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Abstract: Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening.
In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung
histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These
devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically
amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor
(EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)
infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical
findings, laboratory examinations, and findings on lung high-resolution computed tomography and
lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore,
treatments that should be immediately initiated in clinical practice for each disease are illustrated to
save patients with these diseases.

Keywords: acute lung injury; acute exacerbation; idiopathic pulmonary fibrosis; anti-MDA5-antibody;
CADM; EGFR-TKI; COVID-19

1. Introduction

Interstitial lung disease (ILD) is a relatively rare pathological condition that can induce
respiratory insufficiency. In particular, rapidly progressive ILD frequently causes acute
respiratory failure and death. Notably, diffuse alveolar damage (DAD) pattern on HRCT
or on lung histopathological specimens are tied to a poor prognosis [1–4]. This rapidly
progressive ILD with a poor prognosis includes acute exacerbation of idiopathic pulmonary
fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor
receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV2) infection, named coronavirus disease 2019
(COVID-19). These devastating diseases frequently cause acute lung injury (ALI), including
DAD, although the damaged pulmonary cells, which sometimes become apoptotic, are
quite different in each disease. In this review, we focus on the specific diseases that induce
severe respiratory failure in clinical practice and the pathological roles of pulmonary cells
in ALI.

2. Acute Exacerbation of IPF

Acute exacerbation occurs within approximately one month of the clinical course of
chronic progressive ILD, such as IPF [5–7]. Three cases of AE-IPF were first reported by
Kondoh et al. in 1993 [8]. More AE-IPF occurs in Japanese patients than in Caucasian
patients [9]. Therefore, racial and genetic predispositions to AE-IPF should exist in Japanese
patients; however, this remains to be elucidated in detail. AE-IPF frequently occurs in
elderly patients with end-stage IPF [10,11]. Baseline cardiovascular diseases and higher
GAP stage (sex, age, physiology) were significant predictors of AE-IPF [10]. In patients with
AE-IPF, lung ground-glass attenuation (GGA) and consolidation opacities appear on chronic
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fibrotic opacities on high-resolution computed tomography (HRCT) within approximately
one month [5,7,12,13]. HRCT and histopathological findings of representative patients with
AE-IPF are shown in Figure 1. The appearance of AE leads to poor prognosis in a staircase
pattern [14] during the entire long-term course of IPF [15,16]. After the onset of AE, the
90-day mortality reached to 42.9–48.0% [17], and AE is one of the most frequent causes of
death and accounts for 30–40% of the causes of deaths [18,19]. AE occurs more frequently
in patients with IPF, at the rate of incidence 5.85–14.2%/person-year [15,16,20,21], than
in those with other chronic ILD [21–24]. Patients with connective tissue diseases (CTD)
experience AE-ILD at the rate of incidence 1.25-3.3%/person-year [22–24], and those with
idiopathic non-specific interstitial pneumonia (iNSIP) experience AE-NSIP at the rate of
incidence 4.2%/person-year [22]. Therefore, most of the knowledge of AE-ILD came from
studies on AE-IPF because of the high frequency of AE-ILD in patients with IPF. With
regard to CTD-ILD, AE-ILD most frequently occurs in patients with rheumatoid arthritis
(RA) compared to other CTD [11] and has a poor prognosis after the onset of AE, similar
to that in AE-IPF [11,24,25]. Furthermore, patients with unclassifiable IIP (UCIIP) also
experience AE-UCIIP and show a poor prognosis after the onset of AE, similar to that in
AE-IPF [21].

The diagnostic criteria for AE-IPF are as follows: (1) previous or concurrent diagnosis
of IPF; (2) worsening of dyspnoea typically <1 month; (3) new bilateral GGA and/or
consolidation on CT superimposed on the pattern of usual interstitial pneumonia (UIP); and
(4) deterioration not fully explained by cardiac failure or fluid overload [17]. Although these
criteria were prepared for AE of IPF, they seem to be applicable for other ILDs instead of
IPF/UIP. Furthermore, AE-IPF consists of two subtypes: idiopathic and triggered AE, which
include infection, post-operative AEs, drug toxicity, and aspiration [7]. The incidence of
AE-IPF is high in winter [26,27]. Therefore, any respiratory infection may have contributed
to the increased occurrence of AE-IPF. Torque teno virus was found by microarrays in
patients with AE-IPF, and SARS-CoV2 infection was associated with a worse prognosis
in those with AE-ILD than in AE-ILD without SARS-CoV2 infection [28]. Furthermore,
vaccines against SARS-CoV2 reportedly may have induced AE-IPF [29], although the
details remain to be elucidated. AE also occurs after events such as surgical operations [30],
including surgical lung biopsy (SLB) [31,32] and bronchoalveolar lavage [33]. Even when a
definite diagnosis of AE-IPF is not reached, suspected cases show poor prognosis, similar
to definitively diagnosed patients with AE-IPF [27]. Therefore, patients with suspected
AE-IPF should be immediately treated with steroids, similar to the treatment for AE-IPF,
with concomitant administration of antibiotics for the treatment of causative conditions.

On HRCT, new lung GGA and consolidation opacities appear on chronic fibrotic
opacities within approximately one month (Figure 1A,B) [1,5,7]. HRCT findings in AE-IPF
are divided into three groups: peripheral, multifocal, and diffuse [12]. Diffuse pattern and
large extent of alveolar opacity are significantly related to poor survival [13,34].

