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Abstract: Scoring functions (SFs) are ubiquitous tools for early stage drug discovery. However, their
accuracy currently remains quite moderate. Despite a number of successful target-specific SFs appear-
ing recently, up until now, no ideas on how to systematically improve the general scope of SFs have
been formulated. In this work, we hypothesized that the specific features of ligands, corresponding to
interactions well appreciated by medicinal chemists (e.g., hydrogen bonds, hydrophobic and aromatic
interactions), might be responsible, in part, for the remaining SF errors. The latter provides direction
to efforts aimed at the rational and systematic improvement of SF accuracy. In this proof-of-concept
work, we took a CASF-2016 coreset of 285 ligands as a basis for comparison and calculated the
values of scores for a representative panel of SFs (including AutoDock 4.2, AutoDock Vina, X-Score,
NNScore2.0, AVina RF20, and DSX). The residual error of linear correlation of each SF value, with
the experimental values of affinity and activity, was then analyzed in terms of its correlation with
the presence of the fragments responsible for certain medicinal chemistry defined interactions. We
showed that, despite the fact that SFs generally perform reasonably, there is room for improvement
in terms of better parameterization of interactions involving certain fragments in ligands. Thus, this
approach opens a potential way for the systematic improvement of SFs without their significant
complication. However, the straightforward application of the proposed approach is limited by the
scarcity of reliable available data for ligand-receptor complexes, which is a common problem in
the field.

Keywords: scoring functions; fragments; ligand structural features; errors of scoring functions; bias
of scoring functions

1. Introduction

Scoring functions (SFs) are ubiquitous useful tools for early stage drug discovery [1-3].
However, their accuracy is currently moderate and there is a clear need for an improve-
ment in accuracy to make the entire drug discovery process less risky and demanding of
experimental resources. SFs can be categorized into four distinct classes: (a) force-field or
physics based; (b) empirical; (c) knowledge based (statistical); and (d) machine learning or
feature based [4]. Other things being equal, the computational performance increases in
a series (a)—(b)—(c)—(d), whereas the degree of generalization decreases in the same series.
The classical SFs of types (a)-(c) have found and will continue to find numerous applica-
tions in drug discovery [5-8], despite all the known difficulties [1,9]. In many cases those
SFs take into account (either explicitly or implicitly) the ligand-receptor affinity driving
interactions, including electrostatic complementarity, hydrogen bonding and hydrophobic
interactions [10]. Whereas, the traditional SFs of the first three classes seem to have reached
their accuracy limits [11,12], the main recent focus is on the fourth class—the machine
learning scoring functions [3]. Inspired by successes in the field of image analysis and Big
Data of social media and related fields, the machine learning approaches have been given a
new impetus in the fields of SF development. Higher levels of accuracy metrics have been
reported for machine learning-based SFs in the literature [12,13].
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Although machine learning approaches have definitely brought a fresh impulse in the
approaches used to train SF models, the increased flexibility of those models introduced a
new point of concern to the field—a greater ability of models to overfit [14-17]. Whereas
this problem was less applicable to previous, rougher SF models, the machine learning
approaches definitely require additional state-of-the-art efforts to ensure the resulting
models are not overfitted using the available amount of input data. This is a fundamental
problem in the field of drug discovery, since the amount of reliable data in comparison with
the available chemical space, as pointed out by Bender et al. [18,19], is orders of magnitude
less than for fields where machine learning approaches have come from and where they
have had significant success. Thus, significant efforts should be applied in order to obtain a
robust and not overfitted model using such flexible machine learning tools [15,20].

The field in which SF operates is intrinsically complicated—the free energy of
ligand-receptor binding is affected by many different factors, their combination being
different for different ligand-receptor pairs. For instance, the proper account of intramolec-
ular ligand conformations and entropic terms was reported to be crucial [21,22]. The
explicit account of water molecules is another crucial factor for certain complexes [23-25],
but which could not be straightforwardly performed for all simulation scenarios. The
intrinsic mobility of the binding site, or its parts, is another source of deviation for scoring
predictions from the experimental affinity or activity, for which several approaches to
sample protein conformations have been proposed [26]. The abovementioned difficulties
cannot be straightforwardly solved without significant complication of the SF and, hence,
decreasing its computational efficiency. The latter is the cornerstone for the main applica-
tion of an SF in drug discovery practice, as an important stage in the early stages of drug
discovery, where fast screening is crucial to focus the attention of researchers on a tractable
fraction of large datasets of potential molecules.

Although the direct account of the complex free energy effects is cumbersome, the
indirect account is quite possible, which is illustrated by the success and applicability of
the target specific SFs [27]. In the latter, the parameters of the SF are specifically tuned to
better reproduce the ligand-receptor interactions involving a single receptor or a limited
set of receptors. Thus, the specifics of interactions, governed by the specifics of the receptor,
are taken into account implicitly. The same ability of the SF to be better parameterized for a
certain class of targets in comparison to the others is known to be one of the main difficulties
that limits the accuracy of the “reverse screening” or “target fishing” [8], in which a target
is being predicted for a certain ligand in question. The implicit bias of the SF towards the
specifics of certain types (in terms of interactions involved) of ligand-receptor complexes
results in a situation whereby, for other types of ligand-receptor complexes, the prediction
of the complex’s free energy appears to be systematically worse. In such a case, the choice
of target for a ligand, based on the results of the virtual screening of a panel of targets,
becomes complicated, since the scores that the SF produces seem to be dominated by some
types of interactions. Yet another confirmation that the SF might be biased towards certain
types of interactions is the better performance (in terms of robustness of predictions) of
the “consensus scoring” [28], in which several different SFs have their voice in a final score
value. This way, the deteriorated accuracy of one SF at certain ligand-receptor complexes
is offset by the other’s SF, for which it is statistically less probable that the same type of
complex is also more problematic.

In contrast to target specific SFs, the ligand-specific SFs seem to be poorly represented
in the literature as everyday practical tools [29]. It can be easily explained by comparing
the diversity and cardinality of the spaces of receptors and ligands. The possible diversity,
and hence the accessible chemical space of ligands, is immense [30]. Thus, it is not only
difficult to sample its specific subspaces adequately, but the overfit for the specifics of the
ligands included into the training set is also more possible by far. The same applies to
the descriptors/features defining ligand properties. The cardinality of the feature space
that could reasonably explain the observed differences between different ligands of the
chemical space is also large. Therefore, a large number of structural features are required to
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discern the properties of all ligands, even in the drug discovery related subspace. On the
other hand, only a few distinct types of interactions, which are observed in the experiment
and have physics-based explanations, are known and being constantly used by medicinal
chemists [10]. These are, e.g., the well known hydrogen bonds, hydrophobic and aromatic
interactions. Those interactions are not only well interpretable, but appear to greatly
define the entire energy of the ligand-receptor interactions, which also explains their wide
applicability in practice both at qualitative and quantitative levels. On the one hand, the
terms of the known SFs were in many cases specifically chosen to well describe (though in a
throughput manner) the abovementioned basic interactions. On the other hand, the extent
to which those interactions are being properly accounted for has not been explicitly studied
previously to the best of our knowledge. In a broad formulation, the question can be casted
as to what extent the current SFs describe these basic interactions. At a more technical level,
the question is which features of the ligands (responsible for possible interactions with the
receptor) are not fully accounted for in an SF in question, and hence could be subject to a
focused optimization in order to arrive at a more accurate SF. The main assumption about
the possibility of improving the existing SFs is that the means of increasing the accuracy
should not require additional computational overheads. Otherwise, it would limit the
scope of applicability of the SFs. Thus, in the most simple and advantageous cases, only
the focused parameters tuning of an SF might be required to achieve the goal.

