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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity,
and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate
metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the
metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data. First, we
identified diverse cell types, including tumor cells and other cell types. Next, we grouped tumor cells
into three sub-populations according to scMetR score, including metastasis-featuring tumor cells
(MFTC), transitional metastatic tumor cells (TransMTC), and conventional tumor cells (ConvTC). We
identified metastatic signature genes (MSGs) through comparing MFTC and ConvTC. Functional
enrichment analysis showed that up-regulated MSGs were enriched in multiple metastasis-associated
pathways. We also found that patients with high expression of up-regulated MSGs had worse
prognosis. Spatial mapping of MFTC showed that they are preferentially located in the cancer
and duct epithelium region, which was enriched with the ductal cells’ associated inflammation.
Further, we inferred cell–cell interactions, and observed that interactions of the ADGRE5 signaling
pathway, which is associated with metastasis, were increased in MFTC compared to other tumor
sub-populations. Finally, we predicted 12 candidate drugs that had the potential to reverse expression
of MSGs. Taken together, we have proposed scMetR to estimate metastatic risk in PDAC patients at
single-cell resolution which might facilitate the dissection of tumor heterogeneity.

Keywords: single-cell RNA sequencing; spatial transcriptomics; pancreatic ductal adenocarcinoma;
metastasis; drug prediction

1. Introduction

Pancreatic cancer (PC) is one of the most devastating cancers, whose five-year survival
rate is less than 5%. Approximately 90% of PC patients are pancreatic ductal adenocarci-
noma (PDAC) [1,2]. PDAC has a high capacity for metastatic dissemination to other organs,
which will lead to poor prognosis [3]. Surgical resection remains the only potentially
curative therapy. However, tumor cells have already distally metastasized when most
patients are diagnosed, in which case surgical therapy is not recommended [4].

Tumor cell distal metastasis is a multi-step process including local invasion, intravasa-
tion, survival in the blood circulation, extravasation, adaptation to survival in the new mi-
croenvironment, and finally colonization and outgrowth in distant organs [5,6]. Epithelial-
mesenchymal transition (EMT) plays an important role in metastasis. During EMT, cells
will increase their migratory capacity and lose their epithelial cell–cell adherens junction. In
distant organs, mesenchymal-epithelial transition (MET), which is the reversion of EMT, is
apparent. MET will make tumor cells return to an epithelial morphology, which is beneficial
to PDAC cells invading the surrounding tissues [1,4,7,8]. Therefore, metastasis-featuring
cells may exist in primary tissue and distant organs. A prior study reported that the dif-
ferentiation status of tumor cells is also related with metastasis. An immature tumor is
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more aggressive than its more differentiated counterpart. Poorly differentiated tumors
tend to spread faster than well-differentiated tumors [9,10]. PDAC displays intra-tumoral
heterogeneity in distinguishable features, which makes it rather challenging to evaluate its
metastatic risk.

Single-cell RNA sequencing (scRNA-seq) is a powerful technique to reveal intra-
tumoral heterogeneity and could be used for exploring the unbiased and systematic char-
acterization of the distinct cell populations that present in tumor tissue [11–13]. Some
studies evaluated the metastatic risk of a tumor based on clinical, histological and genomic
features [14,15]. However, those studies could not be applied to single-cell transcriptomics.

A previous study profiled primary and metastatic PDAC using scRNA-seq [16]. By
conducting an analysis of this dataset, we identified major cell types in PDAC and dissected
the PDAC tumor heterogeneity. We established scMetR to estimate the metastatic risk
of tumor cells, and found heterogeneous sub-populations in tumor cells with different
metastatic risks. Further, we identified metastatic signature genes (MSGs) and validated the
metastatic risk of tumor sub-populations from multiple perspectives, including functional
enrichment, prognosis of patients, spatial expression patterns of metastasis-associated
genes, spatial location of tumor sub-populations, and cell–cell communication. The above
discoveries were reproducible in an independent scRNA-seq dataset. Finally, through drug
prediction based on MSGs, we found some candidate inhibitors of metastasis (Figure 1).
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Figure 1. Analysis workflow for pancreatic ductal adenocarcinoma (PDAC) data.

2. Results
2.1. Major Cell Types in PDAC Primary and Metastatic Patients

To explore the cellular diversity in primary and metastatic samples, we accessed a
published dataset, which profiled 10 primary patients and 6 metastatic patients using
scRNA-seq [16]. After initial quality control, we acquired single-cell transcriptomes in
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a total of 8201 cells from primary samples and 7332 cells from metastatic samples. We
applied a principal component analysis (PCA) on highly variable genes (HVGs) across all
cells. Then, cells were visualized by t-distributed stochastic neighbor embedding (t-SNE).
We found that the cells were grouped primarily by samples, which suggested that the
batch effects between samples existed in the cells (Figure 2A) and would confound key
biological variations of PDAC. Therefore, we integrated all samples to correct the batch
effects. Then, we checked the sample distribution of the integrated data and found an
unbiased distribution of most cells (Figure 2A and Figure S1A). Unsupervised clustering
using Seurat (V3.2.2) revealed seven clusters (Figure S1B), which were annotated as tumor
cell, cancer associated fibroblast (CAF), T cell, and macrophage (Figure 2B). To define the
identity of each cell cluster, we generated cluster-specific marker genes by performing a
differential gene expression analysis. Some well-known marker genes were used to identify
cell types, such as EPCAM and KRT19 for tumor cell, COL1A1 and ACTA2 for CAF, CD3D
and CD3E for T cell, and CD68 and CD14 for macrophage [12,16,17] (Figure 2C,D and
Figure S1C,D). The marker genes of different cell types contained those known maker genes
which had high expression levels in the corresponding cell types. This suggested that the
annotation of cells was right. To further verify the assignment of tumor cells, we performed
an inferred gene copy number analysis using inferCNV [18]. When using the expression
profiles of normal epithelial cells from the Genome Sequence Archive (GSA) as reference,
the copy number profiles inferred from the tumor cells showed substantial copy number
variation (CNV) (Figure 2E), which was consistent with the fact that PDAC tumor cells
were highly aneuploidy with numerous copy number alterations (CNA) [12,16,19].
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Figure 2. Cell composition of pancreatic ductal adenocarcinoma (PDAC). (A) t-distributed stochastic
neighbor embedding (t-SNE) plot for distinct patients. Cells are colored according to patients before
(left) and after (right) integration. (B) t-SNE plot of 4 major cell types identified in primary and
metastatic PDAC. (C) Heatmap of specific markers in each cell type. (D) Violin plots of expression for
well-known markers. The y-axis shows the expression level. (E) Heatmap of inferred copy number
variation (CNV) across normal epithelial cells and tumor cells.

