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Abstract: Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover
their normal functionality. Advantages over other current methods are well established, although a
continuous evolution is still necessary to improve the final performance and the range of applications.
Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical
structures and the capability to render a sustained delivery of bioactive molecules under an appro-
priate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a
predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, os-
teoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability
of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently
great efforts have been invested to increase the range of properties of available materials through
copolymerization, blending, or combining structures constituted by different materials. Scaffolds
can be obtained from different processes that differ in characteristics, such as texture or porosity.
Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a
great similarity with the extracellular matrix and, in addition, they can easily incorporate functional
and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate
complex systems able to incorporate highly different agents. The present review is mainly focused on
the recent works performed with Hap-loaded scaffolds having at least one structural layer composed
of core/shell nanofibers.

Keywords: multifunctional scaffolds; tissue regeneration; bone tissue; hydroxyapatite; coaxial
electrospinning; emulsion electrospinning

1. Introduction

Organ failure and tissue loss are problems that affect millions of individuals annually.
It should be taken into account the multiple surgical interventions and the corresponding
health care costs that are required to address these issues. In addition, surgical strategies
such as organ transplantation, tissue transfer (i.e., from healthy to damaged sites), and even
substitution with mechanical devices have serious limitations (e.g., the number of potential
organ donors, imperfect matching between tissues, and limited durability of devices).
Therefore, tissue engineering appears as a fundamental tool to restore damaged tissue
(e.g., by trauma or acquired diseases) and recover its normal functionality. Regenerative
medicine refers specifically to the science focused on replacing cells, tissues, or organs and
restoring the corresponding biological function [1]. The development of natural or synthetic
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materials able to improve damaged tissue is a crucial point of tissue engineering [2]. From
a biological point of view, it should be considered the capacity of tissues to be constantly
remodeled, the possibility of reorganizing cells under appropriate culture conditions, and
the advantages provided by a biodegradable and biocompatible template (scaffold) to guide
cell reconstruction (i.e., the replacement and rebuilding of the damaged tissue). Obviously,
oxygen and nutrient exchange can limit the volume of the implanted scaffold. Thus, final
solutions should consider the necessity to provide sufficient vascularization in order to
satisfy the needs of nutrient supply and clearance of products. Tissue engineering includes
the study of the regeneration of different types of tissues (e.g., urologic, cardiovascular,
nerves, skin, cartilage, or bones). Namely, tissues have different intrinsic characteristics
that usually require different solutions. Bone regeneration is a complex process that
involves an interplay of molecular events that promote the migration, proliferation, and
differentiation of mesenchymal cells. For a better understanding of the complexity of
the host cellular response to the implantation of bone regeneration scaffolds, Figure 1 is
presented [3,4]. Despite the intensive research and the great advances that have been made
in the identification and understanding of the cellular and molecular events triggered by
the implanted scaffolds, (e.g., the role played by cell-signaling molecules), the activated
mechanisms are not fully elucidated and wide room for improvement exists. In addition
to the biological aspect that can condition the design and material selection for bone
regenerative therapy, there is an important economical factor to be considered, as bone
defect repairing represents a cost higher than USD 5 billion annually [4].
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In addition, implant-related bone infections are a major problem in orthopedic 
surgery. Thus, the infection risk through open wounds and broken bones can vary from 
10% to 50%, depending on the specific case. This feature constitutes nowadays a serious 
burden in health care [5]. Biofilm formation over a medical device can easily start with the 
adhesion of planktonic bacteria through interactions (e.g., hydrophobic, electrostatic, and 
van der Waals) that enable unspecific attachment (Figure 2) [6]. After this colonization, a 
biofilm able to shield bacteria from the immune cells is formed. Incorporation of effective 

Figure 1. Scheme showing features from implants at the bone defect site that influence the host
response. These may include growth factors (or their analogues) released from scaffolds or platelet-
enriched plasma-seeded materials, or growth factors released from natural or genetically modified
housing cells. In response, cell homing, enhanced vascularization, and bone regeneration will occur.
Adapted from [4].

In addition, implant-related bone infections are a major problem in orthopedic surgery.
Thus, the infection risk through open wounds and broken bones can vary from 10%
to 50%, depending on the specific case. This feature constitutes nowadays a serious
burden in health care [5]. Biofilm formation over a medical device can easily start with the
adhesion of planktonic bacteria through interactions (e.g., hydrophobic, electrostatic, and
van der Waals) that enable unspecific attachment (Figure 2) [6]. After this colonization, a
biofilm able to shield bacteria from the immune cells is formed. Incorporation of effective
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antibacterial agents in implants and scaffolds remains an unsolved problem. Polymers
offer great potential as matrices for scaffolds and implants since they can be chemically
and structurally modified, allowing the modulation of their final properties. Intensive
research has been focused on the development of new polymeric-based systems having the
appropriate functionalities. In this sense, a great variety of potential new biomaterials are
being investigated using high-yield methods and rapid nanoscale synthesis [7]. Chip-like
devices can subsequently be employed to screen the cell-polymer interactions that can
be established. The impact of structural modifications on the polymer structure can be
revealed according to the observed differences in the cellular responses.
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Figure 2. Scheme showing biofilm formation and window of opportunity for effective clearance of
bacteria. Biofilm formation leads to an increased tolerance against the immune system, antibiotics,
and possible chronicity of the infection. QS and EPS indicate quorum sensing intercellular signalling
molecules and extracellular polymer substances, respectively. Reproduced with permission from [6].

Osteoinductive materials have the ability to induce in vivo bone formation through
appropriate instructions to their surrounding environment. Natural ceramics (e.g., hy-
droxyapatite and HAp) and their composites with biodegradable polymers are extensively
studied. In general, hybrid materials, blends, copolymers, and composites are preferable
to satisfy a wide range of requirements (e.g., mechanical properties, bioactivity, and hy-
drophilicity). Hydrogels are also interesting systems due to their capacity to mimic the
extracellular matrix (ECM) and deliver bioactive agents. Efforts are also focused on the
design of materials with the capacity to modulate the immune system and favor bone regen-
eration. In this sense, surface treatments (i.e., the development of hydrophilic surfaces, anti-
fouling coatings, and micro/nano surface texturization) and the encapsulation/delivery of
bioactive molecules should be considered.

The development of multifunctional scaffolds appears as an essential strategy to fulfill
all of the above-indicated requirements. Furthermore, it should be pointed out that ther-
apies for bone cancer (osteosarcoma), such as surgical intervention or radiotherapy, are
limited and do not assure the complete eradication of malignant cells. In addition, treat-
ments fully based on a systemic administration of chemotherapeutic drugs are problematic
due to the poor diffusion of the active compounds through bone tissues. A high dosage is
required with the associated detrimental effects on the organs of the body [8]. The local
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drug delivery from appropriate and multifunctional scaffolds may facilitate the application
of new therapies, such as hyperthermia and photothermal treatments (Figure 3) [9,10].
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magnetic, and electric field stimuli. Reproduced with permission from [10].