The ability to detect the deficiencies of an SF in describing certain types of interactions
represented by ligand features, therefore paves the way for the systematic studies aimed
at improving the current SF and perhaps devises the ways to develop new ones with the
increased accuracy. The same approach can also be used hierarchically. After the presence
of the ligand features responsible for the basic types of interactions is well explained, a
study of the significance of the more subtle and/or rare ligand features can be performed.
For example, halogen bonding (XB) has received much attention during the last decades
but is definitely not one of the main driving forces in drug discovery [31-33]. However, the
proper account of XB by SFs might be crucial for hit-to-lead or especially lead optimization
stages. Similarly, one can study various types of more specific interactions represented by
certain features of the ligand. Therefore, the enhancement can be performed systematically
and using the natural priorities of the significance/occurrence of the effects being taken
into account.

In this work we thus hypothesized that the specific features of the ligands, correspond-
ing to the well appreciated by medicinal chemistry interactions (e.g., hydrogen bonds,
hydrophobic and aromatic interactions) might be responsible in part for the remaining SF
error. The latter provides the direction for the efforts directed towards the rational and
systematic improvement of the accuracy of the SFs. We also tested the proposed approach
in its ability to assess the significance of the halogen bonding effect and its proper account.

In what follows, we first describe the choice of the dataset used in the study. Then,
the features of the ligands, relevant for description of the basic interactions, are defined
at structural level. The choice of a representative panel of the SFs is explained next. After
that, a set of correlation studies is performed to reveal how the presence of the features in
ligands affects the description of the experimentally measured ligand-receptor affinities.
Then, the correlation of the residual errors of description of the experimental affinities (by
each of the SFs in the panel) with the presence of chemical features is analyzed. Finally,
several useful interpretations of the results in a broader context of drug discovery are given.

2. Results

To check our hypothesis on the importance of the account of specific chemical fea-
tures and their contribution to the residual errors, we developed the following workflow
(Scheme 1). It consists of several stages, including some general QSAR procedures (such as
defining, probing and filtering of features to include into the model) and building regular-
ized regression models. At the final stage, the results provided by each of those models are
interpreted in terms of the “chemical features hypothesis” mentioned in Introduction. The
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complexes

285 ligand-receptor

workflow was applied to each of the scoring functions used in this work. Detailed results
are given below. A reference to the jupyter-notebook is available in Appendix A.
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Scheme 1. The workflow of checking the “chemical features hypothesis”.

2.1. Ligand Filtering

Some of the complexes (PDB ID: 1lpg, 1loyt, 1z9g, 1ryj, 3twp, 3utu, 5c2h) turned out to
be impossible to prepare using the prepare_ligand4.py program with default settings. Most
of the scoring functions (i.e., AutoDock 4.2, AutoDock Vina, AutoDock VinaXB, AVina
RF20, and NNScore 2.0) rely on this utility as a first preparation step. Thus, for the sake of
consistency, those complexes were also excluded from analysis for other SFs.

Another difficulty appeared at the stage of reading molecular structures via Open-
Babel [34] Python binding library (Pybel for OpenBabel v3.1.1 [35]). It failed to correctly
process ligands from 32 ligand—protein complexes (PDB ID: 1w4o, 5tmn, 105b, 1sqa, 100h,
4wiv, 2zcq, 4gr0, 1lpg, 3bv9, 4tmn, 3dxg, 1bzc, 1ulb, 4djv, 3pxf, 3utu, 1c5z, 4jia, 2zda, 3arp,
lowh, 1k1i, 3ge7, 4mme, 3ag9, 3gy4, 103f, 2zy1, 1vso, 2zcr, loyt), thus the corrections
were applied via specifically developed patch procedures. First, the incorrectly perceived
charges for the oxygen containing groups with the delocalized negative formal charge (O-P
for phosphate and O-5 for sulfate groups) were corrected. Second, the delocalized positive
charge of nitrogen atoms and bond orders of N-C for amidine groups were also corrected.

Finally, only six structures (3ge7, 4djv, 4jia, 4mme, 4wiv, 3arp) with the other difficulties
in reading remained, so they were also excluded from the data set. Thus, the final set
included 273 complexes.
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2.2. Statistical Analysis

Using the defined set of ligand features (see Section 4.3), the Free-Wilson (FW) type
models were built using the 273 ligand-receptor complexes with well defined both experi-
mental geometry and affinity/activity, using the coreset of CASF-2016 Update.

2.2.1. Features Correlation

The mutual correlation of the features (Table 1) on a set of ligands extracted from the
set of ligand-receptor complexes used was first studied (Table 2). The values of r greater
than 0.5 are highlighted.

Table 1. Number of molecules, containing specific fragments.

No. of Molecules

Fragment (Feature) Containing the Total Number of Average Occurrences
Fragment Occurrences per Molecule
8

HBD1 257 695 2.7

HBD2 256 692 2.7

HBA 271 1290 438

Hal 42 53 13

HP1 256 1706 6.7

HP2 129 364 2.8

HP3 7 16 2.3

PIPI 224 2537 11.3

PICat 78 141 1.8

SaltBridge 156 236 1.5

F 30 67 22

Table 2. Correlation (r) between the chemical features.
HBD1 HBD2 HBA Hal HP1 HP2 HP3 PIPI PICat Bfi?:ll;e F

HBD1 1.00 1.00 0.86 0.20 0.79 0.5 0.17 0.64 0.44 0.53 0.21
HBD2 1.00 1.00 0.86 0.20 0.79 0.50 0.17 0.64 0.44 0.52 0.21
HBA 0.86 0.86 1.00 0.28 0.78 0.61 0.08 0.74 0.32 0.54 0.27
Hal 0.20 0.20 0.28 1.00 0.19 0.18 0.11 0.40 0.14 0.14 0.13
HP1 0.79 0.79 0.78 0.19 1.00 0.57 0.21 0.56 0.52 0.62 0.19
HP2 0.50 0.50 0.61 0.18 0.57 1.00 0.05 0.41 0.34 0.38 0.17
HP3 0.17 0.17 0.08 0.11 0.21 0.05 1.00 0.11 0.40 0.23 0.00
PIPI 0.64 0.64 0.74 0.40 0.56 0.41 0.11 1.00 0.29 0.40 0.33
PICat 0.44 0.44 0.32 0.14 0.52 0.34 0.40 0.29 1.00 0.69 0.08
Salt Bridge 0.53 0.52 0.54 0.14 0.62 0.38 0.23 0.40 0.69 1.00 0.10
F 0.21 0.21 0.27 0.13 0.19 0.17 0.00 0.33 0.08 0.1 1.00

The features with correlation values (r) larger than 0.5 are highlighted in yellow.

It can be seen (Table 2) that the HBD1 and HBD2 features were extremely highly corre-
lated (r = 1). Fragments described by HBD1 appeared in more molecules (257 molecules
in total) than the HBD2 fragment (256 molecules in total), and thus the HBD2 feature
was excluded.

It should also be noted that Hal, F, and HP3 features were the most independent
features according to r values (all of them are less than 0.50). Moreover, F and HP3 features
were completely independent of each other (r = 0.00).

In general, the mutual correlation of the proposed chemical features is not high, so we
expect that the model built using these features to be statistically robust.

2.2.2. Correlation of SF to the Experimental Values

Most of the selected SFs reproduced the reference pK values with moderate quality
(R?~0.3-0.4) (Table 3) which is an expected result [11]. Most modern scoring functions are



Int. J. Mol. Sci. 2022, 23, 15018

6 of 26

only that precise in terms of the reproduction of reference energy/pK values [11], which
does not affect, however, the docking and ranking power of scoring function. However, it
shows there is a lot of room for improvement in terms of scoring power.

Table 3. Statistical characteristics of linear correlation of the predicted pKgr values with the reference

pK values.