2.2. Heterogeneity in Tumor Cells

It is appreciated that PDAC could be composed of multiple sub-populations of tumor
cells which differ among themselves in many properties, such as metastatic risk. To explore
the heterogeneity of tumor cells, we re-clustered the tumor cells into sub-clusters by a



Int. J. Mol. Sci. 2022, 23, 15020 4 of 13

resolution which was selected based on mean silhouette width (silwidth) [20]. Silwidth
represented the similarity of a cluster and the difference of distinct clusters. A larger value
of silwidth meant that the cells of same cluster had a higher similarity. We calculated
the mean silwidth at varying resolutions from 0.1 to 1 by the steps of 0.1 and observed
that the mean value of silwidth was the largest at 0.1 (Figure 3A). Finally, the tumor cells
were divided into six sub-clusters based on the resolution of 0.1 (Figure 3B). To estimate
the metastatic risk of each sub-cluster, we calculated SEMT and SCyTo, where SEMT is a
score to evaluate the expression of genes associated with EMT [21,22] and SCyTo is a score
to assess the differential potential for tumor cells [23,24]. A previous study found that
well-differentiated tumor cells were more similar to normal cells and tended to grow and
spread more slowly than poorly differentiated or undifferentiated tumor cells [9,10]. In
addition, EMT was correlated with metastasis as well [8]. In order to accurately assess
the metastatic risk of tumor cell sub-clusters, we proposed a metastatic risk score, named
scMetR, by integrating SEMT and SCyTo (Figure 3C). The results displayed that the scMetR
scores of sub-clusters 0, 1, and 2 were significantly different (Wilcoxon test: p < 0.01;
Figure 3D and Figure S2A). Thus, three sub-populations with distinct metastatic risk were
identified. We defined sub-clusters 0 and 2 as metastasis-featuring tumor cells (MFTC);
sub-clusters 3, 4, and 5 as transitional metastatic tumor cells (TransMTC); and sub-cluster
1 as conventional tumor cells (ConvTC). We compared the scMetR score among tumor
sub-populations and observed that the scMetR score was significantly increased in MFTC
compared to TransMTC, and in TransMTC compared to ConvTC. Figure 3E). Then, we
visualized the number and proportion of tumor sub-populations in primary and metastatic
samples. Although MFTC was more numerous in metastatic samples, their proportion was
higher in primary samples (Figure 3F,G and Figure S2B).
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Figure 3. Different metastatic risk of tumor sub-clusters. (A) The plot of mean silhouette width
(silwidth) at each resolution. (B) t-distributed stochastic neighbor embedding (t-SNE) plot of tumor
sub-clusters using the resolution of 0.1. (C) Schematic description for calculating scMetR score.
(D) Violin plots of scMetR score for each tumor sub-cluster. (E) Violin plots of scMetR score for
each tumor sub-population. (F) t-SNE plot of tumor sub-populations in the primary and metastatic
samples, which are identified based on scMetR. Top right: the primary samples. Bottom right:
the metastatic samples. (G) Bar plot of proportion in primary and metastatic patients for tumor
sub-populations. *** p < 0.001 using the Wilcoxon test.
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2.3. Signatures Associated with Metastasis

To reveal the effect of metastasis in cancer, we conducted further analyses. We found
the differentially expressed genes (DEGs) between MFTC and ConvTC and defined them as
MSGs, which included 431 genes (Table S1). To understand the potential related functions, we
applied functional enrichment analysis on up-regulated MSGs and identified several functions
associated with metastasis, including cell chemotaxis [25], response to hypoxia [26,27], granu-
locyte chemotaxis [28,29], and myeloid leukocyte migration [29,30] (Figure 4A). These meant
that up-regulated MSGs might promote metastasis. It was reported that the clinical outcome
of metastatic PDAC patients was poorer than that of primary PDAC patients [5,8], which sug-
gested that the survival of patients with highly metastatic risk was poorer than that of patients
with low metastatic risk. Thus, we used the survival data of patients from The Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases to analyze
patient prognosis to validate whether the MFTC had a high risk of metastasis. The patients that
had high expression of up-regulated MSGs might have high metastatic risk. Therefore, a single
sample gene set enrichment analysis (ssGSEA) [21] was performed to evaluate the expression
level of up-regulated MSGs, and patients were categorized into high or low groups based
on their ssGSEA scores. The results of the survival analysis indicated that the patients with
a high expression of up-regulated MSGs had shorter survival (Figure 4B,C and Figure S2C).
Further, we analyzed a published dataset which profiled two primary patients by spatial
transcriptomics (ST) to explore the spatial characteristic of MFTC [31]. ST data were classified
into region by PCA on the HVGs. After unsupervised clustering the spots, we found that the
identified clusters were consistent with well-defined histological annotations (Figure 4D) [31].
We observed that some up-regulated MSGs were verified to promote PDAC cell migration in
previous studies, such as TFF1, TFF2, and HMGA1 [32–34]. They were highly expressed in
duct epithelium region and cancer region (Figure 4E,F and Supplementary Note, Figure S4).
MFTC was found to be preferentially located in the duct epithelium and cancer region by
mapping cell types in PDAC slides (Figure 4G). Moncada et al. reported that duct cells
associated with inflammation were enriched in duct epithelium region [31]. These results
show that metastasis-associated genes were expressed highly in the duct epithelium region
and MFTC was mainly distributed in the duct epithelium region which were consistent with
prior reports on inflammation-promoting PDAC metastasis [35–37].