In lung histopathology, in addition to collagen deposition in the subpleural alveolar
wall consistent with UIP, newly appeared DAD and neutrophil infiltration to the inner
normal area are frequently seen in representative cases of AE-IPF (Figure 1C–E) [2,7].
In fact, in post-mortem autopsy specimens, a DAD pattern was observed in 78.8% of
AE-IPF cases, while 28.8% exhibited pulmonary haemorrhage, and 17.3% developed throm-
boembolism [1]. Therefore, various histopathological findings exist in AE-IPF, and cau-
tious diagnostic approaches are required for the histopathological diagnosis of AE-IPF
when lung specimens are obtained, although surgical lung biopsy is not a prerequisite for
its diagnosis.



Int. J. Mol. Sci. 2022, 23, 15027 3 of 21Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 1. Findings on HRCT and histopathological specimens of the lungs in patients with AE-IPF. 
In a 78-year-old male patient with AE-IPF, HRCT at the initial diagnosis of IPF shows subpleural-
predominant interstitial fibrosis, traction bronchiectasis (arrow) and honeycombing (arrowhead) 
(A, from Oda et al. [1] with permission). HRCT at the onset of AE-IPF (12 months after the initial 
diagnosis) shows diffuse areas of GGA superimposed on underlying fibrotic opacities (B) [1]. Au-
topsy lung specimens were from another 52-year-old male patient with AE-IPF, who died on day 8 
from the onset of AE- IPF. Hematoxylin and eosin staining shows diffuse alveolar damage with 
hyaline membrane (C, from Tanaka et al. [2] with permission). Immunohistochemical staining of 
autopsy lung specimens shows that infiltrating alveolar neutrophils are positive for S100A8 (lower 
magnification in D and higher magnification in E), which is a calcium-binding protein produced 
and released mainly by activated neutrophils [2]. More neutrophils with S100A8 existed in the al-
veolar septa than in the alveolar space. Abbreviations: HRCT, high-resolution computed tomogra-
phy; AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis; GGA, ground-glass attenuation. 

Figure 1. Findings on HRCT and histopathological specimens of the lungs in patients with AE-IPF.
In a 78-year-old male patient with AE-IPF, HRCT at the initial diagnosis of IPF shows subpleural-
predominant interstitial fibrosis, traction bronchiectasis (arrow) and honeycombing (arrowhead)
((A), from Oda et al. [1] with permission). HRCT at the onset of AE-IPF (12 months after the
initial diagnosis) shows diffuse areas of GGA superimposed on underlying fibrotic opacities (B) [1].
Autopsy lung specimens were from another 52-year-old male patient with AE-IPF, who died on day
8 from the onset of AE- IPF. Hematoxylin and eosin staining shows diffuse alveolar damage with
hyaline membrane ((C), from Tanaka et al. [2] with permission). Immunohistochemical staining of
autopsy lung specimens shows that infiltrating alveolar neutrophils are positive for S100A8 (lower
magnification in (D) and higher magnification in (E)), which is a calcium-binding protein produced
and released mainly by activated neutrophils [2]. More neutrophils with S100A8 existed in the alveolar
septa than in the alveolar space. Abbreviations: HRCT, high-resolution computed tomography; AE,
acute exacerbation; IPF, idiopathic pulmonary fibrosis; GGA, ground-glass attenuation.

As for pathogenesis of AE-IPF, related cells and molecules were summarized in Table 1.
The levels of Krebs von den Lungen-6 (KL-6) [2,21], surfactant protein-D (SP-D) [2,21],
α-defensin [35], and periostin [36,37] in the blood further increase in AE-IPF compared to
those in the chronic phase, which are produced from damaged alveolar epithelial cells, and
changes in KL-6 levels [38] or periostin [37] were significant prognostic factors in patients
with AE-ILD. In addition, lactate dehydrogenase (LDH) levels increase in AE-IPF [2,21].
Activated neutrophils play an important role in the pathogenesis of AE-ILD/IPF [16,39–41],
and the high number of neutrophils in bronchoalveolar lavage (BAL) is related to worse
prognosis [40]. Furthermore, S100A8 (MRP8) and S100A9 (MRP14), calcium-binding
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proteins produced released mainly by activated neutrophils, are significant prognostic
biomarkers (Figure 1D,E) [2]. Matrix metalloproteinase (MMP)-9, which is produced by
activated neutrophils and facilitates the permeability of lung vessels, increases at AE-
IPF [39]. In addition, interleukin-8 (IL-8) in BAL, which is related to the migration of
neutrophils, also increases in AE-IPF [41]. Activated macrophages also play a role in AE-
IPF pathogenesis. C-C motif chemokine ligand (CCL) 18, which is produced by activated
macrophages and stimulates macrophages, known as profibrotic-M2 chemokine, increases
in BAL in AE-IPF [41,42]. High levels of CCL18 in BAL [41] and higher hemosiderin scores
of macrophages [43] are predictive for the development of future AE-ILD. Furthermore,
activated macrophages produce ferritin, which is a significant prognostic factor of AE-
IPF [44]. In the chronic stage of IPF, single-cell RNA-sequencing revealed an increased
number of alveolar macrophages, dendritic cells (DC), and memory T-cells in the fibrotic
lung [45]. In collaboration with profibrotic/M2 macrophages, CD4+helper T (Th)-cells
such as Th2, Th17, and regulatory T-cell (Tregs) facilitate the profibrotic process [46]. These
reports indicate that activated macrophages play a role in the pathogenesis of IPF, not
only in the chronic stage, but also in AE-IPF. With regard to gastric aspiration and mi-
croorganisms in AE-IPF, higher levels of pepsin are found in BAL fluid in AE-IPF [47],
and corisin peptide, which is derived from Staphylococcus and induces apoptosis of lung
epithelial cells, is increased in both BAL fluid and serum in AE-IPF [48,49]. As for lung-
protective molecules, the functions of heat shock protein (HSP) 70 and thrombomodulin
have been reported. HSP70 is a functional TLR4 ligand that promotes endothelial cell
survival during lethal oxidant injury [50]. Anti-HSP70 autoantibody was detected in 70%
of patients with AE-IPF, while it was detected in 25% of those with IPF in chronic stage
and 3% of healthy controls [51]. Thrombomodulin can bind to high-mobility group pro-
tein B1 (HMGB1) and prevent HMGB1 from binding to receptors for advanced glycation
end-products (RAGE), consequently suppressing inflammation [52,53]. Thrombomodulin
decreased [52,53], whereas HMGB1 increased [52,54,55] in AE-IPF. Adipocytes produce
more adipokines in AE-IPF, such as adiponectin and leptin, and the adiponectin/leptin ratio
is a significant prognostic marker for AE-IPF [56]. Other biomarkers for the prediction of
AE-IPF appearance include a decrease of 10% or more in the percent predicted forced vital
capacity (%FVC) within 6 months and baseline AaDO2 [57]. Other prognostic biomarkers
for patients with AE-IPF include the baseline PaO2/FiO2 (P/F) ratio at AE [16,34], low
baseline FVC and diffusion lung capacity for carbon monoxide (%DLCO) [26], C-reactive
protein (CRP) [34], delay before initiating therapy [26], ∆P/F ratio 2 days after commence-
ment of treatment for AE, and ∆LDH 2 days after commencement of AE treatment [58].
Recently, a risk-scoring system that predicts 3-month mortality has been reported [34]. This
risk scoring system (PCR index) includes the P/F ratio, CRP level, and HRCT pattern, and
this system could have well-segregated the prognosis of patients with AE-IPF [34].