# Scoring Function R? SD R];g:;iiisci)(r)ln

1 AutoDock 4.2 (AD4.2) 0.32 1.77 0.50 x pKgp +3.25

2 AutoDock Vina 0.36 1.73 0.83 x pKgp + 1.62

3 AutoDock VinaXB (XBSF) 0.36 1.73 0.83 x pKgp +1.61

4 X-Score 0.41 1.66 1.46 x pKgp — 2.86
5 AVina RF20 0.68 1.23 1.11 x pKgp — 0.79

6 NNScore 2.0 0.41 1.67 0.71 x pKgp +2.00

7 DrugScoreX (DSX) 0.35 1.74 —0.03 x pKgp +2.94
8 ASAS 0.36 1.73 0.01 x pKgp +2.29

Among other SFs, the AVina RF20 showed somewhat outstanding performance. How-
ever, this result should be taken with care due to the partial overlap [11] of the AVina RF20
training set with the currently used CASF-2016 coreset and to the known peculiarities of
ML methods (greater ability to interpolate and lesser ability to extrapolate).

2.2.3. Correlation of Chemical Features to the Experimental Values

It was instructive to first check our approach to see if the experimental affinity could be
described by the presence of the chemical features chosen to represent the basic interactions
in our study. A series of Lasso models (Table 4) with varying regularization parameters
was built to check both the statistical performance of the models and which parameters are
the most significant both in terms of the coefficient values and the regularization pressure
they withstand (Figure 1).

Table 4. Dependence of the Free-Wilson regression coefficients on the A regularization
parameter value.

A Value

0.0001 0.002 0.03 0.4
R? 0.359 0.359 0.358 0.180
HBD1 0.021 0.019 0.000 0.000
HBA 0.057 0.058 0.067 0.000
Hal 0.308 0.306 0.280 0.000
HP1 0.919 0.916 0.876 0.331
HP2 0.301 0.300 0.275 0.000
HP3 —0.221 —0.220 —0.203 0.000
PIPI 0.833 0.831 0.804 0.383
PICat —0.192 —0.189 —0.154 0.000
SaltBridge —0.046 —0.045 —0.040 0.000

F 0.445 0.444 0.423 0.087
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ref = Lasso(FW, A), normalized

HP1 HBD1
o 0.8- HBA
GCJ Hal
= HP1
O
L 06
i HP2
g HP3
O 0.4 PIPI
= PICat
n 0.2 SaltBridge
0
] F
.

RZ
o 00f" g
o
—0.2
104 10-3 10-2 10-1 100 10! 102
A value

Figure 1. Statistical performance (R?) and the values of the coefficients of the Lasso model, linking
the experimental activity and the presence of chemical features responsible for basic interactions.
Increasing the magnitude of the regularization parameter, A, results in that the non-zero coefficients
remain only for the most statistically significant features.

Preliminary analysis shows that the most important features (according to the re-
gression coefficients both at low and high A values) were related to hydrophobic kinds of
interactions (HP1, PIPI). The significance decreased in the series HP1-HP2-HP3, i.e., is
inversely proportional to the bond order. Moreover, the HP3 feature, which indicates the
presence of triple bonds, negatively affected binding affinity. Features representing ionic
interactions (SaltBridge, PICat) are also undesirable.

Features describing halogens were shown to be important. Surprisingly, the F feature
was more significant than the Hal.

Finally, hydrogen bond donors and acceptors seemingly did not play a significant role
in binding, which is unexpected.

Thus, it should be expected that the scoring functions reproduce (i.e., be highly
correlated to) the hydrophobic features and halogens well, and treat charged species
as undesirable.

2.2.4. Correlation of Chemical Features to the SF Values

It can be seen that almost all SFs (Figure 2, Table 5) except AVina RF20 gave low priority
to the HP1 feature, while it is of top significance according to the previously discussed
results. Interestingly, the PIPI descriptor seemed to be apparently the major contributor
in almost all SFs studied. It was also seen that the Hal was underrepresented in most SFs
compared with its revealed significance in describing the reference values. On the contrary,
the F presence was well described by most of the SFs, with the significance close to the
hydrophobic terms. The latter suggests that no special treatment for fluorine interactions
is necessary.
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SF = Lasso(FW, A)
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Figure 2. Statistical performance (R?) and the values of the coefficients of the Lasso model, relating

the activity, predicted by scoring functions, and the presence of chemical features responsible for

basic interactions. Increasing the magnitude of the regularization parameter, A, results in that the

non-zero coefficients remain only for the most statistically significant features.
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Table 5. Statistical performance (R?) and the values of the coefficients of the Lasso model, relating the
activity, predicted by scoring functions, and the presence of chemical features responsible for basic
interactions. Regularization parameter, A, is set to 1 x 1074,

Ref. AD4.2 Vina VinaXB X-Score AVina RF20 NNScore 2.0 DSX ASAS
R? 0.36 0.41 0.48 0.48 0.67 0.43 0.50 0.67 0.80
HBD1 0.021 0.182 —0.011 —0.008 —0.028 —0.037 —0.265 0.052 —0.037
HBA 0.057 0.565 0.075 0.071 0.049 0.012 0.263 0.257 0.193
Hal 0.308 0.084 0.093 0.103 0.070 0.170 0.027 0.035 0.081
HP1 0.919 0.514 0.441 0.441 0.484 0.717 0.824 0.407 0.607
HP2 0.301 0.354 0.437 0.436 0.217 0.316 0.429 0.193 0.213
HP3 —0.221 —0.161 —0.039 —0.032 0.012 —0.138 0.067 —0.046 —0.021
PIPI 0.833 1.071 0.811 0.809 0.642 0.685 1.093 0.565 0.643
PICat —-0.192 0.194 —0.174 —0.170 —0.112 —0.151 —0.068 0.077 0.029
SaltBridge  —0.046 0.090 —0.232 —0.232 —0.105 -0.173 —0.217 —0.078 —0.071
F 0.445 0.338 0.365 0.364 0.151 0.382 0.281 0.165 0.123

e AutoDock 4.2

The weight of HP3, HP2, and PIPI interactions was comparable for AutoDock 4.2
estimations and reference pK. However, HP1 and Hal interactions were highly underesti-
mated by AutoDock 4.2. It also should be noted, that AutoDock 4.2 overestimated all kinds
of polar interactions, i.e., HBA, HBD1, PICat, and SaltBridge. In addition, while for the
reference pK values PICat is considered undesirable (Figure 2), AutoDock 4.2 considers
them as favorable. The same appeared for the SaltBridge.

e AutoDock Vina and AutoDock VinaXB

A comparison of the regression coefficients for Vina and VinaXB showed (Table 6) that
the explicit account of the halogen bonding phenomena in VinaXB did not significantly
affect the quality of predictions for the current set of molecules. This may be due to the
overall low number of compounds which demonstrate actual halogen bonds according to
VinaXB estimations (all of them are listed in the Table 7). For other compounds, Vina and
VinaXB estimations were completely numerically equal. In other words, for the selected
molecule set, VinaXB predictions were generally indistinguishable from Vina predictions.

Table 6. Lasso regression coefficients for Vina and VinaXB at A = 0.0001.

Vina VinaXB Vina-VinaXB
R? 0.480 0.479 0.001
HBD1 —0.011 —0.008 —0.002
HBA 0.075 0.071 0.003
Hal 0.093 0.103 —0.011
HP1 0.441 0.441 0.000
HP2 0.437 0.436 0.001
HP3 —0.039 —0.032 —0.007
PIPI 0.811 0.809 0.001
PICat —0.174 —0.170 —0.004
SaltBridge —0.232 —0.232 0.000

F 0.365 0.364 0.001
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Table 7. Difference between AutoDock Vina and AutoDock VinaXB estimated pK values for complexes
with non-zero contribution of the halogen bonding (according to AutoDock VinaXB).