Different preparation methods have been developed to obtain multifunctional scaf-
folds for tissue regeneration. In general, the most interesting devices are based on complex
systems that provide different characteristics, for example, a combination of large and
small pores or a distribution of materials with a different affinity with the loaded active
agents. Membranes constituted by nanofibers appear interesting as one of the hierarchical
constituents since they are ideal to mimic the characteristics of the natural ECM. As afore-
mentioned, hydrogel scaffolds attract attention in this matter since recent developments
allow control of mechanical properties while supplying calcium for bone regeneration
applications [11]. Specifically, CaCO3 nanoparticles can be incorporated into a hydrogel,
giving rise to enhanced mechanical properties and calcium release after exposure to weak
acid environments (Figure 4). Biomimetic scaffolds based on natural gel-like polymers are
highly interesting for bone regeneration due to probed biological safety and the easy ability
to modify their surface [12]. Nowadays, electrospinning is a relatively simple technique
having an inexpensive setup. The technique can provide porous structural supports for
cells and also load them with multiple bioactive factors. Great efforts have been focused
on the production of submicron-sized nonwoven fibrous scaffolds, being justified by a
detailed discussion of such systems.
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Specifically, the present review is focused on the more recent developments concerning
multifunctional hybrid scaffolds that incorporate HAp as an osteogenic component and
that at least have a layer/membrane fabricated by advanced electrospinning procedures
(i.e., coaxial, emulsion, or melt electrospinning). The review is structured in the following
chapters: a general overview of HAp characteristics (Section 2); a general discussion about
bone tissue strategies and multifunctional scaffolds (Section 3), which includes a descrip-
tion of the most employed natural and synthetic materials for bone tissue regeneration
(Section 3.1), surface functionalization (Section 3.2), and incorporation of functional com-
pounds (Section 3.3); a detailed explanation of electrospinning (Section 4) with especial
emphasis to coaxial (Section 4.1) and emulsion (Section 4.2) processes; and, finally, detailed
exposure of the most relevant advances on electrospun multifunctional scaffolds developed
for bone tissue regeneration (Section 5).

2. Hydroxyapatite for Tissue Regeneration and Drug Delivery

Calcium phosphates (CaPs) and their composites with polymeric matrices appear as
ideal mimicking materials for the regeneration of hard connective tissues (e.g., bones, teeth,
and cartilages) due to intrinsic advantages that affect the mineralization process [13]. HAp
is a naturally occurring CaP that is defined by the formula Ca10(PO4)6(OH)2 and that has
an especial biological relevance. HAp clearly favors osteoinduction, osteoconduction, and
osteointegration, which refer to the capacity of undifferentiated cells to render osteoblasts
and osteocytes, the capacity to favor cell growth and the capacity to facilitate the contact
between the living tissue and the implant, respectively [14]. Development of an appropriate
material for tissue regeneration is complex and requires the appropriate combination of
osteogenic cells, a biocompatible/biodegradable polymeric matrix with architecture and
composition able to mimic the natural ECM and, finally, a vascularization to provide the
transport of nutrients and metabolic products as well as bioactive agents [4,15]. HAp
appears also an ideal compound for drug delivery applications since its nanoparticles
(NPs) can be dissolved in acidic environments (e.g., lysosome vesicles of normal cells
and extracellular media of cancer cells). Active compounds can be encapsulated into NPs
during preparation (synthesis) or adsorbed on the surface, providing slow and fast releases,
respectively. In any case, control of morphology (from needle to spherical shapes) is basic
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to tune the therapeutic behavior [16]. Synthetic HAp NPs can be prepared by precipitation
methods according to simple processes, which also allow the control of morphology and
size by small modifications of the experimental procedure [17,18]. Figure 5 displays, for
example, the high variety of morphologies that can be achieved by only changing the pH
of the precipitation solution. Rapid mixing of precursor solutions leads to the precipitation
of amorphous calcium phosphate (ACP), which can subsequently be converted into the
crystalline HAp form by a hydrothermal treatment [19,20], although other methodologies
have also been successfully developed (e.g., self-assembly, spray drying, double emulsion,
and sol–gel) [17,21–23].
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Biomedical benefits derived from the implantation of materials incorporating HAp
are strongly dependent on the ability to form interactions with the surrounding cells [24].
Therefore, surface treatments are habitual and also conside their effect on the adsorption
and delivery of active pharmacological agents. Control of surface roughness and charge
are primordial factors [25] that can be achieved by the incorporation of charged small
compounds (e.g., citric acid [26]) and ions, such as Cu2+ and Ag+ which, in addition, can
provide a bactericide effect [27]. Grafting of polymers on the HAp surface can also provide
specific advantages such as the improvement of osteoconductivity [28], osteoblast differen-
tiation [29], compatibility with the polymeric matrix [30], and control of cell differentiation
by electric stimulation [31].

The use of HAp for drug delivery applications mainly concerns the encapsulation of
bone morphogenetic proteins [32,33], fibroblast growth factors [33–35], alendronate as an
antiosteoporosis agent [36], antibiotics (e.g., minocycline, doxycycline, dexamethasone, gen-
tamicin, and erythromycin) [37–40], and vitamins [41]. Encapsulation of chloramphenicol
(CAM) has recently taken relevancy since. In addition to being a wide-spectrum antibiotic,
it can be used in cancer therapy due to the proven capacity of CAM to induce the mitochon-
drial dysfunction of cancer cells [42,43]. HAp NPs loaded with streptomycin antibiotics
have recently been revealed to be appropriate against bacterial infections and appear also
promising for the treatment of cancer cells [44].

HAp NPs appear also promising as a non-viral gene vector due to their practically
null immunogenicity and their availability to load transgenes with highly different sizes.
HAp can also establish good interactions with DNA (basically through the interactions
of calcium ions with the phosphate groups of DNA). Therefore, HAp becomes an ideal
adsorbing and encapsulation agent [45,46]. Furthermore, HAp NPs seem to provide good
protection for DNA (even against the Dnase digestion [47]) and seem able to incorporate
DNA with a minimum distortion of its crystalline structure (Figure 6) [48].
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3. Multifunctional Scaffolds

The development of multifunctional bioscaffolds is, nowadays, one of the main con-
cerns due to their implications on different areas of tissue engineering (e.g., cardiovascular,
nervous, muscle, and bone tissues) through their capacity to deliver different bioactive
molecules and to act as appropriate physicochemical support to a great variety of cells
(Figure 7) [50].
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Figure 7. Scheme indicating the main requirements of bioscaffolds and their potential interest for
different areas of tissue engineering. Adapted from [50].

Bone tissue engineering (BTE) is one of the clearest examples of interest to develop 3D
multifunctional scaffolds. These can prevent bone infections through local drug delivery
and kill cancer cells located on bone defects (e.g., through hyperthermia or photothermal
treatments), alongside the regeneration of the tissue [51–54]. Bone is a composite formed
by organic components (mainly collagen I) and inorganic (mainly HAp) components. HAp
is deposited in the collagen fibrils (the crystallographic c-axis being aligned with the axis
of the fibril) and rendered osteons as a basic unit of bone (Figure 8) [55]. Bone has two
macroscopic tissues: the cortical bone with low porosity and high mechanical properties,
and the trabecular bone with a high porosity that allows contact with blood cells [56].
Techniques, such as 3D printing and electrospinning, appear nowadays ideal to reproduce
the complex shape of a bone defect due to the precise control over microstructure and their
great reproducibility.
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The success of tissue engineering strategies depends on an appropriate combination of
biomaterials, (with or without surface functionalization), growth factors, and other active
agents to stimulate the regeneration of the tissue and the neovessel formation (angiogenesis)
after implantation [57].

Concerning preparation techniques, an excellent review has been performed by
Bigham et al. [54]. There, both the traditional techniques (e.g., polymer sponge, leaching,
freeze-drying, or foaming) and the procedures that allow a high control over microstructure
are discussed (e.g., 3D printing and electrospinning). The role of stimuli to activate the mul-
tifunctionalized scaffolds to direct cellular behaviours is discussed in detail by Tai et al. [58].
The synthesis of architecturally controlled polymers seems a new great avenue for the
development of scaffolds for tissue engineering. “Click” chemistry appears as an oppor-
tunity to develop bioactive materials (mainly based on proteins and peptides). Basically,
“click” chemistry refers to a group of reactions that can be employed in a wide scope and
have particular characteristics such as high yield, generation of inoffensive by-products,
stereospecificity, and modularity [59]. For example, copper (I)-catalyzed alkyne-azide
cycloaddition (CuAAC), strain-promoted alkyne-azide cycloaddition (SPAAC), thiol-X,
Diels-Alder (DA), and oxime ligation methods have been discussed in detail, as well as
their application in polymeric scaffold fabrication, has been reviewed by Zou et al. [60].