As for treatments, AE-IPF may be treated with corticosteroids [59]; however, immuno-
suppressive therapy is often harmful in the chronic phase of IPF [60]. Steroid pulse therapy
is frequently used as the initial therapy for AE-IPF, although evidence for this therapy is not
strong enough. The addition of cyclophosphamide [25,61] or recombinant thrombomod-
ulin [62] did not improve the survival of AE-IPF patients [62]. In contrast, a retrospective
study showed that the use of antifibrotic agents (pirfenidone or nintedanib) improved
the survival of patients with AE-IPF [63]. Furthermore, longitudinal use of nintedanib
suppresses AE-IPF [64]. Therefore, antifibrotic agents should be a prerequisite underlying
treatment for both acute and chronic stages in patients with IPF. As mentioned previously,
activated neutrophils play an important role in the pathogenesis of AE-IPF [16,39,40]. Retro-
spective studies have reported that long-duration (6 h or more) direct hemoperfusion with
a polymyxin B-immobilised fibre column (PMX-DHP) removed activated neutrophils [39]
and significantly improved survival in patients with AE-IPF [58,65–67]. Furthermore, early
commencement of long-duration PMX-DHP was effective in improving the survival of
AE-IPF patients compared to later commencement of PMX-DHP [68,69]. PMX-DHP for
AE-IPF is promising, but larger prospective studies are needed.
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Table 1. Cells and molecules related with a pathogenesis of each disease.

Alveolar
Epithelial Cell

Injury

Lung
Endothelial
Cell Injury

Activated
Alveolar

Macrophage
DC Lymphocyte Monocyte Activated

Neutrophil Other Cells
Histopathological

Patterns and
Other Findings

AE-IPF

KL-6↑, SP-D↑
α-defensin↑
Periostin↑
Corisin↑

(staphylococ-
cus)

Pepsin↑,
HMGB1↑

Apoptosis↑

HSP70↓
Thrombomodulin↓

CCL18↑
Ferritin↑

Hemosiderin
score↑

HMGB1↑

DC↑ Memory T
cells↑

S100A8↑
S100A9↑
MMP9↑

IL-8↑

Adiponectin↑
Leptin↑

DAD
Pulmonary

haemorrhage
Thromboembolism

CADM-
ILD YKL-40↑

Anti-MDA5
ab↑

Ferritin↑,
YKL-40↑

Chitotriosidase↑
CD163↑,
CD206↑
CCL2↑

Interferon β↑
Hemophagocytic

score↑

Lymphocyte↓
(H-Ferritin↑,

TIM2)