# Complex PKref PKvinaxs PKvina PKvinaxs — PKvina xB

Cl Br I
1 1mqg6 11.15 7.154 7.099 0.055 +
2 3b65 9.27 7.816 7.739 0.076 +
3 3jya 6.89 5.660 5.493 0.167 +
4 3u8n 10.17 4.969 4910 0.059 +
5 4agn 3.97 4.145 3.955 0.190 +
6 4agp 4.69 4.665 4.486 0.179 +
7 dagq 5.01 4.831 4.649 0.182 +
8 4521 7.41 8.664 8.555 0.109 +
9 4j31 7.80 8.026 7.882 0.145 +
10 5aba 2.98 3.988 3.803 0.186 +

e  X-Score

X-Score estimated pK values were highly (R? = 0.67) correlated with the Free-Wilson
features. Compared with the Free-Wilson regression of the reference pK, X-Score underesti-
mated the meaning of Hal and F descriptors. HP1 feature was also underestimated which
is common for most of the selected scoring functions.

e  AVina RF20 and NNScore 2.0

Both AVina RF20 and NNScore 2.0 are based on AutoDock Vina, but use quite dif-
ferent approaches to make corrections on top of it, so they pay attention to different
chemical features.

AVina RF20 balances HP1 and PIPI weights (Figure 2, Table 5) in a ratio close to the
reference (Figure 1, Table 5). It also accounts for effects caused by both heavy halogens
(Hal) and fluorine (F) which also coincides with Free-Wilson coefficients for the reference.

NNScore 2.0 predictions differed significantly from other SFs. They gave meaning
to insignificant features (such as HBD1, HBA) and, at the same time, did not consider
important ones (Hal, HP3). Moreover, in terms of NNScore 2.0, HP3 feature was (slightly)
beneficial, although it is considered not to be. The negativity of the PICat interactions was
also underestimated.

e DSX

DSX SF shared the general trends in correlation with ligand features as observed
for many of the SFs studied. The notable exception was the HBA descriptor, which was
significant for DSX values and was not so significant for the reference data description.
Thus, the HBA significance seems to be overrated in DSX.

° ASAS

It is interesting that for the ASAS SE, contributions of the HP1 and PIPI features
(Figure 2) became roughly equal, which coincides with the ratio of their contributions to the
reference pK (Figure 1). HBA seemed to be slightly overrated compared with the correlation
with the reference pK values.

2.2.5. Correlation of Chemical Features to the Residual Error of SF Prediction

It is worth recalling that although the values of the FW matrix were normalized, the
predicted pK values (pKsr) were not normalized, meaning that the regression coefficients
of the FW descriptors and predicted pK should not be compared directly by their values
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(Figure 3). However, this also means that the closer predicted pKgp values to the experi-
mentally defined (reference) pKy.y, the closer SF regression coefficient would be to one and
the closer FW coefficients would be to zero; and vice versa, the worse the quality of the
prediction made by SF, the lower would be the regression coefficient of the predicted pKsp
and the greater the corrections via FW will have to be made.

ref = Lasso(SF + FW, A)
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Figure 3. Statistical performance (R%) and the values of the coefficients of the Lasso model, relating
the experimental and the combined model, including score function prediction and a presence of
chemical features responsible for basic interactions. Increasing the magnitude of the regulariza-
tion parameter, A, results in that the non-zero coefficients remain only for the most statistically

significant features.

e AutoDock 4.2

First, it can be seen (Figure 3) that the regression coefficient of the AD4 (0.37) was far
from ideal (i.e., 1.0) and even less than 0.5.

Determination coefficient value for the combined model (R? = 0.44) was larger than
both for the single AutoDock 4.2 score (R? = 0.31, Table 3) and FW regression (R% = 0.36,
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Table 4), meaning we achieved the quality improvement by correcting the SF prediction
with FW, although there is room for further improvements. This correction was mostly
achieved by re-accounting of non-polar interactions (mostly HP1 and PIPI) and halogens,
which is in accordance with the previously obtained results (Figure 1). The correction also
tended to re-balance the polar ionic interactions contributions, which were shown (Figure 2)
to be overestimated by AutoDock 4.2.

e  AutoDock Vina and AutoDock VinaXB

It can be seen (Figure 3, Table 8) that in combined model there was no significant
difference between FW correction size for Vina and VinaXB scoring functions. This is
supported by the previously demonstrated observations (Figure 2, Table 6) in which Vina
and VinaXB scores were identically (qualitatively and quantitatively) reproduced by the
Free-Wilson model.

Table 8. Regression coefficients for combined models (FW + AD Vina and FW + AD VinaXB).

AD VinaXB AD VIna VinaXB-Vina
R? 0.45 0.45 0.00
HBD1 0.032 0.030 0.001
HBA —0.002 0.000 —0.002
Hal 0.221 0.214 0.007
HP1 0.628 0.628 —0.001
HP2 0.038 0.040 —0.001
HP3 —0.196 —0.200 0.005
PIPI 0.318 0.321 —0.002
PICat —0.076 —0.078 0.003
SaltBridge 0.107 0.107 0.000
F 0.214 0.215 —0.001
SE 0.619 0.617 0.002

e  X-Score

X-Score predictions were only slightly corrected via Free-Wilson regression due to the
fact that X-Score predictions themselves are strongly correlated (R? = 0.67, Table 5) with the
chemical features used in Free-Wilson regression as discussed above. A notable exception
was the HP3 feature, which was not taken in account by X-Score SF. It is also interesting
that HP1 correction had a small amplitude compared with the corrections for other SFs.
This may be due to the well-chosen consensus hydrophobic model of the X-Score.

e AVina RF20 and NNScore 2.0

AVina RF20 reached the maximal quality among the other scoring functions in the set.
This is already a fairly balanced model, which does not benefit from additional account of
the presence of the ligand features responsible for the intermolecular interactions using a
rough Free-Wilson model.

Unlike AVina RF20, NNScore 2.0 requires a significant correction coming from almost
every Free-Wilson term. The use of the ML approach in NNScore 2.0 does not automatically
allow it to account for specific interaction terms in a proper way. For instance, the hydrogen
bond-related descriptors showed that the influence of the hydrogen bond acceptors (HBA)
was overestimated, whereas the influence of the hydrogen bond donors (HBD1) was
underestimated by NNScore 2.0 for proper description of the reference values. Another
point of divergence is the presence of triple bonds (HP3), which require a significant
negative correction.
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e DSX

Similar to the results of the many SFs considered, the most important correction comes
from the account of hydrophobic interactions (Figure 3). The corrections Hal, F, and HP2
are next in importance. At the same time, the descriptors of polar interactions, PiCat and
hydrogen bond acceptors (HBA), seem to be over-represented, necessitating a negative
correction in the regression model.

It should be noted here that the amplitude and even measurement units for the DSX
SF are different from the units of the reference experimental affinity of the complexes. Thus,
the proposed approach, stemming from the idea of the CASF series studies [11,36] to seek
a linear correlation of the SF with the reference, works consistently well with such SFs
as well.

e ASAS

The results for ASAS SF were surprisingly similar to the results obtained for DSX. The
main difference is in that the F descriptor appears to require a larger correction. Perhaps, as
expected, the hydrophobic descriptors HP1 and PIPI require lesser corrections, since the
change in the accessible surface upon complex formation already describes the hydrophobic
interactions well.

Again, the applicability of the proposed approach is illustrated for this SF with differ-
ent magnitude and units.

3. Discussion

The abovementioned statistical results, combined with additional reference informa-
tion (Table 9), admit a reasonable interpretation and discussion, which may help to advance
the field of SF development for drug discovery.

Table 9. Determination coefficient (R2) for different models.

R? in Lasso Regression (A =1 x 10~4)

SF Ref~SF SF~FW Ref~SF + FW
AD4 0.32 0.41 0.44
Vina 0.36 0.48 0.45

VinaXB 0.36 0.48 0.45
XScore 0.41 0.67 0.45
AVina RF20 0.68 0.43 0.69
NNScore 2.0 0.41 0.50 0.47
DSX 0.35 0.67 0.42
dSAS 0.36 0.80 0.40
reference - 0.36 -

3.1. AutoDock 4.2

It was shown that AutoDock 4.2 SF tends to overestimate polar and ionic interactions
(Figure 2) and thus requires the opposite sign correction for those components (Figure 3).
This is due to the explicit treatment of electrostatic (Coulomb) interactions modeled by
means of Gasteiger partial charges.