Three-dimensional printing technologies (not considered in the present review) rep-
resent, nowadays, one of the more powerful processes to produce functional scaffolds.
Methods such as fused deposition modelling, stereolithography, selective laser sintering,
and bioprinting have been discussed with a focus on tissue engineering [61].

3.1. Biopolymers and Synthetic Polymers

Type I collagen (Col) is the main organic constituent of the dermis, tendons, ligaments,
dentin, and bone. COL1A1 and COL1A2 genes give rise to polymeric chains that sub-
sequently are combined in the triple-stranded pro-collagen molecules. These are finally
arranged forming compact, long, and thin fibers (diameters in the 100–200 nm range)
that cross-link via lysine residues around cells [62,63]. Col for composite preparations
is usually obtained from pig skin, bovine, or horse tendons. Col/HAp composites are
mainly prepared according to two methodologies [64,65]. (a) The addition of HAp NPs to
a Col suspension and subsequent lyophilization; and (b) the immersion of a porous Col
scaffold into a suspension of HAp NPs and, subsequently, lyophilization. Multiple works
demonstrated the ability of Col/HAp nanocomposites to stimulate the formation of new
bone tissue [66]. Furthermore, these nanocomposites seem to act as a source of calcium
cations that are incorporated into the regenerated tissue [67].

Interestingly, it has been observed that differentiation of osteoblasts into osteoclasts
can be performed in Col/HAp membranes without the addition of other factors [68], a
feature that contrasts with the observation carried out using only HAp. Probably, Col/HAp
composites display exceptional properties (e.g., flexibility, high strength, biocompatibility
bioactivity osteoconductivity, and bioresorbability [63]). Gelatin (Gel) derives from the
degradation of the triple helix of Col that leads to single molecules. Applications are usually
limited due to poor mechanical properties. Nevertheless, hydrogels exhibit biocompatibility
and appear useful as good vehicles for cell transplantation after cross-linking with non-
toxic enzymes [69]. Hyaluronic acid (HylA) is a linear and hydrophilic polymer constituted
by N-acetyl glucosamine and glucuronic acid units. HylA has a high interest in bone
regeneration due to its high elasticity, biocompatibility, degradability, osteoconductivity,
and cell signalling function that enhances cell proliferation and differentiation [70,71]. HylA
has also extended clinical applications as an injectable hydrogel that can subsequently be
solidified using, for example, glutaraldehyde as a crosslinking agent [72]. Composite gels
constituted by HylA copolymers and HAp have been developed for enhanced bone tissue
regeneration [73]. Pyrogallol-conjugated HylA polymers appear ideal to obtain adhesive
hydrogels containing HAp taking profit of the chelating properties of galloyl ligands [74].
HylA/HAp hydrogels also have promising applications as inks for bioprinting [75].
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Chitosan (CS) is a linear copolymer of glucosamine and N-acetylglucosamine that is
obtained from partial deacetylation under alkaline conditions of natural chitin [76]. Amino
chitosan groups can interact with the calcium ions of HAp and act as nucleation sites for
the growth of the inorganic component [77]. The first systems involving HAp and CS were
applied for bone-filling cement [78]. The effectiveness of CS/HAp formulations has been
demonstrated for the enhancement of in vivo bone tissue regeneration, delivery of stem
cells, growth factors and bioactive drugs, and coatings to facilitate osseointegration [79–82].
Alginate (Alg) is a linear biopolymer composed of irregular blocks of β-D-mannuronate
α-L-guluronnate residues that are mainly obtained from algae [83]. This biopolymer easily
forms hydrogels through interactions with sodium and calcium ions, which have high
applications for bone regeneration, drug delivery, and wound healing [84]. The addition
of phosphate precursors to the calcium-Alg complex favours the HAp nucleation and
leads to biocomposites with enhanced mechanical properties (e.g., hardness) and decreased
porosity [85]. Alg/HAp composites seem appropriated for small-sized tissue defects,
although the direct application for large bone defects needs to be improved [79].

Cellulose (Cel), the most abundant natural polymer on the earth and is composed of D-
glucose units linked through glycosidic bonds. The linear syndiotactic chains can establish
strong intermolecular hydrogen bonds giving rise to highly crystalline and insoluble
materials. Interest in Cel and its derivatives is a consequence of their low cost, excellent
mechanical properties, high porosity, biodegradability, and biocompatibility [86]. Bacterial
nanocellulose or microbial cellulose has been proposed as an ideal nanomaterial for tissue
engineering applications due to its wound-healing effect, fast tissue regeneration, and
low inflammatory response [87,88]. Nanocellulose-based scaffolds functionalized with
Col have shown excellent adhesion and proliferation of osteoblasts together with a high
alkaline phosphatase expression and, consequently, are promising materials for tissue
engineering [89]. HAp/bacterial Cel (BC) scaffolds have been considered an interesting
biomimetic approach for bone-healing applications [90].

HAp NPs have similarly been combined with synthetic polymers in order to improve
the mechanical properties of the scaffolds while maintaining the bioactive properties of
the calcium phosphate. These NPs are normally combined with FDA-approved polymers.
This is the case of polylactide (PLA) is currently the second most consumed bioplastic
in the world due to its wide commodity and specialty applications. The polymer can be
produced from renewable resources such as starch, corn, and sugarcane and is usually
synthesized by the ring-opening polymerization of cyclic lactide dimers in the presence of
metal catalysts. The stereoregular PLLA polymer (derived from L-lactide) is characterized
by a glass transition temperature of 60–65 ◦C, a melting point of 175 ◦C, a crystallinity
around 35%, and elastic modulus in the 2.5–16 GPa range [91]. These properties can be
modified by the occurrence of racemization reactions, the synthesis from meso L-,D-lactide,
or the random copolymerization of L-lactide and D-lactide monomer mixtures. Copolymers
of lactide and glycolide (PLGA) have also a high relevance for biomedical applications due
to their tuneable properties (e.g., degradation rate and degree of crystallinity) when the
composition is varied [92].

PLA/HAp composites are able to modulate the cell environment in the function of
the final structure of the system (coating, scaffold, fiber matrix, and hydrogel), allowing
cell colonization and preserving mechanical properties until the regeneration of the tissue.
The performance of PLA/HAp systems can be improved considering the capacity of both
components to entrap molecules with biological activity. PLA/HAp systems can be easily
prepared according to different processes/technologies, which can be specific. Examples
include polymerization using HAp as an initiator, grafting of HAp on PLA oligomers, or
more general processes such as electrodeposition, phase separation, and electrospinning.
For example, an organic bone (i.e., HAp derived from mammalian bone) has been employed
to induce a surface-initiated polymerization of lactide that led to composites with highly
similar properties to bone tissues [93,94]. HAp NPs grafted with PLA can be obtained by
direct polymerization of lactide onto the surface of NPs. Systems have a high potential to
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be used as bone fixation materials due to their good interfacial compatibility [95]. Grafting
onto HAp surfaces can also be performed through ionic interactions between carboxylic
terminal groups of PLA and Ca2+ ions of HAp and, therefore, the use of catalysts and
coupling agents can be avoided [96,97]. Phase separation techniques have successfully been
applied to mimic the nano-sized features of natural bone and obtain PLA/HAp materials
with good mechanical properties and protein absorption capacity [98,99]. Applications of
electrospinning will be extensively developed in the next sections, but it is interesting to
point out the potential of electrodeposition of HAp over fiber-covered electrodes (Figure 9).
The deposition was enhanced by electrochemical reactions and a local pH increase that led
to a super-saturation of calcium phosphate and a fast formation of a HAp layer. A lower
formation rate was characteristic after a conventional immersion on simulated body fluids
(i.e., 12 days instead of 60 h) [100].
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Poly(lactic-co-glycolic acid) PLGA/HAp composites have excellent in vitro proper-
ties due to the effects of nanoHAp (e.g., improvement of mechanical properties, an in-
crease in water absorption, cell adhesion and proliferation, and high alkaline phosphatase
activity) [101].