Monocytes↓
(H-Ferritin↑,

TIM2)
CCL2↑ IFIT3↑

Chitotriosidase↑
IL-8↑ DAD

EGFR-
TKI-

induced
lung

injury

HSP70↓
Apoptosis↑

Mitochondrial
ROS↑

NLRP3↑,
IL-1β↑

HMGB1↑
Pyroptosis↑

Neutrophils↑ DAD

COVID-19
and ILD

Direct invasion
of virus

PANoptosis↑

Direct invasion
of virus

PANoptosis↑
Thrombosis↑

Plasmacytoid
DC↓

Myeloid DC↓

Direct invasion
of virus

Lymphocytes↓
Mitochondrial

ROS↑,
NLRP3↑

PD-1↑, PDL-1↑
CXCR6↓,
TNFα↑
IFNγ↑

PANoptosis↑

Monocytes↓
Mitochondrial

damage↑
PD-1↑, PDL-1↑

S100A8↑
S100A9↑
NETs↑

DAD
Thrombosis

Abbreviations: AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis; CADM, clinically amyopathic dermato-
myositis; ILD, interstitial lung disease; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor;
COVID-19, coronavirus disease 2019; DC, dendritic cell; KL-6, Krebs von den Lungen-6; SP-D, surfactant protein-
D; HMGB1, high mobility group box protein1; HSP, heat shock protein; MMP, matrix metalloproteinase; DAD,
diffuse alveolar damage; TIM, T-cell immunoglobulin and mucin domains; IFIT, interferon-induced protein with
tetratricopeptide repeats; ROS, reactive oxygen species; NLRP, NLR family pyrin domain-containing protein;
NETs, neutrophil extracellular traps. “↑” means the increased concentration or numbers of the indicated molecules
or cells. “↓” means the decreased concentration or numbers of the indicated molecules or cells.

3. Clinically Amyopathic Dermatomyositis-Related ILD

Connective tissue diseases (CTD) sometimes show lung involvement such as ILD,
pulmonary hypertension, bronchiolitis, bronchiectasis/bronchiolectasis, and serositis, in-
cluding pleuritis/pericarditis, depending on the CTD [70]. These lung involvements lead
to a wide variety of lung opacities on HRCT and histopathological findings in lung speci-
mens. As for prognosis, particularly the presence of ILD or pulmonary hypertension, is
associated with poor survival [71–73]. However, the prognosis of patients with CTD-ILD
is significantly better than that of IPF patients [74]. CTD-related ILD is frequently seen in
patients with systemic sclerosis (SSc) or in those with polymyositis (PM)/dermatomyositis
(DM) [70], and ILD accounts for 35% of the causes of death in SSc [71], 48% in PM/DM [73],
and 11% in rheumatoid arthritis (RA) [75]. PM/DM-ILD progresses more rapidly [76,77]
than SSc-ILD [78] in many cases. Patients with PM/DM-ILD with acute/subacute onset
show poorer survival than those with chronic onset [76,79,80]. In addition, DM-ILD shows
worse survival than PM-ILD, and clinically amyopathic DM (CADM)-ILD has an even
worse prognosis than DM-ILD or PM-ILD [77]. The definition of CADM includes both
amyopathic and hypomyopathic DM [81]. Basic and clinical studies on disease-related
antibodies have progressed in the field of myositis, and there are two major categories
of autoantibodies: myositis-specific antibodies and myositis-associated antibodies [82].
The former includes anti-melanoma differentiation-associated gene (MDA) 5 antibody
(previously called anti-CADM 140 antibody) and anti-amynoacyl-tRNA synthetase (ARS)
antibodies. These two antibodies are exclusive and closely related to ILD rather than to
myositis, although the prognoses differ widely among patients with each antibody. DM-ILD
with anti-ARS antibody progresses slowly and responds well to corticosteroids; however,
recurrence is not rare [80,83,84]. In contrast, DM-ILD with anti-MDA5 antibody progresses
rapidly, is refractory to corticosteroid therapy, and shows poor survival [80,83–86]. MDA5
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is a retinoic acid-inducible gene-I (RIG-I) family of intracellular viral sensors, and the
positive rates of anti-MDA5 antibodies have been reported as 14.5–21.5% in DM [87,88]
and 25% in PM/DM [80].

In patients with PM/DM and anti-MDA5 antibody, 53.3–82% of them have
CADM [80,88–90], 94–95% have ILD [88,89], and 71–84% show rapidly progressive ILD [88]
or acute/subacute (within 3 months) onset of ILD [80], which has a poor prognosis. Many
patients with anti-MDA5 antibody live near the waterfront, and DM-ILD with anti-MDA5
antibody develops predominantly in October-March [90,91]. The exact reason for this is
still unknown; however, MDA5 is known to recognise RNA viruses, and the induction of
anti-MDA5 antibodies may be related to viral infection.

HRCT findings of DM-ILD with anti-MDA5 antibody are mainly consolidation/GGA
and random GGA in lower lung field, and these opacities occupied 83.3% of all cases [92]
(Figure 2A,B). Furthermore, 60% of these patients with such opacities on HRCT died despite
intensive immunosuppressive treatments [92] (Figure 2C,D). Similarly, the HRCT findings
of anti-MDA5 antibody-positive cases are mainly consistent with the unclassifiable pattern
of IIPs (66.7%) [80]. As for lung histopathological pattern, five of six cases of DM or CADM
had a DAD pattern, and all these patients with DAD died of the progression of ILD [3].
Similarly, seven of nine patients with CADM-ILD with anti-MDA5 antibody had DAD in
the lung histopathological specimens [93].

