sp. TR1341 as an example [89]. Cytolytic SMs may also provide the producer with the 
ability to acquire larger variability of substrates. Next, we cannot exclude the role of some 
hemolytic metabolites in the streptomycete programmed cell death, as has also been 
reported for other cytotoxins acting on DNA [101,102]; though the effect of polyenes in 
sterol-free bacterial membranes is much less severe [103]. 

To gain a better understanding of the role hemolysis might play in the soil ecosystem, 
we used streptomycete strains isolated from various environments for this study—12 
isolates directly from the soil, 10 isolates from the bodies of invertebrates, such as 
ambrosia beetles (Hadrodemius globus, Dinoplatypus pallidus, Xyleborus perforans, 
Diapus pussilimus, Crossotarsus mniszechi, Hypoborus ficus) and millipedes 
(Archispirostreptus gigas, Telodeinopus aoutii), and 1 strain from plant roots (Zea mays). 
Ambrosia beetles live in symbiosis with ambrosia fungi to cover their nutritional needs 
and to create so-called fungal gardens. As such, they have developed a defensive 
symbiosis with actinomycetes, especially Streptomyces to protect themselves against 
fungi [104]. As the diversity of ambrosia beetles is huge (more than 3200 species), and 
ambrosia fungi are host-specific [105], it can be assumed that many different 
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a substantial number of streptomycetes [90]. Recent studies have suggested that hemolysis
may serve as a virulence factor [99,100], with filipin produced by Streptomyces sp. TR1341
as an example [89]. Cytolytic SMs may also provide the producer with the ability to
acquire larger variability of substrates. Next, we cannot exclude the role of some hemolytic
metabolites in the streptomycete programmed cell death, as has also been reported for other
cytotoxins acting on DNA [101,102]; though the effect of polyenes in sterol-free bacterial
membranes is much less severe [103].

To gain a better understanding of the role hemolysis might play in the soil ecosystem,
we used streptomycete strains isolated from various environments for this study—12 iso-
lates directly from the soil, 10 isolates from the bodies of invertebrates, such as ambrosia
beetles (Hadrodemius globus, Dinoplatypus pallidus, Xyleborus perforans, Diapus pussilimus,
Crossotarsus mniszechi, Hypoborus ficus) and millipedes (Archispirostreptus gigas, Telodeinopus
aoutii), and 1 strain from plant roots (Zea mays). Ambrosia beetles live in symbiosis with
ambrosia fungi to cover their nutritional needs and to create so-called fungal gardens. As
such, they have developed a defensive symbiosis with actinomycetes, especially Strepto-
myces to protect themselves against fungi [104]. As the diversity of ambrosia beetles is huge
(more than 3200 species), and ambrosia fungi are host-specific [105], it can be assumed that
many different actinobacteria and their as yet unexplored secondary metabolites may be
involved in defensive symbiosis in a particular species.

Our results indicate that a number of streptomycetes that live symbiotically or parasit-
ically with invertebrates and plants produce polyenes as well as those living freely in soil.
Interestingly, both beetle- and millipede-derived strains produce similar compounds, al-
though the expected ecological functions differ: the defensive symbiosis of streptomycetes
with ambrosia beetles is a well-known phenomenon [104]. On the other hand, there are
no data about the symbiotic relationship of intestinal streptomycetes in millipedes. Their
interaction may start incidentally, as a transient colonization. However, the fact that the
same antifungal compounds produced in the beetles are produced in the millipedes may
suggest a much tighter relationship, linked with the prevention of fungal pathogens growth
in the host body.