Polycaprolactone (PCL) and polyvinylalcohol (PVA) are two other polymers that
have been widely applied in biomedical applications. The first one provides excellent
mechanical properties but is highly hydrophobic and lacks cell recognition sites to favour
cell attachment [102]. By contrast, the second one is hydrophilic and displays a high affinity
for cell adhesion [103].

Polyhydroxyalkanoates (PHAs) are a family of biobased polyesters that can be ob-
tained by bacterial fermentation [104]. Poly(3-hydroxybutyrate) (PHB), the shortest chain
length member of PHAs, has received special attention due to its natural origin, and
good performance that is combined with non-toxicity, biodegradability, and biocompati-
bility [105]. Despite the monomer having a chiral center, a single polymer configuration
(enantiomer) is obtained by the biochemical process, a feature that leads to some limita-
tions, such as high crystallinity and rigidity. Therefore, copolymers incorporating small
percentages of other alkanoate units (e.g., poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV)) are also considered to control the chain stiffness and increase both degradability
and resorbability as a consequence of the reduction in the degree of crystallinity [106]. The
main product of degradation, 3-hydroxybutyric acid, is beneficial for tissue engineering
applications since it increases the calcium influx in cells [107]. Additional challenges of
P3HB correspond to its relatively high cost of production, its lack of bioactivity [108,109],
its hydrophobic character, and the difficulty to be processed due to the closeness between
thermal degradation temperature and melting temperature (i.e., around 180 ◦C) [110]. Ef-
forts to address these issues are nowadays justified considering the high potential of PHAs
for biomedical applications as revealed by different research works concerning bone tissue
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engineering. PHB biomaterials show a piezoelectric character that favours in vivo bone
growth [111]. Therefore, composites constituted by P3HB-based materials and HAp as a
bioactive ceramic may provide an appropriate combination of mechanical and chemical
properties [112].

Incorporation of HAp into P3HB composites has been proven effective to stimulate
cell proliferation and to increase the growth and differentiation toward the osteoblast’s phe-
notype [113,114]. Different patches for the enhancement of bone regeneration have recently
been developed [115–118], although no clinical trials have been performed since P3HB is
not yet approved by the corresponding agencies (e.g., the Food and Drug Administration).
These PHA/HAp composites led to a favourable bone tissue adaptation response without
any chronic inflammatory effect in a 12-month evaluation period [119]. Bone quickly devel-
oped around the implant surface without being detected any in vivo structural breakage.
In vitro studies using a simulated body fluid (SBF) showed the rapid development of bone-
like apatite over a P3HB/HAp composite [120]. Bioactivity and, in general, mechanical
properties can be modulated by modifying the amount of HAp. Composites from both
P3HB and 3-hydroxybutyrate/3-hydroxyvalerate copolymers could achieve a compression
modulus as high as 62 MPa (i.e., similar to human bone) and, therefore, seem adequate for
the fixation of fractures [121].

Conductive polymers (e.g., polyaniline, polypyrrole, and polythiophene) have a rele-
vant role in tissue regeneration (including bone) by allowing cells cultured on them to be
stimulated by electrical signals. Usually, these polymers are blended with biodegradable
polymers to improve mechanical properties and processability [122].

3.2. Surface Functionalization

The surface of Hap particles has usually been modified since it is a key factor that
determines the capability to form appropriate interactions with surrounding cells [24]. In
addition, protein adsorption and in general interactions with drugs and polymers depend
obviously on the functionality and conformation of involved compounds, but also on
the roughness, pore size, charge, and growth face of HAp NPs [25,123]. Calcium and
phosphate ionic sites in the HAp surface can interact with COO− and NH3+ groups of
bone morphogenetic proteins, peptide growth factors (e.g., arginine-glycine-aspartate),
and ionizable groups of active compounds (e.g., antibiotics). Furthermore, interactions
able to improve compatibility can be established with polymer matrices having ionizable
groups. Surface modification may consist of simple physical adsorption, but also a chemical
immobilization such as the establishment of covalent links, ionic bombardment, or acid-
base treatments. Precipitation processes can be used to immobilize amino acids and other
compounds (e.g., mercapto succinic and citric acids) of distinct nature that lead to ideal
acid or basic surfaces for the subsequent adsorption of negatively and positively charged
compounds (e.g., the positively charged lysozyme can be easily adsorbed after treatment
with aspartic acid, whereas bovine serum albumin requires treatment with arginine) [124].

Inorganic phosphate derivatives displaying biological functions can easily be incorpo-
rated onto HAp surfaces. Thus, the adsorption of bisphosphonates (BPs) is highly interest-
ing due to their antiresorptive function, their capability to regulate calcium metabolism,
and their ability to bind proteins (e.g., myoglobin and lysozyme) [125–127]. Pyrophos-
phoric acid is also an interesting surface modifier since has a great affinity towards basic
proteins [128].

HAp lacks efficient protection from the immune system and, consequently, implants
based on HAp have a relatively high risk of infection (i.e., implant surgery may represent
around 50% of hospital-acquired infections [129]). Complications can lead to implant failure
and even worse situations, such as amputation [130]. Therefore, the material should be
integrated into the surrounding tissues before the formation of biofilms with high resistance
to typical antibacterial agents (e.g., antibiotics).

A good strategy is the incorporation of functional ions (i.e., Ag+, Zn2+, Cu2+, and
SeO3

2−) onto HAp by coprecipitation or by immersion (i.e., bulk or surface load). Basically,
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these doping agents can inhibit bacterial growth by binding thiol groups of enzymes,
increase the production of reactive oxygen species (ROS), decrease the uptake of phosphate,
or lead to DNA structural changes [131].

HAp is an ideal compound for the load and release of antibacterial agents due to its
great porosity. Usually, HAp is combined with natural and synthetic polymers (e.g., Alg, CS,
Col, PVA, and ciclodextrines) due to its reduced mechanical response (i.e., high brittleness).
Vancomycin (VAN) and gentamicin (GEN) are probably the most applied antibiotics for the
treatment of bone tissue infections. Gram-positive bacteria such as Staphylococcus aureus and
gram-negative bacteria, such as Pseudomonas and Enterobacter spp., are sensitive to VAN and
GEM, respectively. Figure 10 shows, as an example, the effectiveness of a HAp/Col/calcium
sulphate implant loaded with VAN for the reconstruction of a previously infected rabbit
femoris bone [132].
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Figure 10. Micro-computed tomography graphs taken after 12 days of implantation of unloaded
(middle) and VAN loaded (right) HAp/Col/calcium sulfate implants. White arrows indicated the
tissue destruction in different places of the rabbit femoris. A normal femoris bone is shown on the
(left). Reproduced with permission from [132].