TFF2TFF1

A B C

D E F G

Figure 4. Analysis of up-regulated metastatic signature genes (MSGs). (A) Bar graph of the top
20 significant Gene Ontology (GO) terms, ordered by decreasing −log10p value. The x-axis shows the
number of genes enriched for the corresponding GO term. The terms which were colored red were
associated with metastasis. (B,C) Kaplan–Meier survival curves for patients in The Cancer Genome
Atlas (TCGA) and AU cohort of International Cancer Genome Consortium (ICGC) datasets. (D) The
unsupervised clustering analysis of spatial transcriptomics (ST) in pancreatic ductal adenocarcinoma
(PDAC). Colors indicate the distinct regions. (E,F) Spatially resolved heatmaps of expression patterns
for TFF1 and TFF2. (G) Spatially resolved heatmaps of proportion of metastasis-featuring tumor cells
(MFTC). The proportion is indicated by the colors.
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2.4. Cell–Cell Communications in PDAC

In addition to the intrinsic cell information, cell–cell communication might also con-
tribute to promoting metastasis. We employed CellChat (V1.5.0) [38] to study the signaling
interactions among all major cell types and sub-populations of tumor cells. We compared
the total number and the strength of interactions of tumor sub-populations that were
inferred by CellChat in PDAC. We found that the total number and the strength of in-
teractions were the highest in MFTC and second highest in TransMTC (Figure 5A,B and
Figure S3A,B). To identify the signaling pathways contributing to metastasis, 206 signifi-
cant ligand-receptor interactions within 41 signaling pathways were predicted, including
ADGRE5, COLLAGEN, SPP1, and ICAM (Figure S3C). A previous study demonstrated
that activation of ADGRE5 signaling was associated with lymph node involvement, metas-
tasis, and vascular invasion [39]. Indeed, the inferred cell–cell communication network
of the ADGRE5 signaling pathway showed that the interaction strength was highest in
MFTC among the tumor sub-populations and second highest in TransMTC (Figure 5C,D
and Figure S3D). These results show that total number and strength of interactions and
the interaction of the ADGRE5 signaling pathway were enhanced in MFTC compared to
the other tumor sub-populations, suggesting that MFTC had the highest risk of metas-
tasis among tumor sub-populations, which was consistent with the scMetR score of the
tumor sub-populations.

A

B

C

D

Figure 5. Cell–cell communication of major cell types and tumor sub-populations. (A) The total
number of interactions from tumor sub-populations. (B) The number of interactions among distinct
cell types. The thickness of the lines connecting cells indicates the number of interactions. The size
of the circle indicates the number of cells. (C) Heatmap of the interaction between any two cell
populations in the ADGRE5 signaling pathway. Bar plots on the right and top represent the total
outgoing and incoming signaling strength, respectively. (D) The inferred ADGRE5 signaling network.
The left and right plots display the autocrine and paracrine signaling to tumor sub-populations and
other cell types, respectively. Solid and open circles represent the source and the target, respectively.
The size of the circle indicates the number of cells. The thickness of the lines connecting cells indicates
the interaction strength.
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2.5. Potential Inhibitors Targeting the Signatures Associated with Metastasis

Surgical resection is the only possibly curative treatment for PDAC, but distant re-
currence after the surgical resection of PDAC is common [5]. Therefore, it is necessary
to find inhibitors of metastasis. To find potentially therapeutic drugs, data from The
Library of Integrated Network-based Cellular Signatures (LINCS) representing gene ex-
pression changes before and after drug treatment were analyzed. Using gene set en-
richment analysis (GSEA) [40], we tested whether MSGs were present among the genes
which were up- or down-regulated by a drug. If up-regulated MSGs were present among
the genes which were down-regulated by a drug, it suggested that the drug might re-
verse the expression of the up-regulated MSGs and be a potential inhibitor for metastasis
(Figure 6A). There were seven inhibitors identified across the up-regulated MSGs, including
BRD-A19037878, BRD-K65592642, dinaciclib, KU-55933, PD-0325901, RG-4733, and vorinos-
tat. Across the down-regulated MSGs, five inhibitors were found, including BRD-K73261812,
GSK-2110183, pyrazolanthrone, tacrolimus, and staurosporine (Figure 6B,C and Table S2).
Among them, dinaciclib had been proved to inhibit the growth and metastasis of pancreatic
cancer [41–44]. Previous studies demonstrated that the Ras-like (Ral) effector pathway,
activated by Ras, plays critical and divergent roles in pancreatic cancer [41,42]. RalA and
RalB are critical effectors of the Ral pathway [41–43]. Activating RalA would promote
the growth of tumor cells, and loss of RalB function inhibited tumor metastasis [41,42]. It
was reported that cyclin-dependent kinase 5 (CDK5) promoted the Ral effector pathway
central to Ras signaling [43]. Thus, dinaciclib which is an inhibitor of CDK5 could block
Ras–Ral signaling by inhibiting the activation of CDK5 [44] (Figure 6D). Further, previous
study reported that the number of metastatic lesions was reduced in both Panc265 and
Panc253, which were patient-derived pancreatic cancer xenograft models, after treating
with dinaciclib [45].

A B

C D

Figure 6. Drug prediction based on metastatic signature genes (MSGs). (A) Workflow of drug prediction.
(B,C) Network of genes regulated by each drug. Drugs regulating the top 10% of genes from up- (B) or
down-regulated (C) MSGs are displayed. Rectangles indicate drugs, and circles indicate genes. Each
line and node color indicates one drug. If a gene could be regulated by more than one drug, the node is
colored red. (D) Depiction of the regulation of cyclin-dependent kinase 5 (CDK5) by dinaciclib in tumor
growth and metastasis. Created with BioRender.com on 2 September 2022.
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3. Discussion

PDAC is a heterogeneous disease with a differing metastatic risk in tumor cells. Prior
studies reported that metastasis will lead to poor prognosis of patients [5,8]. Thus, it is
highly desirable to explore the tumor heterogeneity and the underlying metastatic risk,
which are pivotal for PDAC prognostic improvement. In this study, we identified different
cell types in PDAC based on scRNA-seq data, including tumor cell, CAF, T cell, and
macrophage (Figure 2B). To reveal the tumor heterogeneity, we re-clustered tumor cells
using a resolution which was selected based on the mean silwidth. Then, we established
scMetR, which integrated the EMT-associated gene score and the score that was used to
assess the differential potential for tumor cells to observe the distinct metastatic risk of
tumor sub-clusters (Figure 3C). Next, three tumor sub-populations with differing metastatic
risk levels, namely MFTC, TransMTC, and ConvTC, were defined based on the scMetR
score (Figure 3E,F). The metastatic risk of MFTC was validated by functional enrichment,
prognosis of patients, spatial expression patterns of the genes related to metastasis, spatial
location of MFTC, and cell–cell communication. The results suggested that MFTC has
a high risk of metastasis. To find potential inhibitors of metastatic PDAC, we analyzed
LINCS data, which represented gene expression changes following treatment with drugs,
and investigated the effect of these drugs for MSGs’ expression based on these data.
Finally, 12 potentially therapeutic drugs which might reverse the expression level of MSGs
were identified.