Gasteiger partial charges are known for their ability to predict and model chemical
properties (such as an inductive effect). However, they are also known to be too low in
amplitude (compared to any charges reasonably reproducing the electrostatic potential
at HEF/6-31G* level) for use in molecular mechanics applications. It was also explicitly
shown [20] that the use of charge models directly reproducing the HF/6-31G* molecular
electrostatic potential (MEP), in combination with robust regression analysis and outlier
exclusions, improves the ability of the AutoDock 4.2 to reproduce experimental pK values.
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We assume this was not only due to the robust regression analysis of AutoDock 4.2 energy
terms. Both AM1-BCC and RESP charge methods used in that work are capable of not only
quantitatively reproducing the reference MEP, but also qualitatively correctly redistributing
charge density compared to the Gasteiger charges, which should be especially noticeable
in the case of formally charged molecules. We hypothesize that the main inconsistency
in the use of Gasteiger charges for formally charged species lies in the combination of
low-amplitude values of partial charge of neutral groups in combination with formally
charged groups whose charge values are integers. Thus, there is no single scaling factor
for these two types of groups and their respective charges. Therefore, more consistent
charges between the formally charged and neutral parts of a molecule should lead to a
more consistent correlation with the experimental activities.

Another point is that none of the tested scoring functions other than the AutoDock 4.2,
AVina RF20 and NNScore 2.0 explicitly take into account electrostatic interactions; however,
they perform on the same level or even better in terms of pK reproduction metrics (R?, SD,
Table 3). The work also showed that the most important (Figure 1) and most undervalued
(Figure 3) interactions are hydrophobic in nature. Thus, the question arises: is it necessary
to explicitly take into account electrostatic interactions at all? It is a known concept that the
directed, in particular, electrostatic interactions are necessary not to increase affinity, but
rather to ensure specificity and selectivity of binding with respect to decoy receptors. In
any case, the significance of electrostatic interactions requires further detailed study.

3.2. AutoDock Vina and AutoDock VinaXB Halogen Bonding

AutoDock VinaXB did not show any improvement over the original AutoDock Vina.
There were only 10 cases (out of 42 ligands containing heavy halogens) that exhibited
non-negligible halogen bonding as assessed by AutoDock VinaXB (Table 7). However,
even in these cases, the difference between the predicted pK values of AutoDock Vina
and AutoDock VinaXB was in the range of 0.055-0.19 pK units, which is considered as an
insignificant change (corresponding to a factor of 1.135-1.55 in K4 /K;), which also does not
actually lead to any increase in accuracy (Table 7).

There are two feasible hypotheses. The first is that AutoDock VinaXB is incapable of
properly and fully accounting for halogen bonding. This hypothesis is partially supported
by the results of Free-Wilson analysis. The second hypothesis is that it is not the halogen
bonding itself that is important, but any other molecular properties of the ligand that are
affected by the presence of the heavy halogen in a molecule (e.g., hydrophobicity). In any
case, the topic of the importance of including of halogen bonding in scoring functions
requires further research in order to narrow the gap between the general interest in XB and
its proper representation in SFs.

3.3. X-Score

It was shown that the X-Score SF predictions themselves may be well described by
Free-Wilson correlations (R? = 0.67), which is not surprising considering that X-Score uses
a linear combination of factors that account for different interactions. The latter are well
described by the chemical features present in ligands. However, X-Score goes beyond
(R% = 0.41) statistics derived from a simple Free-Wilson correlation with the reference
(R? = 0.36), apparently by using a finer grained representation of the interaction, also
including the receptor part. Despite its simplicity, X-Score performed as one of the best
SFs in our study, which is consistent with the results of the scoring power test from the
CASEF-2016 Update study. It should also be noted that X-Score does not contain specific
electrostatic terms other than the hydrogen bonding term and is still able to reproduce the
experimental affinity well.
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3.4. AVina RF20 and NNScore 2.0

Both AVina RF20 and NNScore 2.0 are machine learning SFs using the corrections
based on AutoDock Vina calculations. However, they use completely different approaches
to these corrections, resulting in a completely different quality of pK estimates.

AVina RF20 was shown to be superior (R? = 0.67) among the tested SFs. Qualitatively,
this is due to the correctly estimated (Figure 3) contribution of hydrophobic descriptors
(especially HP1 and Hal), which were underestimated by other scoring functions in this
test. Ultimately, AVina RF20 does not gain any additional score from using Free-Wilson
correction. This suggests that the mere presence of structural features in a ligand is not
enough to improve the statistics and finer corrections are needed.

At the same time, the NNScore 2.0 estimates were rather contradictory regarding
the contributions of the chemical features (Figure 2). It overestimated the features that
are not important for pK reference reproduction (e.g., HBD1, HBA) and, at the same time,
underestimated important ones (e.g., Hal, PICat, HP3). It appears that the main reason
NNScore 2.0 predictions are still reasonable (R? = 0.41) is that NNScore 2.0 is able to capture
most of the hydrophobic interactions (HP1, PIPI, HP2) that have been shown to be the most
important for the selected complexes set. Another possible reason is that an ensemble of
models used in NNScore 2.0, even if they produce significantly different predictions, can
be combined favorably in a consensus scoring model.

While AVina RF20 may serve as the best example in ML class, NNScore 2.0 can serve
as an example of what to expect on average. By itself, using a ML approach does not
automatically increase the precision and reliability of the results. Only a wise and rigorous
approach to balancing generalization and precision provides improvements. We argue that
the same applies to the modification of the functional form and the parameterization of the
classical SE.

3.5. DSX

DSX is a knowledge-based SF which does not aim at reproducing the reference energies,
but instead provides a pure score. However, it can predict the experimental pK using linear
correlation at the same quality level (R? = 0.35, Table 3) as the scoring functions specifically
designed for that purpose. Thus, the potential non-linearity of the DSX scores did not seem
to show any advantages under our experiment conditions. On the other hand, the good
ranking power of DSX seems to be well justified by its decent (compared with the other
SFs) ability to score diverse ligand-receptor complexes.

Another, more technical point, is that the proposed approach to revealing the ligand
features that are insufficiently described in SF was shown to be applicable not only to the
SFs that are specifically aimed at reproducing the free energy of binding, but also to the
general type of SFs that give the “score”, monotonically associated with free energy.

3.6. ASAS

ASAS was selected as perhaps the simplest model for comparing “real” scoring func-
tions with. It does not explicitly capture any kind of contributions other than a simple
change in surface area during complex formation. However, as applied to a ligand in an
already optimal position (in our case, the position extracted from crystal structures), it will
characterize areas of optimal contacts and, thus, should correlate with the most important
features. Indeed, the ASAS value was shown to be significantly better reproduced with the
Free-Wilson correlation (R? = 0.80) than for other scoring functions. The ASAS value, as
expected, strongly correlates with the most important hydrophobic features (HP1, HP2,
PIPI), so it practically does not require correction to adjust them (Figure 3). However, some
polar features (PICat, HBA) and halogen features (especially F) require adjustments.

The abovementioned findings further support that hydrophobic interactions are a
major contributor to ligand—receptor affinity. Of course, as shown in the CASF-2016 Update
study, this score is not sufficient to distinguish between different binding modes. This
requires correct consideration of directional interactions.
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ASAS is the second SF (along with DSX) in our study, illustrating the usefulness of our
approach to non-energy-based SFs.