The combination of effects caused by doping with antibacterial ions (mainly Ag+) and
the incorporation of antibiotics (e.g., ciprofloxacin, tetracycline, and VAN) has also been
revealed to be effective. Thus, prolonged antibacterial activity and increased efficiency
have been reported in some cases [133].

The surface of PHAs has been modified by physical or chemical immobilization of
Col in order to increase cell proliferation [134]. C+ ion implantation was also effective to
increase biocompatibility with fibroblast cells [135].

3.3. Incorporation of Functional Compounds

Bone remodelling is a crucial process that avoids health problems, such as osteoporo-
sis, and allows effective hard tissue regeneration. It is triggered by osteocytes, which
detect bone defects (e.g., microcracks, mechanical strains, etc.), and involves two opposite
processes: (a) bone resorption controlled by osteoclasts, and (b) bone formation controlled
by osteoblasts. Thus, osteoblasts mineralize the cavities previously produced by osteo-
clasts [136] once the bone defects were detected by osteocytes.

Different natural compounds can be used as osteogenesis inducers. The main ef-
fects are the inhibition of bone resorption and the enhancement of bone formation and
maturation [136]. Different flavonoids (polyphenols obtained from plants) prevent bone
resorption processes while promoting osteoblastogenesis [137] (facilitating differentiation
of mesenchymal cells (MSCs) into osteoblasts). The most representative examples are
(a) epigallocatechin-3-gallate, obtained from the plant Camellia sinensis, which shows a great
capacity to induce cell proliferation, osteogenesis, and mineralization [138], together with
anti-inflammatory, antibacterial, and antioxidant functionalities [139,140]; (b) acemannan,
obtained from plant Aloe vera, has a well-demonstrated capacity to increase both cell prolif-
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eration and bone healing rate, and lead to a fast bone and ligament regeneration [141,142];
(c) icariin, an active agent obtained from Herba Epimediian, which promotes osteoinductiv-
ity (e.g., Alg/HAp [143] and PLGA/β-calcium phosphate [144] systems); (d) curcumin,
the main component of plant Curcuma longa, is a well-known agent for the treatment of
different pathologies due to antibacterial, antioxidant, and healing properties [145] which
enhance cell differentiation, proliferation, and migration and also has beneficial effects
in the treatment of diabetes [146] and osteosarcoma patients [147]; and (e) revesratrol, a
component of fruits such as grapes, berries, and nuts, which improves the blood supply
to bones [148], facilitates the expression of endothelial growth factors and the osteogenic
differentiation, has beneficial effects decreasing tumorigenicity against cancer cells [149],
and shows a high potential for bone and cartilage regeneration [150,151].

Incorporation of growth factors (e.g., the bone morphogenetic protein BMP-2) into
HAp NPs is also an effective way to induce osteogenesis of mesenchymal cells and to
promote adequate vascularization [152]. The vascular endothelial growth factor (VEGF)
plays an essential role in the regulation of angiogenesis and has, consequently, been used for
tissue engineering applications. Surface immobilized growth factors may have advantages
related to greater stability and prolonged function. Therefore, different studies have been
focused on the immobilization of VEGF onto HAp NPs [153]. Results demonstrated a
local regulation of the cell response and the improvement of adhesion and proliferation of
endothelial progenitor cells involved in revascularization processes [154]. The acceleration
of bone growth and the healing of defects can be possible through the incorporation of
fibroblast growth factors [155]. Growth factor proteins are usually substituted by the active
peptide sequences due to their high cost and preservation difficulties. Therefore, peptides
with the core active sequence of BMP-2 (24 amino acids) were found adequate to mimic the
properties of the complete protein [156]. The arginine-glycine-aspartate (RGD) peptide is
the principal integrin-binding domain present within the extracellular matrix proteins. RGD
has consequently been widely employed to functionalize HAp and promote the adhesion
and survival of cells involved in the regeneration process (e.g., fibronectin, vitronectin, and
fibrinogen). However, some cautions should be taken into account due to some inhibitory
effects on bone formation [157]. Interestingly in some cases, the selected peptide sequence
can render better results than the morphogenetic protein. Thus, a 15 amino acid sequence
of an active region of BMP-7 gave rise to a better osteogenic activity than the complete
protein [158].

4. Electrospinning

Electrospinning is a suitable technique to prepare easily fibers from a wide range of
polymeric materials. These fibers have diameters that can vary from the micrometer to the
nanometer scale [159–169]. The basic equipment requires a high-voltage source to charge
the surface of a polymer solution droplet, a micro-dosing pump to continuously feed the
solution to the end of a capillary tube (usually, a hypodermic needle with a blunt tip), and
a grounded target (conductive collector) (Figure 11) [170].

Droplets are deformed into a Taylor cone when the electrostatic repulsion among the
generated surface charges overcomes the surface tension. After that, a jet is ejected from
the needle towards the collector. This jet splits into multiple filaments due to the radial
charge repulsion and gives rise to solidified ultrathin fibers after the evaporation of the
volatile solvent.

Multiple factors can be controlled in order to process the different polymeric systems
and render fibers with a selected morphology. Thus, the geometry of the electrospin-
ning equipment (e.g., horizontal or vertical plane collectors or rotating collector), solution
properties (e.g., viscosity, dielectric constant, volatility, and polymer concentration), and
operational parameters (e.g., the strength of the applied electrical field, deposition distance,
flow rate, and temperature) should be carefully optimized [161,163–166]. Electrospin-
ning favours molecular orientation due to the high elongation rate and cross-sectional
area reduction in the formed fibers. The deposition of electrospun fibers leads to net-
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works with interconnected pores that are interesting for different biomedical applications
(e.g., drug delivery, wound dressings, and blood vessels). Extracellular matrices (ECMs)
can be well mimicked by the electrospun fibers due to their similarity with Col. There-
fore, tissue regeneration becomes one of the most important uses of electrospun scaffolds,
especially considering the ability to control topography (e.g., fiber diameter, diameter distri-
bution, fiber alignment, and porosity) [171–174] and to produce a surface functionalization.
Furthermore, the capacity to encapsulate and render a local release of different agents
(e.g., antioxidants, anti-inflammatory, bactericides, and growth factors) should be taken
into account.
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Scaffolds prepared by conventional electrospinning are constituted of tightly packed
layers of fibers, a feature that can be a serious limitation for tissue engineering. Porosity is
mainly located at the surface of the scaffold and, consequently, the cell growth inside the
material is seriously hindered. Efforts are nowadays focused to provide a real 3D struc-
ture while keeping interconnected pores and nanofibrous morphology [175,176]. Different
methodologies have been reported to generate real 3D scaffolds by means of electrospin-
ning: multilayered assembly [177], template-assisted electrospinning [178], incorporation
of porogen agents [179], and post-treated systems (e.g, tubular scaffolds from rolling the
initial flat layers) [180]. Furthermore, other approaches are being developed by combining
electrospinning with 3D forming technologies [181,182]. Thus, multiscale scaffolds com-
posed of micro and nanoscale structures have been developed [183]. These macrostructures
have good interconnectivity, high porosity, and nanoscale features that allow for enhancing
cell attachment.

The application of electrospinning to develop tissue engineering scaffolds is extensive,
noticeable in the capability to load different bioactive agents. Thus, conveniently loaded
scaffolds can promote the formation of blood vessels during wound repair, as reviewed by
Wu et al. [184]. Specifically, grafts fabricated by electrospinning and loaded with stromal
cell-derived factor 1 (SDF1) or the specificity protein 1 (SP1) showed a clear enhancement
of angiogenesis with respect to unloaded controls (Figure 12) [185].
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Figure 12. Vascular graft fabricated by electrospinning (a,b). Grafts loaded with SP and even SDF-1
had a significantly higher ability to recruit cells (evaluated through the laminin area) to the injury site
than the control (PCL/Col) (c). Adapted from [185].