To demonstrate a particular clash between streptomycetes and fungi, we performed a
co-culture experiment using a yeast C. albicans (Table 3), and four different ascomycetes:
Aspergillus niger, Aspergillus fumigatus, Fusarium spp., and Paecilomyces spp. (Table 4). When
both organisms were inoculated at the same time, no inhibitory zones were observed,
probably due to the time required for the onset of SM synthesis during streptomycete
development. When Streptomyces spp. had a 24-h or 72-h advantage, various zones in-
hibiting the growth of fungi were observed after an additional 24 h or 72 h, a condition
that may reflect a natural event when a streptomycete inhabits a symbiotic organism
and protects it from fungal pathogens [106–110]. Thus, cultures of Streptomyces spp. with
C. albicans revealed inhibitory zones of the yeast that vary between 3 and 12 mm among vari-
ous, mostly tetrafungin/tetrin A/polyene B-producing streptomycete species.
Aspergillus fumigatus looked highly resistant to the cytolytic metabolites produced by our
set of streptomycetes. Aspergillus niger, on the other hand, could not grow in the vicinity of
most of the streptomycetes. Fusarium spp. was sensitive only to several tetrafungin/tetrin
A/polyene B-producing strains, whereas the sole polyene B-producers did not inhibit its
growth. Nevertheless, all hemolytic streptomycetes, regardless of their compound produc-
tion, were more or less able to inhibit the growth of Paecilomyces spp. which seemed to be
most sensitive of the micromycetes tested.

Our LC-MS data combined with the UV-VIS absorption possibly revealed production
of six previously characterized cyclic polyenes: candicidins A1, A2, filipin III, pentamycin
(fungichromin), strevertene A, tetrafungin, and tetrin A [24,26,33,34,42,51], and four novel
polyenes (A-D) in our set of Streptomyces species. Only four strains of the 23 assayed did not
show any detectable putative polyenes. This may or may not necessarily mean that another
non-polyenic cytotoxic SM is produced. In case of an undetected polyene production, the
compounds can be unstable or they are not produced in the amount needed for the isolation
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method used in this study. Besides this, our results suggest that the production of polyenes
is widespread among streptomycetes and often associated with their β-hemolytic and/or
antifungal activities.

Tetraenes produced by seven strains belonged to two structural types: small tetrins
with MW < 700 [26] and large nystatin and amphotericin B ressembling tetrafungin of
MW > 1000 [24]. Unlike tetrins, the structure of tetrafungin in unknown, though the
compound was discovered almost 40 years ago. Antifungal activities of the tetraenes have
already been reported; however, their hemolytic capabilities were not explored.

Pentaenes were produced by the TR1341 control strain (filipin III and pentamycin).
Filipin III was also found in the BCCO 10_2155 strain; however, the associated pentamycin
was missing there. The hemolytic properties of the filipin-type compounds, produced by
multiple streptomycete species, have long been recognized [111], as well as their antifungal
activity. They exhibit equal affinity to ergosterol (the main fungal sterol) and to mammalian
cholesterol, which complicates their wider medical use. The sterol-binding feature leads
to perforations of the erythrocyte membranes explaining their hemolytic properties [90].
Activity of the filipin gene cluster is essential for β-hemolysis of the human-associated
Streptomyces sp. TR1341 [89]. Filipin production does not seem to be linked to any particular
phylogenetic clade. On the other hand, strevertene A, a similar pentaene lacking the
methylated side chain, was found to be produced by two soil strains belonging to the
same phylogenetic clade of S. avidinii NBRC13426, only (Figure 1). Another producer
of strevertenes, the tomato-associated S. psammoticus, uses the compound to protect the
host plants against Fusarium wilt [112]. Of the novel compounds, polyene B shared by
10 strains, shows the typical methylpentaene-specific absorption spectrum as filipin, but has
substantially higher molecular mass. The compound is typically found in strains putatively
producing tetraenes (Table S2). It seems unusual for a single strain to produce macrolides
differing in the ring lengths as this is determined by the type I polyketide synthase (PKS-I)
structure. Of course, we cannot exclude the presence of two different biosynthetic gene
clusters in the producer strains, or PKS-I flexibility in the starter unit selection/the chain
length control, as possible explanations. Next, a possibility of non-enzymatic degradation
(e.g., oxidation) of the original, enzymatically synthesized compounds have to be taken in
account as documented in nystatin [113]. However, a more detailed genomic analysis is
needed to better understand the biosynthesis of these molecules.