3.7. The Role of Fluorine in Ligands

The fluorine atom was used as a separate feature, which became statistically significant
for correlation with affinity. This reinforced, among other things, our initial assumption
that the fluorine atom is commonly used in the later stages of drug design, typically to
improve the ADMET properties. Despite the fact that the fluorine atom is not considered as
a fragment participating in specific intermolecular interactions, the calculated value of the
correlation between the presence of fluorine and experimental activity was at a good level
during the study. The reason for this may be that since ADMET properties are adjusted
late in the drug discovery process, the presence of a fluorine atom in the compound may
indicate that the ligand is already well optimized in other directions since it has managed
to reach this stage. Thus, the inclusion of fluorine atoms should not be recommended as a
prospective tool to enhance affinity, as it is more of an artifact of the analyzed dataset.

3.8. Free-Wilson Correction

It was illustrated that Free-Wilson analysis (benchmark) of the scoring functions
can be used for many purposes. First, it can be used to reveal which chemical features
(i.e., interaction motives) are actually important in reproducing the reference pK. Second,
pK values predicted by the scoring functions can also be decomposed in terms of the
contributions of chemical features so that shortcomings in the scoring function predictions
can be pre-assessed. Finally, it can be used to correct the pK predictions by accounting for
chemical features that are underestimated by the original scoring function.

The proposed benchmark was tested in practice on several scoring functions (Table 10)
and on the set of CASF-2016 complexes. The benchmark helped us to rank the chemical
features in order of their actual importance (hydrophobic interactions tend to be the
most important).

Table 10. The selected scoring functions.

No. Scoring Function SF Class ? Measurement Units References
1 AutoDock 4.2 (AD4.2) physics-based [37]
2 AutoDock Vina empirical [38]
3 AutoDock VinaXB (XBSF) empirical pK units~energy units [39]
4 X-Score empirical [40]
5 AVina RF20 descriptor-based [41]
6 NNScore 2.0 descriptor-based [42]
7 ASAS descriptor-based A2 [10,11,36]
8 DrugScoreX (DSX) knowledge-based virtual score [43]

2 according to the classification suggested in Ref. [5].

It was shown that the use of the Free-Wilson model, which takes into account these
features on top of the scoring function, can generally improve the quality of the prediction.
As a general rule, the less accurate the original model, the higher the quality can be obtained
using the Free-Wilson correction (Table 9); and vice versa, the more precise and complex
the initial scoring function, the less Free-Wilson approach can contribute to its quality. This
is especially noticeable in the case of AVina RF20. It has also been shown that some of
the scoring functions may themselves correlate well to the Free-Wilson features, so their
prediction will also not be improved by such a correction.
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The proposed benchmark also helped to reveal inaccuracies in the accounting of these
features by the selected scoring functions and, thus, outlined further directions for research
and improvement.

4. Materials and Methods
4.1. Ligand—Receptor Dataset

A set of high quality ligand-receptor complex geometries with reliable binding en-
ergies data is required to study the systematic errors of the scoring functions. One of the
main requirements was the availability of an experimental three-dimensional structure of
the ligand—protein complex. Several databases fulfilling the requirement are known: the
Protein Data Bank [44], PDBBind [45], and BindingMOAD [46].

The second important requirement is information about the experimentally measured
energy, which is necessary for estimating the error of the scoring functions. This data is
available in PDBBind and BindingMOAD databases. For the purpose of the work, the
PDBBind database is more suitable. PDBBind includes only those complexes for which
binding energy data are known. The database also contains complexes that lack missing
fragments or steric overlaps. PDBBind contains a special set (PDBBind Core Set) of high
quality complexes. This set was used also in the comparative assessment of scoring
functions CASF-2016 Update [11], which facilitates the comparison of the results. Thus, the
PDBBind Core Set was chosen as a general ligand-receptor dataset.

The PDBBind Core Set was downloaded from the PDBBind site (http://www.pdbbind.
org.cn/casf.php, accessed on 13 May 2022). Structures were already prepared in this set:
hydrogen atoms were present, protonation states were assigned, and all water molecules
were removed from the complex structure. We used prepared molecules without additional
modifications. Ultimately, [PDB_ID]_ligand.mol2 and [PDB_ID]_protein.pdb were used to
estimate both SF values and construct the Free-Wilson feature matrix.

4.2. Scoring Function Panel

The panel of scoring functions used in the study (Table 10) was selected according to
the following criteria:

1.  the availability of software implementation for academic researchers on a non-
commercial basis;

2. extensive coverage in the scientific literature and notable success stories in research

and development of drug compounds;

wide range of applicability with respect to ligands of various chemical compositions;

4. It was also desirable that the final set should represent all classes of scoring functions
currently identified in the literature, namely physics-based, empirical, knowledge-
based, and machine learning-based.

@

4.2.1. AutoDock 4.2

AutoDock 4.2 SF [37] implements its own force field (1). It includes vdW and hydro-
gen bonds energy terms; the latter is functionally similar to the former except it is also
dependent on the angle. Electrostatic interactions are described by Coulomb interactions.
Partial charges are calculated by the Gasteiger method [47]. In addition to the electrostatic
interactions, these charges are also used to calculate the desolvation energy. Finally, the
number of the rotatable bonds is also directly accounted for as a simple measure of entropy
loss upon binding.
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AutoDock 4.2 software implementation was accessed in Ref. [48]

Due to the artificial restrictions on the maximal number of rotatable bonds and maxi-
mal number of atoms in a macromolecule in AutoDock 4.2 source code, it had to be modified
to handle molecules appearing in the CASF-2016 coreset. Thus, the source code has been
modified according to the instructions in Ref. [49]. In particular, the maximum number
of rotatable bonds (MAX_TORS) was increased from 32 to 40 and the maximum number
of atoms (AG_MAX_ATOMS) was increased from 32,768 to 40,000. In addition, sodium
parameters not present in the default AutoDock 4.2 configuration file (AD4.1_bound.dat)
have been ported from another version of parameters (AD4_PARM99.dat). Additionally,
the precision of the output of energy terms has been increased to 4 digits.

The calculation of AutoDock 4.2 scores requires the preparation of PDBQT protein and
ligand files and the calculation of potentials grids. Preparation, including the calculation
of partial charges according to Gasteiger, was carried out using the AutoDockTools (ADT)
toolkit, in particular, using the prepare_ligand4.py and prepare_receptor4.py scripts with
default settings. The potential grid was calculated using the autogrid4 utility. The input
files for autogrid4 were prepared using the prepare_gpf4.py utility from the ADT toolkit.
The grid size was chosen to be centered on the ligand (option -y in prepare_gpf4.py) and
to include all its atoms with an extra space of 10A in each (x, y, z) dimension (option -l in
prepare_gpfd.py).

The input file for the autodock4 utility was generated using the prepare_dpf42.py
utility (from the ADT toolkit) in single-point energy calculation mode (option -e in pre-
pare_dpf42.py). Finally, the pK value was calculated using the autodock4 utility.

4.2.2. X-Score
X-Score [40] (2) is one of the most widely used empirical SF.

AGping = AGyaw + WH—pond AGH—pond + Wrot AGrot
+whydrophobicAGhydrophohic

@

where AGy;,;—estimated binding energy, AG,;y—contribution of vdW interactions,
AGy pong—contribution of hydrogen bonds, AGyygrophosic—contribution of hydrophobic
interactions, w;—regression coefficients.

X-Score exists in 3 different versions (HS, HC, HM), which implement their own meth-
ods (algorithms) to account for hydrophobic interactions. The first of these (HS) is based
on the calculation of the ligand-protein contact area, which is similar to ASAS SF described
below, except in this case only hydrophobic atoms are taken into account. The second
algorithm (HC) treats hydrophobic contacts as a measure of the overlap of the vdW spheres
of the hydrophobic atoms. The third method (HM) implements a hydrophobic matching
algorithm that calculates the hydrophobic contribution by summing the contributions
(logP) of the hydrophobic ligand atoms corresponding to the surrounding hydrophobic
environment of the protein. The final binding energy is averaged over all 3 X-Score versions.
This allows us to consider X-Score as a consensus model. The hydrogen bond term is the
same in all three sub-methods and depends on the position and relative orientation of the
atoms of potential partners in hydrogen bonds.