In order to evaluate the efficiency of scMetR, we performed the same analyses in an
independent scRNA-seq dataset of PDAC (details in Supplementary Note). We found that
the up-regulated MSGs were also enriched in the functions associated with metastasis, such
as neutrophil degranulation [46], neutrophil mediated immunity [47]; the patients with high
expression of the up-regulated MSGs had a worse prognosis; MFTC were preferentially
located in duct epithelium region and cancer region; the total number and the strength of
cell–cell interactions were the highest in MFTC and the second highest in TransMTC. These
observations were consistent with the previous discoveries, which suggested that scMetR
was reproducible in the independent dataset.

Our study has several limitations as well. One of the challenges in scRNA-seq data
analyses is the occurrence of dropout events, which represent missing data or no gene
expression. Dropout events might lead to confusion in downstream analysis [48,49]. There
have been several imputation methods to deal with dropout events, such as Markov
affinity-based graph imputation of cells (MAGIC) [50]. However, applying imputation
methods might not improve the performance of downstream analyses and might introduce
false-positives [48,51,52]. Thus, the imputation method was not performed in our analysis.
In addition, the single-cell transcriptional profiles which were used for analysis contained
17,086 cells. However, those cells were not sufficient. Increasing the number of cells
used for analysis would increase the credibility of subsequent work. Furthermore, the
highly metastatic risk of MFTC and the effectiveness of inhibitors still lacked experimental
verification, which would provide powerful evidence for this discovery.

Overall, our findings identified major cell types in primary and metastatic PDAC, and
we proposed scMetR to reveal tumor heterogeneity regarding metastatic risk. Further anal-
ysis suggested that MFTC, which were defined based on scMetR, had a highly metastatic
risk. Meanwhile, we predicted potential inhibitors of tumor metastasis. Thus, our analysis
might provide a new measurement to estimate metastatic risk, which would be helpful for
the diagnosis and treatment of metastasis.

4. Materials and Methods
4.1. Single-Cell RNA Sequencing Data Processing

We downloaded published PDAC data from the Gene Expression Omnibus (GEO)
database (GSE154778 [16]) which included 10 primary samples and 6 metastatic samples.
The number of cells obtained from each patient ranged from 585 to 1570 for primary
samples and from 272 to 2905 for metastatic samples. The dataset contained 9621 cells
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of primary samples and 7465 cells of metastatic samples. Genes expressed in fewer than
3 cells were removed. Cells with more than 40% mitochondrial gene counts, more than
7500 detected genes, and more than 100,000 unique molecular identifier (UMI) were fil-
tered [17]. This preprocessing was performed with Seurat (V3.2.2) R package [53].

4.2. Identifying Major Cell Types in PDAC

All the cells passing quality control were merged and normalized using the Normal-
izeData function with default parameters. The top 2000 HVGs were selected using the
FindVariableGenes function. Then, these data were scaled using the ScaleData function
with default parameters. Harmony was used for batch correction [54]. The FindCluster
function was used to find clusters. The function returned several cell clusters which were vi-
sualized with t-SNE. The FindMarkers function was used to identify cluster-specific marker
genes and marker genes of the distinct cell types. Adjusted p < 0.05 and |logFC| > 0.25
(FC, fold change) were set as the thresholds. We characterized the identities of these cell
clusters based on the expression of canonical markers: EPCAM, KRT19, and KRT7 for tumor
cell; COL1A1 and ACTA2 for CAF; CD3D and CD3E for T cell; CD68, CD14, and AIF1
for macrophage [12,16,17].

Inferred copy number variation analysis was carried out using inferCNV (inferCNV of the
Trinity CTAT Project: https://github.com/broadinstitute/inferCNV, accessed on 10 April 2022).
Normal epithelial cells from the GSA (CRA001160 [12]) were used as reference cells. For the
inferCNV analysis, the following parameters were used: cut off = 0.1, and HMM_type = ‘i6’.
As a result, heatmaps were generated to illustrate the relative expression intensities across
each chromosome.

4.3. Re-Clustering of Tumor Cell to Explore Heterogeneity

Re-clustering of tumor cells was performed to refine the sub-populations with distinct
metastatic risk. Genes expressed in fewer than 3 tumor cells were removed. Further analysis
included normalizing and scaling the data, identifying HVGs, batch correction, and re-
clustering. The functions used were the same as for cell type annotation. We re-clustered
tumor cells at varying resolutions from 0.1 to 1 by the steps of 0.1. Here, we evaluated
the clustering result at different resolutions through silwidth [20], which was a measure to
estimate the similarity of cells within a cluster and that of cells between different clusters.
A larger value of silwidth indicated that the cells of same cluster had a higher similarity.
The average silwidth at each resolution was calculated using the cluster.stats function of
fpc (V2.2.9) R package.

4.4. Metastatic Risk Estimation of Tumor Cell Sub-Clusters

To estimate the metastatic risk of tumor cell sub-clusters, we proposed a metastatic risk
score, named scMetR, for each cell. Each cell was scored using the following formula [55]:

Xm = SEMT + SCyTo (1)

MXm = mean(SEMT) + mean
(
SCyTo

)
(2)

SDXm =
√

SD2
SEMT

+ SD2
SCyTo

+ 2 × r × SDSEMT × SDSCyTo (3)

Scorem =
Xm − MXm

SDXm

(4)

where SEMT is the score calculated by ssGSEA [21] to estimate the expression of genes from
an EMT-associated gene resource (dbEMT 2.0) [22]; SCyTo is the cell differentiation score
computed by CyToTRACE [23,24]; and r is the Pearson correlation coefficient between SEMT
and SCyTo. Both SEMT and SCyTo were scaled to [0, 1]. The Wilcoxon test was performed
to calculate the significant difference between each tumor sub-cluster and the remaining
tumor sub-clusters. p < 0.01 was set as the threshold. Based on the scMetR score, three

https://github.com/broadinstitute/inferCNV
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tumor cell sub-populations with differing metastatic risks were defined, including MFTC,
TransMTC, and ConvTC.