Two novel compounds seem to belong to methylhexaenes—if we assume that a methyl
group adjacent to the polyene chain shifts the absorption spectrum peaks to slightly higher
wavelengths, as documented for methylpentaenes [42]. Polyene D was produced in a
single strain pure culture (BCCO 10_2179), whereas polyene C in the culture of BCCO
10_1331 and BCCO 10_2309 strains. Hexaenes are the smallest, most under characterized
polyene group, with just one well-described member: linearmycin [67]. The production of
a hexaene derivative of nystatin as a result of a spontaneous mutation of the relevant PKS
genes in S. noursei has also been reported [114]. All other hexaenic compounds have been
detected based solely on their characteristic UV-VIS absorption and their antifungal activity
(Table 1) and the relevant reports lack detailed structure and activity data. Therefore, the
two potential novel hexaenes represent perfect targets for future purification as well as
structure and activity assessments.

Heptaenes were represented by candicidins detected in two strains coming from
different phylogenetic clades (Figure 1). Candicidins have been first identified in S. griseus
IMRU3570 [115]. The candicidin complex consists of up to nine compounds (A-I) where
only candicidin D has been fully structurally characterized [116]. Candicidins change
permeability in the cell membrane of C. albicans [117], followed by the release of K+ ions
from the intracellular space, which completes the cell lysis [118].

The mass spectrum of the polyene A peak (BCCO 10_1106) was indeterminate and
we were therefore not able to determine its putative molecular formula. Its absorption
spectrum resembles that of pentaenes, but the maxima are slightly lower. This suggests
that the compound’s polyketide backbone might be further modified in an atypical way.
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Streptomycetes undergo a complex life cycle that requires highly coordinated gene ex-
pression responsive to environmental changes [119–121]. Various small-molecular-weight
signaling molecules participate in gene expression control. In this manner, GBLs stimulate
metabolic production and act as natural auto-regulators [122]. They mediate intra- and/or
interspecies communication via the so-called quorum sensing system. They also help them
react effectively to competitive organisms as they may accelerate the transition from the
exponential growth phase to sporulation, which includes the coordinated production of
bioactive compounds [123]. Here we showed a positive effect of GBL on the production of
hemolytic metabolites in several strains (Figure S2).

Co-cultures have been used successfully between various streptomycete species to
activate secondary metabolism [124]. Likewise, complex hemolytic properties can be
changed (increased or decreased) as a result of interaction among different species in one
habitat [125]. In this work we applied the co-culture technique to those strains for which we
had not been able to detect any hemolytic compound in a standard one-strain cultivation.
Despite probable considerable losses of hemolytic compounds from samples when using
the SPE “miniprep” technique, we were able to detect new compounds in the paired co-
cultures of [BCCO 10_1331+BCCO 10_2309] and [BCCO 10_2259+BCCO 10_2295] strains.
The first pair revealed the novel polyene C compound (mentioned above). The second pair
revealed a known non-polyenic hemolytic compound actiphenol, a phenol metabolite with
antifungal effects [126].

4. Materials and Methods
4.1. Strains

In total, 23 β-hemolytic isolates (besides one Nocardioides spp. they were exclu-
sively strains of Streptomyces) were obtained from the Collection of Actinomycetes (Bi-
ology Centre Collection of Organisms, BCCO, České Budějovice, the Czech Republic,
www.actinomycetes.bcco.cz, 9 November 2022) to compare the hemolytic activities of strep-
tomycete isolates originating from various niches in different regions around the world
(the strains are listed in Table S2). Of these, 12 originated from soil, 10 were arthropod-
associated, and 1 was plant-associated. One additional strain is the human-associated
Streptomyces spp. TR1341, a filipin producer that has already been analyzed [89]. This strain
was used here as a positive control for the LC-MS analyses.