As for pathogenesis of CADM-ILD, related cells and molecules were summarized in
Table 1. Activated macrophages play a key role in the pathogenesis of CADM-ILD with
anti-MDA5 antibody. Patients with CADM-ILD and anti-MDA5 antibody exhibit activated
alveolar macrophages producing ferritin, similar to cells in the bone marrow, liver, and
spleen [94]. These findings look similar to macrophage activation syndrome with hyperfer-
ritinemic syndrome [95]. In DM-ILD, increased serum ferritin levels negatively correlate
with the P/F ratio [96], and patients with higher ferritin levels show a significantly worse
survival and serum ferritin level is a significant prognostic factor [96,97]. In addition, in
patients with DM-ILD and anti-MDA5 antibody, high macrophage hemophagocytic scores
are related to higher ferritin levels [98]. The serum level of CD206, which is preferentially
expressed on the surface of alternatively activated (M2) macrophages, was significantly in-
creased in patients with CADM/DM-ILD and anti-MDA5 antibody [97]. M2 macrophages
are closely related to tissue repair and fibrosis and the interaction between M2 macrophages
and alveolar epithelial cells may be crucial [99]. Similarly, CD163 is also expressed on alve-
olar macrophages, especially on M2 macrophages [100], and serum levels of soluble CD163
are significantly higher in patients with DM-ILD than in those with PM or without ILD [101].
Furthermore, serum chitotriosidase [102], which macrophages/neutrophils produce, and
YKL-40 [103], which is a chitinase family and macrophages/epithelial cells produce, in-
creased in PM/DM-ILD, especially in DM-ILD with anti-MDA5 antibody. As for prognosis
related with above mentioned molecules, higher level of serum ferritin [96,97], CD206 [97],
CD163 [104], chitotriosidase [102], YKL-40 [103], and hemophagocytic scores [98] are tied
to a poor prognosis. Taken together, as indicated above, activated macrophages contribute
to the pathophysiology of DM-ILD with anti-MDA5 antibody. The role of monocytes in
this process has also been investigated. CCL2 and interferon-induced protein with tetratri-
copeptide repeats (IFIT) 3 mRNA expression in monocytes and serum CCL2 and interferon
(IFN)-β levels are increased in patients with DM-ILD and anti-MDA5 antibody [105]. In ad-
dition, serum CCL2 levels are significantly higher in patients with DM-ILD and anti-MDA5
antibody [106]. Both macrophages and monocytes produce CCL2, and the migration of
monocytes to the lungs, depending on CCL2, may play a role in the pathogenesis of DM-
ILD with anti-MDA5 antibody. In contrast, low circulating lymphocytes and monocytes are
found in patients with DM-ILD and anti-MDA5 antibody [107]. In addition, higher serum
CCL2 levels [106] and the lower numbers of lymphocytes and monocytes in peripheral
blood [107] are associated with a poor survival. The H-ferritin subunit can inhibit lymphoid
and myeloid cell proliferation via the T-cell immunoglobulin and mucin domains (TIM)
2 [100,108]. Therefore, H-ferritin produced by macrophages may be related to lower lym-
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phocyte and monocyte counts in blood in patients with DM-ILD and anti-MDA5 antibody.
Other immune cells and cytokines, such as neutrophils [109] and IL-8 [109,110], are also
associated with a poor prognosis in patients with DM-ILD and anti-MDA5 antibody.
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Figure 2. HRCT findings of the lungs in a patient with DM-ILD with anti-MDA5 antibody. A forty-
four-year-old male patient with DM-ILD was positive for anti-MDA5 antibody. At diagnosis, pe-
ripheral and peribronchovascular consolidations are observed (arrowheads). Interlobular septal 
thickening and non-septal linear or plate-like opacities are also seen (arrows) (A,B, from Tanizawa 
et al. [92] with permission). Despite treatments for 6 weeks, severe respiratory failure developed, 
requiring mechanical ventilation. Diffuse GGA and consolidation with air bronchograms are ex-
tended in the whole lungs (C,D) [92]. Surveillance at this point revealed no evidence of infection. 
The patient died of respiratory failure one week later. Abbreviations: HRCT, high-resolution com-
puted tomography; DM, dermatomyositis; ILD, interstitial lung disease; MDA, anti-melanoma dif-
ferentiation-associated gene; GGA, ground-glass attenuation. 
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Table 1. Activated macrophages play a key role in the pathogenesis of CADM-ILD with 
anti-MDA5 antibody. Patients with CADM-ILD and anti-MDA5 antibody exhibit acti-
vated alveolar macrophages producing ferritin, similar to cells in the bone marrow, liver, 
and spleen [94]. These findings look similar to macrophage activation syndrome with hy-
perferritinemic syndrome [95]. In DM-ILD, increased serum ferritin levels negatively cor-
relate with the P/F ratio [96], and patients with higher ferritin levels show a significantly 
worse survival and serum ferritin level is a significant prognostic factor [96,97]. In 

Figure 2. HRCT findings of the lungs in a patient with DM-ILD with anti-MDA5 antibody. A
forty-four-year-old male patient with DM-ILD was positive for anti-MDA5 antibody. At diagno-
sis, peripheral and peribronchovascular consolidations are observed (arrowheads). Interlobular
septal thickening and non-septal linear or plate-like opacities are also seen (arrows) ((A,B), from
Tanizawa et al. [92] with permission). Despite treatments for 6 weeks, severe respiratory failure
developed, requiring mechanical ventilation. Diffuse GGA and consolidation with air bronchograms
are extended in the whole lungs (C,D) [92]. Surveillance at this point revealed no evidence of infec-
tion. The patient died of respiratory failure one week later. Abbreviations: HRCT, high-resolution
computed tomography; DM, dermatomyositis; ILD, interstitial lung disease; MDA, anti-melanoma
differentiation-associated gene; GGA, ground-glass attenuation.