4.5. Functional and Survival Analysis Revealing Metastatic Risk of MFTC

The FindMarkers function was used to identify DEGs between MFTC and ConvTC,
which were defined as MSGs. Adjusted p < 0.05 and |logFC| > 0.25 were set as the
thresholds. Functional enrichment analysis was performed on the biological process (BP)
category of Gene Ontology (GO) by using clusterProfiler (V4.2.1) R package [56]. The terms
with minimum count ≥ 1 and adjusted p < 0.05 were selected.

We fetched bulk RNA-seq data of PDAC patients from TCGA (http://portal.gdc.
cancer.gov/, accessed on 8 April 2022) as well as the AU and CA cohorts of the ICGC
(http://dcc.icgc.org/, accessed on 8 April 2022). The patients without survival data were
filtered. Finally, the number of samples retained for survival analysis was 146 in TCGA,
90 in AU cohort of ICGC, and 215 in CA cohort of ICGC. We used ssGSEA to estimate
the up-regulated MSGs expression levels of patients. Patients were classified into high- or
low-risk groups based on ssGSEA score. The surv_cutpoint function of survminer (V0.4.9)
R package was used to determine the cut-off value, and the p value was calculated using
the log-rank test.

4.6. Analysis of Spatial Transcriptomics Data to Discover Spatial Characteristic

We accessed public ST data of PDAC from the GEO database (GSE111672 [31]), which
contained two primary samples. The PDAC-A sample contained 428 spatial spots, and
PDAC-B contained 224 spatial spots. Genes expressed in fewer than 5 spots were removed.
We used NormalizeData function to normalize data, RunPCA function to perform PCA,
FindNeighbors and FindClusters to cluster the ST spots. Each cluster was annotated based
on histological features [31].

To reveal the distribution of MFTC, we combined the scRNA-seq data by conditional
autoregressive-based deconvolution (CARD) [57]. CARD required scRNA-seq with the
gene expression information of distinct cell types along with ST data with localization
information. The CARD performed deconvolution through a non-negative factorization
framework and output the estimated cell-type composition across spatial locations with
two inputs, which included the single-cell transcriptional profiles of all cell types in PDAC
and the ST data of two PDAC samples. The CARD_deconvolution function of CARD (V1.0)
R package was utilized to calculate the proportion of cell types at each spatial location [57].

4.7. Uncovering Cell–cell Communication Patterns Contributing to Metastasis

To reveal the communication patterns between major cell types, we employed CellChat
(V1.5.0) [38] to perform cell–cell communication analysis. A CellChat object was created
with normalized data to infer cell communication between different cell types. CellChat
computed the probability of biologically significant communication patterns by assessing
and integrating the gene expression levels of the CellChat-curated human ligand receptor
database. We followed the official workflow and applied the preprocessing steps, includ-
ing the functions identifyOverExpressedGenes, identifyOverExpressedInteractions, and
projectData. Then, we calculated the potential ligand-receptor interactions between cell
types based on the functions computeCommunProb, computeCommunProbPathway, and
aggregateNet. All functions were run with default parameters.

4.8. Prediction of Candidate Drugs for Reversing the Expression of MSGs

Datasets of transcriptional responses to treatment with drugs were downloaded from
the LINCS (http://www.Linc-sproject.org/, accessed on 2 June 2022). For each drug,
transcriptional responses were represented by the FC between the treated and untreated
conditions. Different treatment conditions were reported for the drugs, such as different
cell lines of pancreatic cancer, drug concentrations, and times of treatment. The FC between
the treated and untreated conditions was calculated for each gene. Then, the ranking lists of

http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
http://dcc.icgc.org/
http://www.Linc-sproject.org/
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the FC from different conditions treated with the same drug were merged using Prototype
Ranked List (PRL), which was achieved based on a hierarchical majority-voting scheme.
The up- or down-regulated genes across the ranking lists were at the top or bottom of
merging rank list [58]. Next, we used GSEA [40] to test whether MSGs were present among
the genes which were up- or down-regulated by a drug to assess its potential as an inhibitor
of metastasis [20]. The up-regulated genes of potential inhibitors for metastasis would
contain down-regulated MSGs. The PRL was implemented by RankMerging function of
GeneExpressionSignature (V1.38.0) package [59]. The fgsea function of fgsea (V1.18.0) R
package was utilized for GSEA. The candidate drugs were selected by setting a threshold
of p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232315020/s1.

Author Contributions: Conceptualization, methodology, data curation, formal analysis, and writing,
S.C.; methodology, and formal analysis, S.Z.; investigation, and validation, Y.-e.H.; software, and vali-
dation, M.Y.; validation, W.L., J.C. and K.L.; conceptualization, reviewing, editing, and supervision,
W.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61872183,
62172213).

Data Availability Statement: The data presented in this study are openly available in GEO at https:
//www.ncbi.nlm.nih.gov/gds, reference numbers are GSE154778, GSE156405 and GSE111672; in GSA
at https://ngdc.cncb.ac.cn/gsa/, reference number is CRA001160; in dbEMT 2.0 at http://dbemt.
bioinfo-minzhao.org/; in TCGA at http://portal.gdc.cancer.gov/; in ICGC at http://dcc.icgc.org/;
in LINCS at http://www.Linc-sproject.org/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, P.; Li, B.; Liu, F.; Zhang, M.; Wang, Q.; Liu, Y.; Yao, Y.; Li, D. The epithelial to mesenchymal transition (EMT) and cancer

stem cells: Implication for treatment resistance in pancreatic cancer. Mol. Cancer 2017, 16, 52. [CrossRef]
2. Ren, X.; Zhou, C.; Lu, Y.; Ma, F.; Fan, Y.; Wang, C. Single-cell RNA-seq reveals invasive trajectory and determines cancer stem

cell-related prognostic genes in pancreatic cancer. Bioengineered 2021, 12, 5056–5068. [CrossRef]
3. Miquel, M.; Zhang, S.; Pilarsky, C. Pre-clinical Models of Metastasis in Pancreatic Cancer. Front. Cell Dev. Biol. 2021, 9, 748631.