Electrospun scaffolds functionalized with inorganic, organic, or bioactive agents ap-
pear ideal for tissue engineering applications since outstanding physicochemical and
biological properties can be derived. An outlook concerning the development of such
electrospun composite nanofibers has recently been reported [186].

Bioelectronic sensors have also been developed taking into account that electrospun
fibers may display piezoelectric properties and provide an accurate measurement of static
pressure on the skin [182,187]. Electrospun scaffolds can also be in situ deposited on wound
surfaces for minimally invasive operations [182,188].

Electrospinning can also be carried out from a molten polymer instead of a polymer
solution. Physical principles are similar but there are important differences that concern
the high viscosity of the melt and the necessity to heat the polymer and then cool rapidly
the electrified jet that is formed. This process, called melt electrospinning (MES), offers
some advantages over the traditional solution electrospinning, such as the absence of toxic
solvents and a higher possibility to generate 3D structures due to both the usually higher
diameters of the generated fibers and the more foaming/spongy texture of the deposited
scaffold. Nevertheless, there are limitations concerning thermal degradation and even great
difficulty to control the final morphology [189–193]. Melt electrospinning writing (MEW)
is a different configuration where the extruded filaments are deposited onto the collector
according to determined program instructions that allow building ordered and predefined
architectures (Figure 13). Basically, this 3D printing technology combines the principles of
electrospinning and additive manufacturing [194,195].
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Figure 13. (a) Scheme of a MEW device showing the main parts: dispensing; electrical heating system;
high-voltage source electrode; and computer-assisted collector plate. (b) Scheme of a melt electrospun
fiber scaffold. (c,d) corresponds to micrographs of different types of melt electrowritten samples.
Reproduced with permission from [194,195].

4.1. Coaxial Electrospinning

Complex and diverse fiber morphologies can be obtained by means of coaxial elec-
trospinning, a technique that was first introduced in the early 2000s [196]. Internal fiber
structures can be varied and classified as hollow [197], core–shell [198], tube-in-tube [199],
and multi-layered/multi-channeled [200]. Probably, the core–shell structure is the simplest
and the most studied system. The basic electrospinning equipment only needs to be modi-
fied, in this case by the use of two feeding solutions and a coaxial capillary (Figure 14). The
success of the process depends on geometric parameters such as the inner/outer nozzle
diameter ratio, the separation distance between the two nozzles, and the length of the
nozzles [201,202], as well as physicochemical and operational parameters. Thus, interfacial
properties (e.g., miscibility and compatibility between solutions), flow rate, and viscosity
ratios between the two polymeric solutions are fundamental. The viscosity of the shell
solution should be high in order to overcome the interface surface tension and to render a
stable structure, while the flow rate of this solution must be also high in order to stretch
continuously the core solution continuously [203,204].

Different core–shell systems have been evaluated for biomedical applications. In
this way, fibers with a CS shell and a PLA core have been produced, considering that the
latter could favor the electrospinnability of the former [205]. In a similar way, nanofibers
of the rubbery poly(glycerol sebacate) (PGS) could only be produced by means of co-
electrospinning [206]. In this case, PLA was employed as a shell material able to constrain
PGS and even facilitate its processing. In other cases, the new coaxial fibers have bet-
ter mechanical properties than the individual components (e.g., the Gel/PCL core/shell
system [207]). Similarly, the morphology and performance (adhesion and mechanical
strength) of polycarbonate (PC) nanofibers can be improved when they are recovered by a
polyurethane shell [208]. Coaxial fibers appear also ideal for sustained drug delivery since
bioactive agents (e.g., antibiotics, antioxidants, and growth factors) can be loaded in a core
that is protected by the outer shell layer that can minimize the initial burst effect [209–212].
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Hollow fibers can be produced when the core is selectively dissolved or thermally
decomposed [213,214]. Thus, CS, PLA, and PCL hollow fibers can be produced using
water-soluble polymers, such as polyethylene glycol/polyethylene oxide (PEO), for the
core [212,215,216]. Indeed, mineral oils have been used for the core as is the case of cellulose
acetate (CA) hollow fibers [217]. The incorporation of functional compounds may allow
us to obtain functionalized fibers at both inner and outer surfaces as a consequence of a
simple diffusion process [199].

Complex fibers having a great capacity to tune final properties can be achieved by
means of multicoaxial electrospinning. This allows us to obtain multilayered, multichan-
neled, and even tube-in-tube (using an intermediate layer able to be solubilized) nanofibers.
Possibilities of this kind of architecture are noticeable since the properties of each individual
layer can be varied (e.g., hydrophilic and conductive properties) giving materials with high
biocompatibility, high mechanical properties, high functionality, and sustained drug re-
lease [199,218–220]. Nevertheless, the difficulty to control accurately the complex process is
still limiting its applicability. The development of new needleless electrospinning processes
may be an interesting approach to obtain these complex multi-layered structures [221,222].

4.2. Emulsion Electrospinning

Nanofibers with a core–shell structure can also be obtained using a single nozzle if an
emulsion of two solutions is properly processed. The main steps involved in this case are the
emulsification step to form a water/oil emulsion, the dissolution of a fiber-forming polymer
in the organic medium and, finally, the electrospinning of the emulsion (Figure 15) [223].
Basically, the continuous phase (shell) usually corresponds to a solution of a biodegradable
polymer in an organic solvent, whereas an aqueous medium is usually employed to dissolve
the active agent. Small or high molecular weight bioactive compounds will render single
fiber or core–shell structures, respectively. Continuous evaporation of the organic phase
during electrospinning increases the viscosity of this phase and favours the migration of
aqueous phase droplets to the center of the fiber. In this way, an inner column is formed if
the migrated phase contains a high molecular weight polymer. Emulsion electrospinning
has the possibility to reduce the number of organic solvents as an additional advantage
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with respect to coaxial electrospinning [224,225]. The selection of an appropriate polymer
for the shell is fundamental to obtaining a correct drug encapsulation. For example, PLA
tends to form a pothole-like surface structure that led to an incomplete encapsulation of
hydrophilic drugs. This problem may be solved using an amphiphilic block copolymer of
PLA and PEG since a uniform shell morphology can be attained and, therefore, efficient
incorporation of the selected drug in the core is derived [226].
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It should be pointed out that the use of two immiscible solvents is not a strict require-
ment, since it is only necessary that a phase separation could be spontaneously produced
after mixing the two polymer solutions. For example, a single solution of polymethyl-
methacrylate (PMMA) and polyacrylonitrile (PAN) in dimethylformamide (DMF) leads,
after blending, to phase separation and the formation of dispersed droplets of the mi-
nor component solution (e.g., PMMA/DMF) into the continuous PAN/DMF phase [227].
Droplets lead to a continuous inner fiber (Figure 16) due to both the high stretching of
confined droplets in the co-electrospun jet and the relatively low flow rate that allows the
charge relaxation of the polymer solution (i.e., traction becomes a consequence of viscous
forces) [228].



Int. J. Mol. Sci. 2022, 23, 15016 20 of 38

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 21 of 41 
 

 

ameters could not be properly stretched and thick fibers with discontinuous cores are ob-
tained. In all cases, the volumetric ratio between the core and the shell cannot be higher 
than the corresponding weight ratio of the solid compounds in the formulation. On the 
contrary, the hydrophobic shell polymer will migrate towards the core as a consequence 
of the higher volatility of the organic solvent and the confinement derived from the faster 
solidification of the shell [229,230]. 