In terms of therapy, when PM/DM-ILD is slowly progressive with chronic onset
without anti-MDA5 or anti-ARS antibodies, corticosteroids alone may be sufficient for
treatment. However, when anti-MDA5 or anti-ARS antibodies are positive or patients show
acute/subacute onset, corticosteroids and calcineurin inhibitors (tacrolimus or cyclosporine
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A) should be administered [111,112]. Furthermore, patients with acute/subacute onset
and anti-MDA5 antibody or patients with rapidly progressive ILD should be treated with
corticosteroids, calcineurin inhibitors, and intravenous cyclophosphamide (IVCY) [113,114].
This triple combination therapy significantly improves survival compared to historical
controls [115]. However, triple combination therapy significantly increases the incidence
of serious infections [115], with an odds ratio of 5.51 [116]. Therefore, overtreatment
should be avoided in DM-ILD patients without rapidly progressive ILD or anti-MDA5
antibody [113,114]. Moreover, if DM-ILD is refractory to the above-mentioned treatments,
intravenous immunoglobulin (IVIG) should be considered [117,118]. Finally, when DM
or CADM-ILD progress despite appropriate treatment, this type of ILD is recently called
progressive fibrosing (PF)-ILD [119] or progressive pulmonary fibrosis (PPF) [59]. If pro-
gressive cases meet the criteria for PF-ILD or PPF, patients with DM or CADM-ILD should
be treated with an anti-fibrotic agent (nintedanib) [119] following the above-mentioned
immunosuppressive treatments.

4. EGFR-TKI-Induced Lung Injury

The number of patients with drug-induced lung injury (DLI) has increased with
the development of new medicines. Especially in Japan, the number of DLI has strik-
ingly increased since 2000 [120], and the representative causative drugs are EGFR-TKIs
against non-small cell lung cancer (NSCLC), including gefitinib [4] and erlotinib [121],
and antirheumatic drugs including leflunomide [122]. In the 2000s, severe DLI and death
due to gefitinib were frequently reported [4] which was soon a serious public concern in
Japan [120]. Gefitinib-induced lung injury was observed in 5.8% of Japanese patients with
NSCLC, and the mortality rate was 38.6% [120]. The incidence of gefitinib-induced lung in-
jury was higher than that of chemotherapy within the first four weeks (odds ratio, 3.2 [123].
Furthermore, erlotinib-induced lung injury was found in 4.3% of Japanese NSCLC patients,
and the mortality rate was as high as 35.7% [121]. Risk factors for the development of EGFR-
TKI-induced lung injury include the presence of comorbid ILD, smoking history, male sex,
and performance status of two or more [120]. In particular, the presence of preceding ILD
and smoking history are common risk factors for EGFR-TKIs [120] and leflunomide [122].
Moreover, the presence of preceding ILD was related to increased mortality in EGFR-TKI-
induced lung injuries [123]. Therefore, screening for preceding ILD using chest HRCT
before initiating EGFR-TKI therapy is important to prevent DLI and DLI-induced death
in clinical practice. Japanese patients are predisposed to EGFR-TKI-induced lung injury
compared to people of non-Japanese origin [124], and the odds ratio of all pneumonitis was
5.04 and that of grade 5 pneumonitis (death) was 4.55 [124]. Additionally, the frequency
of EGFR-TKI-induced lung injury was not significantly different between Asian and non-
Asian populations but was significantly higher in Japanese than in non-Japanese Asians
(odds ratio 12.7) [125].

The HRCT patterns of DLI consist of five patterns: DAD, NSIP, organising pneumonia
(OP), hypersensitivity pneumonitis (HP), and acute eosinophilic pneumonia (AEP) [126].
A CT image of the gefitinib-induced lung injury is shown in Figure 3A [4]. This case
shows extensive diffuse GGA consistent with a DAD pattern. In this way, when patients
show a DAD pattern on HRCT, they have the lowest P/F ratio, and the steroid cumulative
dose is highest among these five patterns [126]. Patients with a DAD pattern on HRCT
show significantly higher serum KL-6 levels, and those with more opacities on HRCT have
higher serum KL-6 levels [127]. BAL in DAD includes many neutrophils [120]. In terms
of EGFR-TKI-induced lung injury, patients frequently show DAD patterns on both HRCT
(Figure 3A) and histopathology (Figure 3B), and many patients with a DAD pattern have a
poor prognosis [4,120], with a mortality rate of approximately 40% [121]. Therefore, careful
attention should be paid when patients with EGFR-TKI-induced lung injury exhibit a DAD
pattern on HRCT. Moreover, infections such as pneumocystis pneumonia should be ruled
out, especially when patients are immunocompromised or treated with corticosteroids,
immunosuppressants, or biological agents [128].
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Figure 3. CT and histopathology of EGFR-TKI-induced lung injury. A 61-year-old male with lung
adeno carcinoma received gefitinib. This case showed extensive diffuse GGA consistent with a DAD
pattern on CT ((A), from Inoue et al. [4] with permission). Another 85-year-old male with lung
squamous carcinoma and IPF received thoracic irradiation and gefitinib. A lung histopathological
specimen with haematoxylin and eosin staining shows DAD pattern (B) [4]. This case died of rapidly
progressive respiratory failure despite treatments with high-dose corticosteroids. Abbreviations: CT,
computed tomography; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; GGA,
ground-glass attenuation; DAD, diffuse alveolar damage.