[CrossRef]
4. Beuran, M.; Negoi, I.; Paun, S.; Ion, A.D.; Bleotu, C.; Negoi, R.I.; Hostiuc, S. The epithelial to mesenchymal transition in pancreatic

cancer: A systematic review. Pancreatology 2015, 15, 217–225. [CrossRef]
5. Thomas, S.K.; Lee, J.; Beatty, G.L. Paracrine and cell autonomous signalling in pancreatic cancer progression and metastasis.

EBioMedicine 2020, 53, 102662. [CrossRef]
6. Yang, J.; Lin, P.; Yang, M.; Liu, W.; Fu, X.; Liu, D.; Tao, L.; Huo, Y.; Zhang, J.; Hua, R.; et al. Integrated genomic and transcriptomic

analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal
adenocarcinoma. Genome Biol. 2021, 22, 4. [CrossRef]

7. Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30,
764–776. [CrossRef]

8. Le Large, T.Y.S.; Bijlsma, M.F.; Kazemier, G.; van Laarhoven, H.W.M.; Giovannetti, E.; Jimenez, C.R. Key biological processes
driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin. Cancer Biol. 2017, 44, 153–169.
[CrossRef]

9. Jogi, A.; Vaapil, M.; Johansson, M.; Pahlman, S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors.
Ups. J. Med. Sci. 2012, 117, 217–224. [CrossRef]

10. Hart, I.R.; Easty, D. Tumor cell progression and differentiation in metastasis. Semin. Cancer Biol. 1991, 2, 87–95.
11. Ji, A.L.; Rubin, A.J.; Thrane, K.; Jiang, S.; Reynolds, D.L.; Meyers, R.M.; Guo, M.G.; George, B.M.; Mollbrink, A.; Bergenstrahle, J.; et al.

Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020, 182, 497–514.e22.
[CrossRef]

12. Peng, J.; Sun, B.F.; Chen, C.Y.; Zhou, J.Y.; Chen, Y.S.; Chen, H.; Liu, L.; Huang, D.; Jiang, J.; Cui, G.S.; et al. Single-cell RNA-seq
highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019, 29,
725–738. [CrossRef]

13. Ravirala, D.; Pei, G.; Zhao, Z.; Zhang, X. Comprehensive characterization of tumor immune landscape following oncolytic
virotherapy by single-cell RNA sequencing. Cancer Immunol Immunother. 2022, 71, 1479–1495. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms232315020/s1
https://www.mdpi.com/article/10.3390/ijms232315020/s1
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://ngdc.cncb.ac.cn/gsa/
http://dbemt.bioinfo-minzhao.org/
http://dbemt.bioinfo-minzhao.org/
http://portal.gdc.cancer.gov/
http://dcc.icgc.org/
http://www.Linc-sproject.org/
http://doi.org/10.1186/s12943-017-0624-9
http://doi.org/10.1080/21655979.2021.1962484
http://doi.org/10.3389/fcell.2021.748631
http://doi.org/10.1016/j.pan.2015.02.011
http://doi.org/10.1016/j.ebiom.2020.102662
http://doi.org/10.1186/s13059-020-02222-w
http://doi.org/10.1016/j.tcb.2020.07.003
http://doi.org/10.1016/j.semcancer.2017.03.008
http://doi.org/10.3109/03009734.2012.659294
http://doi.org/10.1016/j.cell.2020.05.039
http://doi.org/10.1038/s41422-019-0195-y
http://doi.org/10.1007/s00262-021-03084-2


Int. J. Mol. Sci. 2022, 23, 15020 12 of 13

14. Jiang, B.; Mu, Q.; Qiu, F.; Li, X.; Xu, W.; Yu, J.; Fu, W.; Cao, Y.; Wang, J. Machine learning of genomic features in organotropic
metastases stratifies progression risk of primary tumors. Nat. Commun. 2021, 12, 6692. [CrossRef]

15. Nguyen, B.; Fong, C.; Luthra, A.; Smith, S.A.; DiNatale, R.G.; Nandakumar, S.; Walch, H.; Chatila, W.K.; Madupuri, R.;
Kundra, R.; et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell
2022, 185, 563–575.e511. [CrossRef]

16. Lin, W.; Noel, P.; Borazanci, E.H.; Lee, J.; Amini, A.; Han, I.W.; Heo, J.S.; Jameson, G.S.; Fraser, C.; Steinbach, M.; et al. Single-cell
transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic
lesions. Genome Med. 2020, 12, 80. [CrossRef]

17. Pan, H.; Diao, H.; Zhong, W.; Wang, T.; Wen, P.; Wu, C. A Cancer Cell Cluster Marked by LincRNA MEG3 Leads Pancreatic
Ductal Adenocarcinoma Metastasis. Front. Oncol. 2021, 11, 656564. [CrossRef]

18. Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.;
Martuza, R.L.; et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344,
1396–1401. [CrossRef]

19. Lee, J.J.; Bernard, V.; Semaan, A.; Monberg, M.E.; Huang, J.; Stephens, B.M.; Lin, D.; Rajapakshe, K.I.; Weston, B.R.; Bhutani, M.S.; et al.
Elucidation of Tumor-Stromal Heterogeneity and the Ligand-Receptor Interactome by Single-Cell Transcriptomics in Real-world
Pancreatic Cancer Biopsies. Clin. Cancer Res. 2021, 27, 5912–5921. [CrossRef]

20. Aissa, A.F.; Islam, A.; Ariss, M.M.; Go, C.C.; Rader, A.E.; Conrardy, R.D.; Gajda, A.M.; Rubio-Perez, C.; Valyi-Nagy, K.;
Pasquinelli, M.; et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies
in cancer. Nat. Commun. 2021, 12, 1628. [CrossRef]

21. Yi, M.; Nissley, D.V.; McCormick, F.; Stephens, R.M. ssGSEA score-based Ras dependency indexes derived from gene expression
data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep. 2020, 10, 10258. [CrossRef] [PubMed]

22. Zhao, M.; Liu, Y.; Zheng, C.; Qu, H. dbEMT 2.0: An updated database for epithelial-mesenchymal transition genes with
experimentally verified information and precalculated regulation information for cancer metastasis. J. Genet. Genom. 2019, 46,
595–597. [CrossRef] [PubMed]