X-Score software implementation was accessed at Ref. [50] (v1.2).

The following command was used to calculate pK values using the xscore utility:
“xscore -score [PDB_ID]_protein.pdb [PDB_ID]_ligand.mol2” and the value “Predicted
average -log(K4)” was taken from the output. No special preparations of ligands and
proteins were done in advance.

4.2.3. AutoDock Vina

AutoDock Vina [38] is the next generation scoring function of the AutoDock family.
It is highly inspired by the X-Score SE. However, some terms are different from X-Score
(2). In addition to intermolecular contributions, AutoDock Vina (3) also takes into account
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intramolecular terms; however, the form of intramolecular terms was not described by the
authors and is only available in the source code.

AGping = AGinter + AGintra
AGinter = m [wlAGgaussl + wZAGglluSSZ + w3AGrepulsion 3)
+wsAGH _pond + w5AGhydrophobic]

where AGy;,;—estimated binding energy, AGgauss1, AGgauss2, AGrepuision—members,
characterizing steric interactions, AGyyp,s—contribution of hydrogen bonds,
AGpydrophobic—contribution of hydrophobic interactions, Ny+—number of rotatable bonds,
w;—regression coefficients.

AutoDock Vina (v1.1.2) software implementation was accessed in Ref. [51]. The
PDBQT input files for the ligand and protein were prepared using the AutoDockTools
(ADT) toolkit [52], in particular, prepare_ligand4.py and prepare_receptor4.py scripts with
default settings. To calculate pK values, vina utility was launched in score_only mode.

4.2.4. AutoDock VinaXB (XBSF)

One of the goals of our study is a statistical assessment of importance of a more detailed
account of halogen bonding (XB) in SFs. For this reason, we compare the predictions made
by the very widely used AutoDock Vina SF and its XB containing counterpart, AutoDock
VinaXB (XBSF) [41]. Although different SFs have been reported that explicitly account for
the XB [39,53-58], the choice of XBSF is well justified in our experiment design, since only
the XB part differs in the abovementioned SFs pair (4).

VinaXB vi .
AG{,M’Q“ ) = AGZ(,Z.”Z;”) + AGxp(distance, angle, halogen) 4)
(VinaXB) T . . (Vina) . a-
where AG,; .~ ’—binding energy estimated by AutoDock VinaXB, AG,; ,~'—binding

energy estimated by AutoDock Vina, AGy;—XB correction, which depends on angle,
distance and halogen type.

XBSF software implementation was accessed in Ref. [39]. PDBQT input files for the
ligand and protein were prepared using the AutoDockTools (ADT) toolkit [52], in particular
prepare_ligand4.py and prepare_receptor4.py scripts with default settings. To calculate pK
values, vinaXB utility was launched in score_only mode.

4.2.5. AVina RF20

AVina RF20 (5) is a descriptor-based (ML) scoring function. It combines the prediction
made by AutoDock Vina (empirical SF) with the prediction made by the Random Forest
model considering 20 different factors (hence the RF20 in its name), including solvation
and electrostatic terms similar to those used in AutoDock 4.2 (1).

AVina RF20 has previously been shown to be the most successful scoring function in
the scoring power test in CASF-2016 benchmark. However, this result should be treated
with caution due to the partial overlap [11] of the AVina RF20 training set with the CASF-
2016 coreset and the known peculiarities of ML methods (their greater ability to interpolate
than extrapolate).

AGy " = AGy " + G ©
where AGéxli;”RFZO)‘binding energy estimated by AVina RF20, AGéxliga)—binding energy

estimated by AutoDock Vina, AG(RF20) —correction made by the random forest model.

AVina RF20 software implementation was accessed at Ref. [59]. PDBQT input files for
the ligand and protein were prepared using the AutoDockTools (ADT) toolkit [52], in par-
ticular the prepare_ligand4.py and prepare_receptor4.py scripts with default settings. For
information on installation and running the AVina RF20 software, see the documentation
provided by the developer.
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4.2.6. NNScore 2.0

NNScore 2.0 is another example of descriptor-based SF in our test. It also takes
AutoDock Vina prediction into account but, unlike AVina RF20, it uses a different ML
approach. NNScore 2.0 averages the prediction of an ensemble of 20 pre-trained neural
networks that make their predictions based on AutoDock Vina term values (3) and BINANA
descriptors [60]. Each of the networks was trained using its own variant of the training set.

NNScore 2.0 software implementation was accessed in Ref. [61] (v2.02). PDBQT input
files for the ligand and protein were prepared using the AutoDockTools (ADT) toolkit [52],
namely the prepare_ligand4.py and prepare_receptor4.py scripts with default settings. For
information about installing and running NNScore 2.0 software, see the documentation
provided by the developer.

4.2.7. DSX (DrugScoreX)

A single Knowledge-Based SF is represented in our panel by DrugScoreX (DSX) [43]
as the most available outside of commercial packages. Unlike predictions made by other
functions, DSX scores are negative by default. To make comparison more even, DSX scores
were taken with the opposite signs, making them positive.

DSX software implementation was accessed in Ref. [62] (v0.90).

4.2.8. ASAS Scoring Function

A special scoring function ASAS estimates only the change in solvent accessible surface
area (SAS) upon formation of the ligand-receptor complex. It was chosen for comparison
purposes as the lower bound of quality. The idea was borrowed from the CASF-2016
Update study [11], where this SF performed perhaps surprisingly well compared to more
full-featured SFs.

The ASAS scoring function was implemented [63] in our study using PyMOL
(v2.3.0) [64] API, specifically the get_area function [65] in solvent accessible surface area
(SASA) mode. The dot density parameter was set equal to 3. The radius of the solvent
molecule was set equal to 1.0 A, asin Ref. [11].

To calculate the ASAS value, we first calculate the SASA of the ligand molecule
(ligand_sasa), the protein molecule (protein_sasa) and the entire ligand-protein complex
(complex_sasa). Then the final value of ASAS was calculated as follows (6):

ASAS = (ligand_sasa + protein_sasa — complex_sasa)/2 (6)

4.3. Fragments Related to Medicinal Chemistry Interactions

In this work, in order to search for and systematically take into account scoring
function errors, it is proposed to take into account intermolecular interactions. A huge
number of structurally different fragments participate in intermolecular interactions. At
the same time, it is clear that not all of them can be decisive for binding.

From the point of view of medicinal chemistry, the following interactions are usually
considered: hydrogen and halogen bonds, polar, halogens and aromatic rings, hydrophobic,
aryl—aryl and alkyl—aryl, cation—7 [10].

The work [66] estimates the frequency of the abovementioned types of interactions
in experimental ligand—protein complex geometries, including hydrophobic, hydrogen
bonding, -stacking, weak hydrogen bonding, salt bridge, amide stacking, cation—m. The
most frequent found interactions are the hydrophobic interactions, followed by less frequent
hydrogen bonding and 7-stacking.

Practical tools for drug discovery are also based on the same concepts of intermolecular
interaction. When forming pharmacophore features, medicinal chemists use the same
concepts of intermolecular interactions, including, for example, hydrogen bond donors,
hydrogen bond acceptors, hydrophobic, ionic, and aromatic interactions [67,68]. Similar
types of interactions, e.g., hydrogen bonds, hydrophobic and ionic interactions are the most
common interactions taken into account by empirical scoring functions [4,69,70]. Aryl-aryl
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and aryl-alkyl interactions occur in scoring functions such as rDock [71], POLSCORE [72],
ID-Score [73]. Cation— interactions are presented in the ID-Score scoring function. Despite
the main and decisive interactions seem to be well represented, the more subtle interactions
require additional attention. For example, an insufficient consideration of halogen bonds in
the design of new drugs is pointed out [74,75].