In the pathogenesis of EGFR-TKI-induced lung injury, related cells and molecules
were summarized in Table 1. Gefitinib induces lung inflammation via the production
of IL-1β, and the release of HMGB1 from macrophages further leads to the death of
macrophages [129,130]. This inflammation and subsequent programmed cell death is
known as pyroptosis [129]. Gefitinib causes mitochondrial damage and mitochondrial
reactive oxygen species (ROS) production. Mitochondrial ROS then activate the NLR family
pyrin domain-containing protein (NLRP) 3 inflammasome and facilitate the production of
IL-1β [129,130]. Furthermore, mitochondrial ROS induce DNA damage and facilitate the
release of HMGB1, which can initiate a positive feedback loop of NLRP3 inflammasome
signalling, leading to excessive inflammation [129,130]. In contrast, HSP70 protects lungs
against pulmonary fibrosis, and administration of gefitinib suppresses the expression of
HSP70 in the lungs and facilitates pulmonary fibrosis in a rodent model [131]. As written
in the part of AE-ILD, HSP70 is a functionally TLR4 ligand during lethal oxidant injury
that promotes endothelial cell survival [50]. Anti-HSP70 autoantibodies were detected in
70% of patients with AE-IPF compared to 3% of healthy controls [51]. Administration of
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geranylgeranylacetone, an inducer of HSP70, decreases lung inflammation and apoptosis
of lung cells and further suppresses bleomycin-induced pulmonary fibrosis [132]. Further-
more, administration of geranylgeranylacetone suppresses gefitinib-induced exacerbation
of pulmonary fibrosis [131]. Therefore, given these basic experimental results, the admin-
istration of NLR3-inhibitor, neutralising antibody of IL-1β, papaverine as an inhibitor of
HMGB1 [130], and geranylgeranylacetone may be promising for the future treatment of
EGFR-TKI-induced lung injury.

5. COVID-19 and ILD

SARS-CoV2 is an enveloped positive-sense single-stranded RNA virus. The SARS-
CoV2 outbreak occurred in Wuhan at the end of 2019 and spread worldwide thereafter. This
infection by SARS-CoV2 was named COVID-19 and was declared to be a pandemic in March
2020 by the World Health Organization (WHO). As of October 2022, more than 613 million
people have been infected with SARS-CoV2 and more than 6.5 million deaths have oc-
curred worldwide (information on WHO COVID-19 dashboard: https://covid19.who.int).
COVID-19 is now the most frequent infectious disease in the world far exceeding the preva-
lence of tuberculosis. The excess mortality rate exceeded 300 deaths per 100,000 people
in 21 countries from January 2020 to December 2021 [133]. Notably, the mortality risk
was higher in the Delta variant pandemic period than in the Omicron variant period [134].
Although the clinical presentation of COVID-19 is highly variable, some patients experience
hypoxaemia without discomfort, which is called “silent hypoxemia” [135]. Thereafter, in
some cases, COVID-19 causes severe acute respiratory distress syndrome (ARDS), par-
ticularly in patients with risk factors such as older age, male sex, cardiovascular disease,
chronic respiratory disease, diabetes, obesity, and hypertension [136,137]. Patients with
pre-existing ILD, such as IPF, RA-ILD, or SSc-ILD, show worse survival than those with-
out pre-existing ILD [138]. Furthermore, patients with COVID-19-related AE-ILD have
a worse prognosis than those without COVID-19 [28]. In patients without pre-existing
ILD, those with COVID-19 ARDS have a higher body mass index and longer duration
of mechanical ventilation than those with non-COVID-19 ARDS; however, 60-day mor-
tality is similar [139]. In addition, thromboses such as pulmonary embolism and venous
thromboembolism, which may be related to hypoxia, occur more frequently in COVID-19
especially in severe COVID-19 cases than in other infectious pneumonia or in mild to mod-
erate COVID-19 cases, with an incidence of 9.5–30% [140–142]. Microthrombi in capillaries
are found in fatal COVID-19-associated lung injuries [143]. On HRCT, multiple GGA, crazy
paving patterns, and consolidation are seen in the peripheral or peribronchiolar lung area
in many cases with COVID-19 [142,144] (Figure 4). These findings on HRCT change over
time by phases (Figure 4A, early phase; B, 10 days later; and C, another 7 days later) [142],
and the more diffuse extent of the findings on CT is associated with higher severity of
COVID-19 [142]. Moreover, pulmonary vessel enlargement is observed in or adjacent to
GGA and consolidation [142,145] (Figure 4D). Hypoxic pulmonary vasoconstriction (HPV)
may be impaired due to endothelial damage caused by SARS-CoV-2 infection and may be
related to pulmonary vessel enlargement on HRCT [137,146]. In addition, as mentioned
above, thromboses such as pulmonary embolism are seen in severe COVID-19 patients
(Figure 4E,F) [142]. In autopsy lung specimens of patients with fatal COVID-19, DAD
patterns with excessive thrombosis and injury to alveolar epithelial cells/endothelial cells
have been observed [137,147,148].

https://covid19.who.int
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Figure 4. HRCT of the lungs in COVID-19. On HRCT, multiple GGA, crazy paving patterns, and
consolidation are seen in peripheral or peribronchiolar lung area in many cases with COVID-19.
These findings on HRCT change over time by phases, such as multiple GGA in the early phase (A),
crazy paving appearance 10 days after the onset of symptoms in the progressive to peak phase (B),
and multifocal consolidation with mild parenchymal distortion another 7 days later in absorption
phase (C) (from Larici et al. [142] with permission). CT showing the presence of “enlarging vessel”
sign within the areas of increased lung density (arrows, (D)) [142]. Acute pulmonary embolism is
seen in severe COVID-19 patients (arrowhead, (E,F)) [142]. Abbreviations: HRCT, high-resolution
computed tomography; COVID-19, coronavirus disease 2019; GGA, ground-glass attenuation.