23. Gulati, G.S.; Sikandar, S.S.; Wesche, D.J.; Manjunath, A.; Bharadwaj, A.; Berger, M.J.; Ilagan, F.; Kuo, A.H.; Hsieh, R.W.; Cai, S.; et al.
Single-cell transcriptional diversity is a hallmark of developmental potential. Science 2020, 367, 405–411. [CrossRef] [PubMed]

24. Frede, J.; Anand, P.; Sotudeh, N.; Pinto, R.A.; Nair, M.S.; Stuart, H.; Yee, A.J.; Vijaykumar, T.; Waldschmidt, J.M.; Potdar, S.; et al.
Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma. Nat. Cell Biol. 2021, 23, 1199–1211.
[CrossRef]

25. Xie, Z.B.; Yao, L.; Jin, C.; Zhang, Y.F.; Fu, D.L. High cytoplasm HABP1 expression as a predictor of poor survival and late tumor
stage in pancreatic ductal adenocarcinoma patients. Eur. J. Surg. Oncol. 2019, 45, 207–212. [CrossRef]

26. Cao, L.; Huang, C.; Cui Zhou, D.; Hu, Y.; Lih, T.M.; Savage, S.R.; Krug, K.; Clark, D.J.; Schnaubelt, M.; Chen, L.; et al.
Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021, 184, 5031–5052.e26. [CrossRef]

27. Yuen, A.; Diaz, B. The impact of hypoxia in pancreatic cancer invasion and metastasis. Hypoxia 2014, 2, 91–106. [CrossRef]
28. Bausch, D.; Pausch, T.; Krauss, T.; Hopt, U.T.; Fernandez-del-Castillo, C.; Warshaw, A.L.; Thayer, S.P.; Keck, T. Neutrophil

granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal
adenocarcinoma. Angiogenesis 2011, 14, 235–243. [CrossRef]

29. Kim, J.; Bae, J.S. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediat. Inflamm. 2016, 2016, 6058147.
[CrossRef]

30. Prinz, M.; Erny, D.; Hagemeyer, N. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 2017, 18, 385–392. [CrossRef]
31. Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating

microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.
Nat. Biotechnol. 2020, 38, 333–342. [CrossRef] [PubMed]

32. Arumugam, T.; Brandt, W.; Ramachandran, V.; Moore, T.T.; Wang, H.; May, F.E.; Westley, B.R.; Hwang, R.F.; Logsdon, C.D. Trefoil
factor 1 stimulates both pancreatic cancer and stellate cells and increases metastasis. Pancreas 2011, 40, 815–822. [CrossRef]
[PubMed]

33. Guppy, N.J.; El-Bahrawy, M.E.; Kocher, H.M.; Fritsch, K.; Qureshi, Y.A.; Poulsom, R.; Jeffery, R.E.; Wright, N.A.; Otto, W.R.; Alison,
M.R. Trefoil factor family peptides in normal and diseased human pancreas. Pancreas 2012, 41, 888–896. [CrossRef] [PubMed]

34. Kajioka, H.; Kagawa, S.; Ito, A.; Yoshimoto, M.; Sakamoto, S.; Kikuchi, S.; Kuroda, S.; Yoshida, R.; Umeda, Y.; Noma, K.; et al.
Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Lett. 2021, 497, 1–13.
[CrossRef] [PubMed]

35. Khalafalla, F.G.; Khan, M.W. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma:
Fighting Against Multiple Opponents. Cancer Growth Metastasis 2017, 10, 1179064417709287. [CrossRef]

36. Steele, C.W.; Jamieson, N.B.; Evans, T.R.; McKay, C.J.; Sansom, O.J.; Morton, J.P.; Carter, C.R. Exploiting inflammation for
therapeutic gain in pancreatic cancer. Br. J. Cancer 2013, 108, 997–1003. [CrossRef]

37. Padoan, A.; Plebani, M.; Basso, D. Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. Int. J.
Mol. Sci. 2019, 20, 676. [CrossRef]

38. Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis
of cell-cell communication using CellChat. Nat. Commun. 2021, 12, 1088. [CrossRef]

http://doi.org/10.1038/s41467-021-27017-w
http://doi.org/10.1016/j.cell.2022.01.003
http://doi.org/10.1186/s13073-020-00776-9
http://doi.org/10.3389/fonc.2021.656564
http://doi.org/10.1126/science.1254257
http://doi.org/10.1158/1078-0432.CCR-20-3925
http://doi.org/10.1038/s41467-021-21884-z
http://doi.org/10.1038/s41598-020-66986-8
http://www.ncbi.nlm.nih.gov/pubmed/32581224
http://doi.org/10.1016/j.jgg.2019.11.010
http://www.ncbi.nlm.nih.gov/pubmed/31941584
http://doi.org/10.1126/science.aax0249
http://www.ncbi.nlm.nih.gov/pubmed/31974247
http://doi.org/10.1038/s41556-021-00766-y
http://doi.org/10.1016/j.ejso.2018.09.020
http://doi.org/10.1016/j.cell.2021.08.023
http://doi.org/10.2147/HP.S52636
http://doi.org/10.1007/s10456-011-9207-3
http://doi.org/10.1155/2016/6058147
http://doi.org/10.1038/ni.3703
http://doi.org/10.1038/s41587-019-0392-8
http://www.ncbi.nlm.nih.gov/pubmed/31932730
http://doi.org/10.1097/MPA.0b013e31821f6927
http://www.ncbi.nlm.nih.gov/pubmed/21747314
http://doi.org/10.1097/MPA.0b013e31823c9ec5
http://www.ncbi.nlm.nih.gov/pubmed/22286382
http://doi.org/10.1016/j.canlet.2020.10.015
http://www.ncbi.nlm.nih.gov/pubmed/33065249
http://doi.org/10.1177/1179064417709287
http://doi.org/10.1038/bjc.2013.24
http://doi.org/10.3390/ijms20030676
http://doi.org/10.1038/s41467-021-21246-9


Int. J. Mol. Sci. 2022, 23, 15020 13 of 13

39. He, Z.; Wu, H.; Jiao, Y.; Zheng, J. Expression and prognostic value of CD97 and its ligand CD55 in pancreatic cancer. Oncol. Lett.
2015, 9, 793–797. [CrossRef]

40. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

41. Lim, K.H.; Baines, A.T.; Fiordalisi, J.J.; Shipitsin, M.; Feig, L.A.; Cox, A.D.; Der, C.J.; Counter, C.M. Activation of RalA is critical for
Ras-induced tumorigenesis of human cells. Cancer Cell 2005, 7, 533–545. [CrossRef] [PubMed]

42. Lim, K.H.; O’Hayer, K.; Adam, S.J.; Kendall, S.D.; Campbell, P.M.; Der, C.J.; Counter, C.M. Divergent roles for RalA and RalB in
malignant growth of human pancreatic carcinoma cells. Curr. Biol. 2006, 16, 2385–2394. [CrossRef] [PubMed]

43. Feldmann, G.; Mishra, A.; Hong, S.M.; Bisht, S.; Strock, C.J.; Ball, D.W.; Goggins, M.; Maitra, A.; Nelkin, B.D. Inhibiting the
cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling.
Cancer Res. 2010, 70, 4460–4469. [CrossRef] [PubMed]

44. Riess, C.; Irmscher, N.; Salewski, I.; Struder, D.; Classen, C.F.; Grosse-Thie, C.; Junghanss, C.; Maletzki, C. Cyclin-dependent
kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev.
2021, 40, 153–171. [CrossRef]

45. Hu, C.; Dadon, T.; Chenna, V.; Yabuuchi, S.; Bannerji, R.; Booher, R.; Strack, P.; Azad, N.; Nelkin, B.D.; Maitra, A. Combined
Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in
Patient-Derived Xenograft Models. Mol. Cancer 2015, 14, 1532–1539. [CrossRef]

46. Charles Jacob, H.K.; Charles Richard, J.L.; Signorelli, R.; Kashuv, T.; Lavania, S.; Vaish, U.; Boopathy, R.; Middleton, A.; Boone,
M.M.; Sundaram, R.; et al. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection
in Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 2727. [CrossRef]

47. Wang, X.; Hu, L.P.; Qin, W.T.; Yang, Q.; Chen, D.Y.; Li, Q.; Zhou, K.X.; Huang, P.Q.; Xu, C.J.; Li, J.; et al. Identification of a subset
of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat. Commun. 2021, 12, 174. [CrossRef]

48. Andrews, T.S.; Hemberg, M. False signals induced by single-cell imputation. F1000Research 2018, 7, 1740. [CrossRef]
49. Liu, Y.; Zhang, J.; Wang, S.; Zeng, X.; Zhang, W. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?

Brief. Bioinform. 2022, 23, bbab442. [CrossRef]
50. van Dijk, D.; Sharma, R.; Nainys, J.; Yim, K.; Kathail, P.; Carr, A.J.; Burdziak, C.; Moon, K.R.; Chaffer, C.L.; Pattabiraman, D.; et al.

Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 2018, 174, 716–729. [CrossRef]
51. Hou, W.; Ji, Z.; Ji, H.; Hicks, S.C. A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biol. 2020,

21, 218. [CrossRef] [PubMed]
52. Jiang, R.; Sun, T.; Song, D.; Li, J.J. Statistics or biology: The zero-inflation controversy about scRNA-seq data. Genome Biol. 2022,

23, 31. [CrossRef]
53. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.

Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e1821. [CrossRef] [PubMed]
54. Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.R.; Raychaudhuri, S. Fast,

sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [CrossRef]
55. Evans, L.D. A two-score composite program for combining standard scores. Behav. Res. Methods Instrum. Comput. 1996, 28,

209–213. [CrossRef]
56. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal

enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [CrossRef]
57. Ma, Y.; Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 2022, 40, 1349–1359.

[CrossRef] [PubMed]
58. Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithbaokar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.;

Isacchi, A.; et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad.
Sci. USA 2010, 107, 14621–14626. [CrossRef]

59. Li, F.; Cao, Y.; Han, L.; Cui, X.; Xie, D.; Wang, S.; Bo, X. GeneExpressionSignature: An R package for discovering functional
connections using gene expression signatures. OMICS 2013, 17, 116–118. [CrossRef] [PubMed]

http://doi.org/10.3892/ol.2014.2751
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1016/j.ccr.2005.04.030
http://www.ncbi.nlm.nih.gov/pubmed/15950903
http://doi.org/10.1016/j.cub.2006.10.023
http://www.ncbi.nlm.nih.gov/pubmed/17174914
http://doi.org/10.1158/0008-5472.CAN-09-1107
http://www.ncbi.nlm.nih.gov/pubmed/20484029
http://doi.org/10.1007/s10555-020-09940-4
http://doi.org/10.1158/1535-7163.MCT-15-0028
http://doi.org/10.3390/cancers13112727
http://doi.org/10.1038/s41467-020-20447-y
http://doi.org/10.12688/f1000research.16613.1
http://doi.org/10.1093/bib/bbab442
http://doi.org/10.1016/j.cell.2018.05.061
http://doi.org/10.1186/s13059-020-02132-x
http://www.ncbi.nlm.nih.gov/pubmed/32854757
http://doi.org/10.1186/s13059-022-02601-5
http://doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
http://doi.org/10.1038/s41592-019-0619-0
http://doi.org/10.3758/BF03204767
http://doi.org/10.1016/j.xinn.2021.100141
http://doi.org/10.1038/s41587-022-01273-7
http://www.ncbi.nlm.nih.gov/pubmed/35501392
http://doi.org/10.1073/pnas.1000138107
http://doi.org/10.1089/omi.2012.0087
http://www.ncbi.nlm.nih.gov/pubmed/23374109

	Introduction 
	Results 
	Major Cell Types in PDAC Primary and Metastatic Patients 
	Heterogeneity in Tumor Cells 
	Signatures Associated with Metastasis 
	Cell–Cell Communications in PDAC 
	Potential Inhibitors Targeting the Signatures Associated with Metastasis 

	Discussion 
	Materials and Methods 
	Single-Cell RNA Sequencing Data Processing 
	Identifying Major Cell Types in PDAC 
	Re-Clustering of Tumor Cell to Explore Heterogeneity 
	Metastatic Risk Estimation of Tumor Cell Sub-Clusters 
	Functional and Survival Analysis Revealing Metastatic Risk of MFTC 
	Analysis of Spatial Transcriptomics Data to Discover Spatial Characteristic 
	Uncovering Cell–cell Communication Patterns Contributing to Metastasis 
	Prediction of Candidate Drugs for Reversing the Expression of MSGs 

	References