As a result of the theoretical and practical considerations, the following set of the basic
interactions was proposed (Table 11): hydrogen bonding, hydrophobic, aryl-aryl, and salt
bridge. These interactions were complemented by the finer halogen bonding and cation-7t
interactions, as they are also well represented in PDB complexes.

Table 11. Fragment types describing intermolecular interactions expressed using SMARTS.

# Type Interaction Title SMARTS Expression

1 Hydrogen bonding, Donors HBD1 ['$([#6,H0,-,-2,-3]),%([n;H1])]

2 Hydrogen bonding, Donors HBD2 [$(['HO;#7,#8,#9]),$([n;H1])]

3 Hydrogen bonding, Acceptors HBA [!$([#6’*ESF;?IZI(/:0;S/8§E#N7- Ygf)l,gzlilélivéﬂ#:l65)6]’)*]+1’*+2/
4 Halogen bonding Hal [$([C1,Br,L!$(CIC);!$(BrC);!1$(1IC)])]
5 Hydrophobic HP1 [CX4]

6 Hydrophobic HP2 [$([CX3] = [CX3])]

7 Hydrophobic HP3 [$([CX2]#CO)]

8 Aryl-Aryl (rt-m) PIPI [a]

9 Cation-7t PICat [#6]~'@[+1]

10 Salt Bridge SaltBridge [+1,—1]

11 Fluorine F [F]

It is assumed that fluorine atoms do not form halogen bonds; therefore, fluorine
atoms were not included in the main set of generalized fragments. However, the set of
complexes used in the work contains ligands with fluorine atoms. As a rule, fluorine atoms
are introduced into the ligand to improve the ADMET properties, in particular, to prevent
metabolism at certain positions of the ligand, or to slightly increase the lipophilicity of the
fragment. Fluorine, as a functional group does not carry out explicit and well interpretable
intermolecular interactions with the target. Initially, the fluorine atom was not considered
separately, but rather as a representative for the Hal (halogen) group. However, later we
decided to isolate it because F is not known to participate in halogen bonding (XB), but it is
relatively abundant in the dataset.

For all interactions considered, responsible fragments and functional groups were
defined, which were then generalized and presented as a finite set using SMARTS expres-
sions (see Table 11, #1-10). In the course of the study, a fluorine fragment was isolated as a
hypothesis (see Table 11, #11, and a more detailed description above in Section 2).

4.4. Statistical Analysis
4.4.1. Free-Wilson Analysis

To discover the dependence of the values of pK predicted by scoring function as well
as the associated errors of prediction on the ligands chemical features, a Free-Wilson type
analysis [76] was performed in the study.

First, the number of occurrences of each fragment in each molecule was counted.
Correlation (7) between different features was then analyzed as a standard step for QSAR
and highly correlated features (r > 0.9) were excluded.

a-b

— - 7
"= Tl el @
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where r—the correlation coefficient, a—a vector of values of the first feature, b—a vector of
values of the second feature.

The resulting Free-Wilson matrix contained a number of occurrences of each non-
excluded feature for every ligand molecule in a set. Further, for a more meaningful
comparison of the correlation coefficients for different features, the occurrence values of
each chemical feature were normalized, and thus, the per-feature standard scores with zero
mean and unit variance were obtained using sklearn.preprocessing.StandardScaler module
of the scikit-learn (v1.1.2) library [77].

4.4.2. Lasso Regression Method

The Lasso method (8) was used [78] to perform multilinear correlations between the
free variables and the target value (which was either the reference or predicted pK value).
This method was chosen both because of its controllable degree of robustness (in terms of
outliers) and because of the ability to completely eliminate statistically insignificant (free)
variables from the regression.

. 1
win{ 11y~ ot X613 + A1l ®

where y—reference values to be predicted, X—matrix of free variables, B—vector of regres-
sion coefficients, A—regularization parameter, 1-unit vector, Bp—the intercept.

In this work, we used a specific implementation of the Lasso method from the scikit-
learn (v1.1.2) Python library (sklearn.linear_model.Lasso) [79].

4.4.3. Correlation of SFs to the Experimental Values

To analyze the scoring power (i.e., the ability of the scoring function to produce
binding scores in a linear correlation with experimental binding data [11]) of the selected
scoring functions, we performed a linear regression and estimated its statistical properties
such as determination coefficient and standard deviation.

4.4.4. Correlation of the Chemical Features to the Experimental Values

To figure out which of the selected chemical features (i.e., interaction motives) de-
termine the binding characteristics of the ligands in the selected systems, i.e., are more
crucial to be properly described by a particular SF, we performed a statistical analysis
of their importance by performing the Lasso regression (9) with a variable value of the
regularization coefficient A in the Lasso Equation (8).

pKiet = Lasso(FW, A) Z:Ble + Bo 9)

where pK.s—reference (experimentally determined) value of pK, FW—Free-Wilson matrix,
A—regularization coefficient, x;,—specific chemical feature, N—number of the chemical
features, p;—regression coefficients.

Features which have higher regression coefficients and that are not excluded at high
values of the regularization parameter A are considered more statistically (and therefore
chemically) important.

4.4.5. Correlation of the Chemical Features to the SF Values

Then, in order to analyze which features are actually reproduced by each of the SFs,
we performed a similar analysis for the predicted pK values (10).

pKsp = Lasso(FW, ) Zﬁle + Bo (10)
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where pKsp—value of pK predicted by SF, FW—Free-Wilson matrix, A—regularization
coefficient, x;—specific chemical feature, N—number of the chemical features,
Bi—regression coefficients.

Comparing the correlation coefficients for the pK.¢ correlation with chemical features
(9) and similar correlations with the SF predicted (10) pKsp values, we can obtain a first
impression of the quality of the predictions made by a particular SE.

4.4.6. Correlation of the Chemical Features to the Residual Error of SF Prediction

To evaluate the deficiencies in the scoring function estimations in terms of interaction
motifs (chemical features), we built a combined model that includes both the Free-Wilson
matrix of the chemical features and scoring function predictions (11).

N
pKiet = Lasso(FW +SF,A) =Y " B;x; + BsepKsr + Bo (11)
7

where pK.s—reference (experimentally determined) value of pK, FW + SF—Free-Wilson
matrix supplemented with a column of the SF values, A—the regularization coefficient,
x;—a specific chemical feature, N—the number of the chemical features, f;—the regression
coefficients for chemical features, pKsp—the value of pK predicted by SE, fsp—the regression
coefficient for the predicted pKgg.

5. Conclusions

Our proof-of-concept work shows that the presence of certain features in the ligands
responsible for plausible intermolecular ligand-receptor interactions does indeed corre-
late with the experimentally determined affinities for the CASF-2016 Update core set of
ligand-receptor complexes. Moreover, in line with conventional wisdom in drug discovery,
ligand-receptor affinity is dominated by hydrophobic and aromatic interactions. According
to our results, the presence of charged features in ligands does not contribute to affin-
ity. This is also consistent with both the theory where a desolvation penalty is paid and
with drug discovery practice where the charged species are added to improve ADMET
properties of predominantly hydrophobic molecules at some expense of their affinity [80].

The most valuable result of our study is that the residual error of the SF values relative
to the experimental affinities does indeed reasonably correlate with the presence of chemical
features (responsible for the basic intermolecular interactions) only in ligands from a set of
ligand-receptor complexes. Moreover, different SFs show different correlation patterns of
residual errors and ligand’s chemical features, thus confirming our initial assumption that
SFs tend to be partially biased to better represent certain types of interaction at the expense
of others. In general, we can safely state that even the basic interactions are not perfectly
represented in contemporary SFs. Thus, a general approach is proposed to identify the
shortcomings of SFs in terms of the description of interactions involving specific ligand’s
features. This approach, combined with fine tuning tools to improve the description of
problematic interactions, paves the way for the systematic study and improvement of SFs.

However, it should be noted that the straightforward application of the proposed
approach is limited by the scarcity of reliable available data for ligand-receptor complexes,
which is a common problem in this area.
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