 
Figure 16. Optical micrograph showing the core–shell structure obtained from electrospinning the 
emulsion of PMMA/DMF in PAN/DMF (right). Note that initial droplets (dark gray) that are shown 
in the needle detail led to a continuous filament after electrospinning. In (a,b), optical images of the 
as-spun core–shell (PMMA-PAN) microfibers can be observed. The fiber in (a) has a relative more 
uniform inner/outer diameter than (b). Reproduced with permission from [227]. 

5. Recent Developments on Multifunctional Electrospun Scaffolds Incorporating HAp 
Different scaffolds have been developed in the past year that aimed to incorporate 

HAp to improve the remodelling and repairing of the bone tissue. Some of these attempts 
are summarized in Table 1.  

Multifunctional layered scaffolds with potential applications for nasal cartilages and 
subchondral bone reconstruction have been prepared using PLA and Gel as biomaterials 
by combining 3D printing (e.g., fused deposition modelling) and electrospinning fabrica-
tion techniques [231]. Specifically, a Gel solution with and without a commercial osteo-
genon drug (ossein-HAp complex (OHC) also containing osteocalcin and type I Col) was 
electrospun over a 3D printed PLA scaffold. The surface of the scaffold has, therefore, the 
hydrogel characteristics highly recommended to mimic the natural and nanofibrous en-
vironment of cartilage. In addition, Gel provided integrin binding sites that favoured cell 
adhesion and offered some advantages with respect to Col (e.g., low immunogenicity and 
pathogen transmission problems [232]). New constructs were bioactive since both miner-
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Figure 16. Optical micrograph showing the core–shell structure obtained from electrospinning the
emulsion of PMMA/DMF in PAN/DMF (right). Note that initial droplets (dark gray) that are shown
in the needle detail led to a continuous filament after electrospinning. In (a,b), optical images of the
as-spun core–shell (PMMA-PAN) microfibers can be observed. The fiber in (a) has a relative more
uniform inner/outer diameter than (b). Reproduced with permission from [227].

A relation between the concentration of the emulsified compound and the relative
diameter of the core has been indicated [229]. Furthermore, droplets with high initial
diameters could not be properly stretched and thick fibers with discontinuous cores are
obtained. In all cases, the volumetric ratio between the core and the shell cannot be higher
than the corresponding weight ratio of the solid compounds in the formulation. On the
contrary, the hydrophobic shell polymer will migrate towards the core as a consequence
of the higher volatility of the organic solvent and the confinement derived from the faster
solidification of the shell [229,230].

5. Recent Developments on Multifunctional Electrospun Scaffolds Incorporating HAp

Different scaffolds have been developed in the past year that aimed to incorporate
HAp to improve the remodelling and repairing of the bone tissue. Some of these attempts
are summarized in Table 1.

Multifunctional layered scaffolds with potential applications for nasal cartilages and
subchondral bone reconstruction have been prepared using PLA and Gel as biomaterials by
combining 3D printing (e.g., fused deposition modelling) and electrospinning fabrication
techniques [231]. Specifically, a Gel solution with and without a commercial osteogenon
drug (ossein-HAp complex (OHC) also containing osteocalcin and type I Col) was electro-
spun over a 3D printed PLA scaffold. The surface of the scaffold has, therefore, the hydrogel
characteristics highly recommended to mimic the natural and nanofibrous environment
of cartilage. In addition, Gel provided integrin binding sites that favoured cell adhesion
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and offered some advantages with respect to Col (e.g., low immunogenicity and pathogen
transmission problems [232]). New constructs were bioactive since both mineralization
and cell adhesion was enhanced.

Promising scaffolds for tissue engineering have been prepared by electrospinning
mixtures of PLLA, Col, and HAp. The inorganic component was essential to improve the
tensile properties of the scaffold [233], while the final structure could satisfactorily mimic
the nanoscale structure of the ECM.

The periosteum membrane is the outer layer of bones and consequently plays a
crucial function in the transmission of molecular information between the bone and the
surrounding muscles [234]. The membrane is essential for bone growth and regeneration,
as it provides the osteogenic cells necessary to repair defects and excludes cells that prevent
bone formation [235]. The structure of natural periosteum is complex since involves three
different layers: the inner layer that favours osteogenicity and is constituted by osteoblasts
and Col, the voluminous interlayer where undifferentiated and progenitor cells are stored
and, finally, the outer layer that has the highest content on Col fibrils [236]. Different attends,
which were mainly based on electrospinning processes, have been evaluated to obtain
membranes able to mimic the periosteum. In this way, it has been designed/evaluated
a trilayered system constituted by electrospun fibers of PCL (outer layer), a mixture of
polyurethane and PCL (intermediate layer), and a mixture of polyurethane and nanoHAp
(inner layer) [237]. Basically, the outer layer should prevent cell permeation and should
have a very slow degradation rate, while the interlayer and the inner layers should be
successively degraded. In addition, the inner layer should promote bone regeneration.
Results demonstrated that suitable mechanical properties increasing from the inner to
the outer layer and degradation rates increasing in the opposite direction were achieved.
Furthermore, the system demonstrated appropriate multifunctionality and response for
tissue regeneration. It is significant that the small porous structure and slow degradation
rate prevented cell infiltration in the outer PCL layer, but the fast degradation of the other
layers provided enough space for cell ingrowth.

Complex multifunctional scaffolds were obtained by the self-polymerization of dopamine
(DA) on the surface of PLLA/HAp electrospun fibers [238]. The adhesive membrane was
subsequently coated with polypyrrole (PPy) via an electrochemical process that allowed the
chelation and coordination of silver ions. The final PLLA/HAp/PDA/PPy/Ag composite
showed long-term antibacterial properties, bioactivity, and osteoinductivity.

Core–shell electrospun fibers having a shell of PLA/HAp and a core of PCL have been
investigated for bone tissue engineering [239]. PCL was selected for its slower degradation
rate, ductile character, and for providing mechanical stability to the fiber. The addition of
HAp was interesting since its break products are basic and, consequently, can neutralize
the acid medium generated by the degradation of both polyesters [240]. The two polymers
could be solubilized using the same solvent mixture (i.e., chloroform/acetone) and, conse-
quently, a good interface between both polymers was obtained. Interestingly, bioactivity
was enhanced when the core flow rate was increased since Hap particles were forced to
protrude out of the fiber surface. A sustained release of BMP-2 (96 h) was observed for these
new scaffolds that also allowed MSC attachment and supported osteogenic differentiation.

The advantages of coaxial over monoaxial electrospinning have been emphasized
in the comparative study performed with the PCL/Gel/Poloxamer 188 scaffold that was
designed for bone tissue applications [241]. Specifically, P-188 is a copolymer able to
provide anti-thrombotic, anti-inflammatory, and cytoprotective activities to injured tis-
sues [242]. Coaxial fibers were efficient for a dual release involving a hydrophilic protein
(β-lactoglobulin) and a hydrophobic agent (vitamin K2). Furthermore, scaffolds showed
good stability, no significant swelling, and enhanced Saos-2 cell viability.