4.2. 16S rRNA-encoding Gene-Based Phylogeny

We constructed a phylogenetic tree in which we indicated the origin of the strain, the
source of isolation, and the type of substance produced to determine the relatedness of
the strains in this study and to compare the studied strains with known polyene antibiotic
producers. The strains belonging to the BCCO collection are characterized using a combi-
nation of morphological features and basic molecular identification. The morphological
characterization was performed according to the protocols of the International Strepto-
myces Project [127]. The molecular identification was performed using 16S rRNA gene
sequencing and an identity cut-off of 98.7% for classification as a known species [128].
Data are provided in the catalogue of the BCCO web pages (see above, Section 4.1) under
the respective strain number. Overall, 113 sequences were obtained and used for the
construction of the tree as described elsewhere [129]; 32 sequences belong to strains in the
BCCO collection and 24 sequences belong to known polyene producers that are listed in
Table S1. The remaining ones are reference strains used for phylogenetic placement. Of the
24 sequences of known polyene producers, 15 were downloaded from the EzTaxon (access
on 4 April 2022) [130]. The 57 sequences used for phylogenetic placement were obtained
from the NCBI database (access 04/04/2022) [131]. The sequences were aligned using
Muscle (v3.8.425) [132], and the alignment was manually checked and edited to 1522 final,
informative columns. The alignment was then used to produce a 1000-replicated bootstrap
consensus maximum likelihood tree using RAxML (v8.2.11) [133]. The 16S rRNA gene
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sequence of the Amycolatopsis alba DSM44262 was used as outgroup. The tree was edited
for publication using iTOL [134].

4.3. Culture Media and Cultivation Conditions

For liquid cultures, Streptomyces strains were cultivated in 5 mL of GYM medium [135]
at 28 ◦C for 96 h if not stated otherwise. If required, the medium was supplemented with
defibrinated rabbit’s blood (7%). Paired co-cultures, i.e., two Streptomyces strains inoculated
equally into one medium, were performed for those strains in which hemolytic SMs had
not been identified from previous one-strain cultures. For hemolytic assays, Columbia
sheep blood agar (OXOID CZ s.r.o., Thermo Fisher Scientific, Brno, Czechia) was used.

4.4. Ethyl Acetate Extraction and Hemolytic Activity Testing

After centrifugation at 10,000× g at 4 ◦C for 10 min, NaCl was added to the supernatant,
up to a concentration of 5 M. Subsequently, 1 mL of ethyl acetate was added to each vial and
incubated on a shaker at 250 rpm and 4 ◦C for 30 min. Samples were centrifuged at 5000× g
for 10 min, and the upper layer of ethyl acetate was transferred to a rotary vacuum evaporator
until the sample was completely dry, followed by the addition of 10 µL of chloroform to each
sample. Subsequently, 5 µL of each sample was dropped on a blood agar plate and incubated
for 3 days with 5 µL of pure chloroform in the middle as a negative control.

4.5. Solid-Phase Extraction

The solid-phase extraction (SPE) procedure was performed as described elsewhere [136].
Briefly, each strain’s supernatant was isolated by centrifugation at 10,000× g at 4 ◦C for
10 min, and the pH was adjusted to 3–4 using formic acid (Merck, Darmstadt, Germany).
An Oasis HLB 3cc 60 mg cartridge (hydrophilic-lipophilic balanced sorbent, Waters, Mil-
ford, MA, USA) was conditioned with 3 mL methanol, equilibrated with 3 mL Milli-Q
water (Sigma-Aldrich Co. St. Louis, MO, USA), and subsequently, 3 mL of culture super-
natant was loaded. The cartridge was then washed with 3 mL of water, and the absorbed
substances were eluted with 1.5 mL of methanol.

4.6. LC-MS Analysis

The eluent of each strain was evaporated to dryness (Concentrator plus/Vacufuge®

plus, Eppendorf AG, Hamburg, Germany), and 150 µL of 50% methanol was added to
each vial. The vials were centrifuged for 5 min at 5000 rpm (Centrifuge MiniSpin, Rotor
F-45-12-11, Eppendorf AG, Hamburg, Germany) and 50 µL of each sample was then loaded
onto the LC-MS.