SARS-CoV-2 invades human cells, including alveolar epithelial cells, vascular endothe-
lial cells, and lymphocytes, via the angiotensin-converting enzyme (ACE) 2 receptor [149]
and CD147 [150]. In the pathogenesis of COVID-19 and ILD, related cells and molecules
were summarized in Table 1. Cellular senescence and mitochondrial dysfunction play
important roles [149]. Mitochondrial dysfunction and apoptosis are observed in lym-
phocytes, especially T cells, which are important for protection from SARS-CoV-2 [151],
and are related to lymphocytopenia in patients with COVID-19 [150,152,153]. Mitochon-
drial ROS and subsequent activation of the NLRP3 inflammasome appear to be related
to severe respiratory failure in coronavirus infection [154,155]. Furthermore, abnormal
mitochondrial ultrastructure and increased expression of inhibitory checkpoints, such as
programmed death-1 (PD-1) and its ligand (PD-L1), are found in monocytes in patients
with COVID-19 [156]; and non-classical monocytes are further decreased in those with
severe COVID-19 [157]. In line with these reports, T cells also show higher levels of the
exhausted marker PD-1 and reduced expression of CXCR6 [158], which is important for
the localisation of resident memory T cells, and the number of CD4+ and CD8+ T cells is re-
duced [159,160]. Moreover, the reduction in CD4+ and CD8+ T cells is negatively correlated
with survival in patients with COVID-19 [160]. Additionally, cytokine production and reac-
tivation of SARS-CoV-2 specific CD8+ T cells are inhibited in severe COVID-19 cases [161].
Similarly, apoptosis in plasmacytoid dendritic cells (DC) [162] and the decreased number
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of plasmacytoid DC and myeloid DC are found in patients with COVID-19 [163], which
may be related to the impaired protective function by type 1 IFN. Additionally, neutrophils
accumulate in the lungs, and calprotectin (S100A8/S100A9), which is a calcium-binding
protein mainly produced from activated neutrophils, promotes inflammation [164] and
increases in blood in patients with severe COVID-19 [157]. Neutrophils and neutrophil
extracellular traps (NETs) are abundantly present in seriously damaged COVID-19 lung
tissue [143], similar to ALI in influenza pneumonitis [165]. Regarding lung cell death,
SARS-CoV-2 proteins and induced cytokines lead to PANoptosis consisting of apoptosis,
pyroptosis, and necroptosis in the same cell population, which is a unique inflammatory
programmed cell death [155,166]. SARS-CoV-2-induced synergistic effect of tumor necrosis
factor (TNF)-α and IFN-γ causes PANoptosis [166]. Additionally, SARS-CoV-2-induced
activation of caspase-8 causes apoptosis [167]. In this pathway, phosphorylation of receptor-
interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) also
induces necroptosis [167] and facilitates inflammation via IL-1β, which may be related to
COVID-19-induced ARDS. In fact, serum level of RIPK3 is significantly higher in severe
COVID-19 cases than in mild cases [168]. Furthermore, the open reading frame (ORF) 3a, a
SARS-CoV-2 accessory viroprotein, induces apoptosis via activation of caspase-8 [169] or
enhances pyroptosis of infected cells [155].

In terms of prophylaxis, newly developed messenger RNA (mRNA) vaccines not
only significantly reduce the number of infected patients [170,171], but also decrease
the severity of COVID-19, although the efficacy rates to prevent infection decreased in
the Omicron variant pandemic period in 2022 [134,172]. As for treatments, early use
of antiviral medicines and late use of corticosteroids seem to be beneficial [173]. As of
October 2022, in the viral replication phase, starting nirmatrelvir/ritonavir [173,174] or
Molnupiravir [175] within 3–5 days of symptom onset reduce the risk of hospitalisation or
death. Baricitinib [176], a Janus kinase (JAK) inhibitor, or Baricitinib with remdesivir [177]
reduces the time to recovery or 28-day mortality, however, remdesivir alone does not reduce
28-day mortality [178]. Monoclonal antibodies target spike proteins and decrease symptom
duration and mortality against the Delta variant but not against the Omicron variant, except
for sotrovimab [173]. In the inflammatory phase, 6 mg/day of dexamethasone for 10 days
decreases 28-day mortality in hospitalised patients with severe COVID-19 [179], although
a higher dose of methylprednisolone may also be effective. Tocilizumab [180], an IL-6
receptor antagonist, and prophylactic anticoagulation [173] are also effective in critically ill
patients with COVID-19.

6. Conclusions

In this review, four diseases, AE of IPF, CADM, EGFR-TKI-induced lung injury, and
COVID-19, which lead to rapid progressive ILD and respiratory failure, are reviewed.
All these conditions have poor prognoses and frequently show ALI, including DAD, on
HRCT and lung histopathological specimens. However, pathological cells in the lungs,
which are mainly impacted and sometimes become apoptotic, are quite different in each
disease. These cells include alveolar epithelial cells, pulmonary vascular endothelial cells,
alveolar macrophages, lymphocytes, and neutrophils, which play important roles in the
pathogenesis of various diseases. Therefore, attending doctors should carefully monitor
patients with these diseases to check their clinical information, physical findings, laboratory
examinations, and lung HRCT findings, and immediately initiate proper treatments to save
these patients. Further novel medical developments that prevent and treat these diseases
will be desired in the future.
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