The analyses were performed on the Acquity UPLC system with a 2996 PDA detection
system (194–600 nm), connected to an LCT premier XE time-of-flight mass spectrometer
(Waters, Milford, MA, USA). A 5 µL aliquot of each sample was loaded onto the Acquity
UPLC BEH C18 LC column (50 mm × 2.1 mm I.D., particle size 1.7 µm, Waters, Milford, MA,
USA), kept at 40 ◦C, and eluted with a two-component mobile phase, A and B, consisting
of 0.1% formic acid and acetonitrile, respectively, at a flow rate of 0.4 mL min−1. The
analyses were performed under a linear gradient program (min/%B) 0/5; 1.5/5; 15/70;
18/99 followed by a 1.0-min column clean-up (99% B) and 1.5-min equilibration (5% B). The
mass spectrometer operated in the positive “W” mode with capillary voltage set at +2800 V,
cone voltage +40 V, dissolving gas temperature: 350 ◦C, ion source block temperature,
120 ◦C, cone gas flow 50 L h−1, dissolving gas flow 800 L h−1, scan time of 0.15 s, and
an inter-scan delay of 0.01 s. The mass accuracy was kept below 6 ppm using the lock
spray technology with leucine enkephalin as the reference compound (2 ng µL−1, 5 µL
min−1). The MS chromatograms were extracted for [M+H]+ ions with a tolerance window
of 0.05 Da, smoothed with the mean smoothing method (window size; four scans, number
of smooths, two). The data were processed by MassLynx V4.1 (Waters, Milford, MA, USA).
The original method is described elsewhere [137].
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4.7. Testing for the Presence of Extracellular Hemolytic Proteins

To test for the presence of extracellular hemolytic proteins [138], the supernatant
collected (cultured 72 h, 28 ◦C, 200 rpm, centrifuged at 4000× g, 10 min) was filtered (pore
size 5 microns) and divided into thirds. The first third of the supernatant was incubated
with proteinase K (Carl Roth, Karlsruhe, Germany) to a final concentration of 1 µg/mL
at 37 ◦C for 60 min. The second third of the supernatant was incubated under the same
conditions but without the enzyme (this sample served as a positive control as it was
expected to maintain its hemolytic activity). The third part was incubated at 100 ◦C for
5 min (a negative control as we expected a loss of any hemolytic activity). We applied
5 µL of each sample to a paper disc placed on the blood agar. The samples were cultured
overnight at 28 ◦C.

4.8. Antifungal Activity of Streptomyces

Selected Streptomyces strains were inoculated into a 1cm2 square shape in the middle
of a blood agar Petri dish and cultivated at 28◦ C. After 0, 24 h, and 72 h, clinical isolates of
Aspergillus niger, Aspergillus fumigatus, Fusarium spp., and Paecilomyces spp. were added in
lines leading to the Streptomyces square and co-cultured at the same conditions for another
72 h. The growth inhibitory zones of the fungi were then measured.

5. Conclusions

An extensive literature review on polyenes and non-polyene hemolytic compounds
produced by streptomycetes is presented. Among the secondary metabolites produced
by a set of 23 β-hemolytic Streptomyces strains, known—candicidins, filipins, strevertene
A, tetrafungin, and tetrin A—and novel—polyene AD—polyenic compounds were found.
The new compound producers were incorporated into a streptomycete phylogenetic tree
among known polyene producers. No clear relation between phylogeny and production
of specific polyene types could be revealed. The obtained results suggested that SMs are
responsible for hemolytic activities in Streptomyces spp. Their production was in some cases
inducible by GBL or by co-cultivation with other Streptomyces strains. Our data suggest
that streptomycetes may still serve as a promising source of novel SMs with antifungal
and/or hemolytic activities.
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