Composites of silk fibroin nanofibers with HAp have been proposed to mimic natural
bone [243], demonstrating biocompatibility and good mechanical performance. Neverthe-
less, progress is still necessary to obtain scaffolds with appropriate bone-like architecture.
In this sense, the selection of the type of silk seems to be a crucial factor that determines the



Int. J. Mol. Sci. 2022, 23, 15016 22 of 38

quality of the final scaffold [243]. Specifically, tussah silk fibroin (TSF) contains the Arg-
Gly-Asp motif, which plays a significant role as a biological recognition signal [244] and
promotes fibroblast cell adhesion [245]. Natural fibrils in natural bone have recently been
mimicked by means of coaxial electrospinning [246]. The nanostructured fibers consisted
of a core of a HAp/TSF composite and a shell of TS. Results indicated a good mechanical
performance and improved cell adhesion, proliferation, and bone formation capacity tan
pure silk. Nevertheless, TSF has some intrinsic problems derived from the crystallinity de-
crease during the regeneration process and, consequently, the loss of mechanical properties.
In order to solve this problem, blends of TSF with other polymers, such as cellulose acetate
(CA), have been proposed [247] In fact, CA has shown appropriate properties to also be
employed for bone implants [248]. A bone tissue engineering scaffold has recently been
fabricated by Tao et al. [249] through coaxial electrospinning. The core was constituted by
CA, while the shell consisted of a mixture of TSF and PEO loaded with HAp and BMP-2.
Scaffolds had micro/submicro structures and better mechanical properties than materials
produced with silk as a single component. BMF-2 was quickly released at the beginning
but then a sustained delivery as long as three weeks was observed. HAp and BMF-2 played
a fundamental role in promoting osteogenic differentiation. In vivo studies demonstrated
enhanced bone regeneration after 12 weeks of implantation.

Citrate-stabilized gold-nanoparticles (GNPs) have been encapsulated into new coax-
ial electrospun scaffolds constituted by polyvinylpyrrolidone (shell) and ethylcellulose
(core) [250]. Appropriate incorporation of GNP in the cell rendered promising in vitro and
in vivo results concerning bone tissue regeneration. Porosity, mechanical performance,
biocompatibility, and osteogenic activity were clearly enhanced after GNP incorporation.
Results corroborate the positive effect of GNPs on alkaline phosphatase activity [251] and
the previous in vivo findings about the acceleration of bone regeneration [252].

A core–shell fibrous membrane with a great capacity to immobilize heparin has
been prepared by coaxial electrospinning [253]. The shell of the fiber was constituted by
cationized Gel that was subsequently crosslinked by exposure to glutaraldehyde vapors,
while the core consisted of PCL in order to improve the mechanical properties of the
hydrogel. The VEGF endothelial growth factor could be effectively impregnated into the
fibers through specific interactions with the immobilized heparin. These interactions slowed
down the release of the growth factor in such a way that a sustained release was achieved for
more than 15 days. New materials were highly interesting due to the presence of multiple
angioactive molecules (i.e., Gel, heparin, and VEGF) and the hemocompatible surface.

A complex electrospun scaffold consisting of coaxial nanofibers having a core of PVA
incorporating oregano extract and mesoporous silica nanoparticles (PVA-OE-MSNPs) and
a shell constituted by a PCL/Col blend incorporating HAp has recently been evaluated
for hard tissue engineering [254]. In addition to the benefits provided by Col and HAp, it
should be noted the characteristics of the hydrophilic core brought by mesoporous silica
nanoparticles since they can promote osteoconduction [255] and control the release of the
selected extract. This extract has high terpene and phenolic content and, consequently,
provided antioxidant, anti-inflammatory, and antibacterial properties together with a
positive impact on bone metabolism.

Guided tissue regeneration (GTR) is employed to solve problems caused by the fast
fibroblast growth and the derived interference when these cells fill the defect sites of
bone, preventing the growth and healing of new bone [256]. GTR makes usually use of
appropriate membranes that cover the area between bone and soft tissue. These membranes
can be fully biodegradable or, on the contrary, non-biodegradable, being in this case
required a second surgery for their removal. The biodegradable membranes should keep
their function at least for 2 months to prevent fibroblast growth into defects and should
have multifunctional properties, such as antibacterial characteristics and the capacity to
induce bone regeneration. Polymers such as PLA, PLGA, and PCL have been proposed
and techniques, such as electrospinning, appear ideal due to their compact structure and
similarity with the ECM [257,258]. Nevertheless, the above-indicated requirements are
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difficult to be accomplished with a single component, as they are necessary to work on more
complex systems. Furthermore, synthetic polymers have intrinsic problems such as high
hydrophobicity, low stiffness, relatively low bioactivity, and certain toxicity of degradation
products, while natural polymers may present a much too high degradation rate [259].
Fewer efforts have been focused on the development of systems that combine barrier
properties, suitable drug release, and enhanced bone growth induction. Tang et al. [260]
have recently developed multifunctional nanofiber membranes by coaxial electrospinning.
These membranes consisted of a core of PLGA/HAp and a shell of Col/amoxicillin, as
they were determined to be promising barrier properties for this system. Basically, the core
was able to block and promote fibroblast and bone growth, respectively, while the shell
favoured wound healing through the release of the selected drug. Barrier properties were
demonstrated since fibroblasts grew well on the side of the membrane where they were
cultured, while no fibroblasts were observed on the opposite side.

Fibrous scaffolds having a PCL core and a shell of PVA loaded with HAp NPs have
recently been produced using a new spinning technique [261]. In this case, the corre-
sponding polymer solutions were extruded trough concentric nozzles under the action of
rotation and pressure [262]. The lack of limitations on the selection of solvents appears the
main advantage over conventional electrospinning. Furthermore, the electric field can be
avoided, the cost can be reduced, production capacity can be increased and, overall, the
surface of the material can be easily functionalized.

Microparticles constituted by a core of CS/HAp and a shell of zein (a prolamine plant
protein) loaded with simvastatin (SIM) were prepared by coaxial electrospraying [263].
These particles with diameters in the range of 1 µm were fully composed of natural materials
and provided a long-term sustained release activity as a consequence of their double-layer
structure. Furthermore, cell proliferation and osteogenic properties were enhanced.

Table 1. Multifunctional electrospun scaffolds.

Multifunctional Composite Applications/Effects Ref.

PLA, osteogenonTM (ossein, HAp),
osteocalcin, Col I

Hydrogel for cartilage reparation. The mineralization and cell
adhesion enhanced. [231]

PLLA, Col, HAp Reparation of bone periosteum. Improve tensile properties and
mimic the nanoscale structure of the extracellular matrix. [233]

PCL, polyurethane, nanoHAp Promotion of bone regeneration. Controlled degradation and
cell ingrowth. [237]

PLLA, HAp, dopamine, PPy, Ag This showed long-term antibacterial, bioactivity, and
osteoconductivity properties. [238]

PLA, HAp, PCL, BMP-2
Bone tissue engineering by slower degradation, acid neutralization,

and the enhancement of the mesenquimal cell attachment and
osteogenic differentiation.

[239]

PCL, Gel, poloxamer 188, β-lactoglobulin,
vitamin K12

The scaffold provides anti-thrombotic, anti-inflammatory, and
cytoprotective activities [241]

Silk fibroin, HAp, Biocompatibility and good mechanical performance.
Bone-like architecture. [243]

Silk fibroin, CA Employed for bone implants. [247]

CA, silk fibroin, PEO, Hap, BMF-2 Improve mechanical properties. Promotion of
osteogenic differentiation. [249]

PVP, ethylcellulose, Au NPs Bone tissue regeneration. The porosity, mechanical performance,
biocompatibility, and osteogenic activity was enhanced. [250]

PCL, Gel, heparin, VEGF Hydrogel with angioactive molecules and hemocompatible surface. [253]
PVA, PCL, oregano oil, silica, HAp Provide antioxidant, anti-inflammatory, and antibacterial properties. [254]

PLGA, HAp, Col, amoxicillin Promote fibroblast, bone growth, and wound healing. [260]

Titania (TiO2) is one of the most employed inorganic biomaterials due to its excellent
biocompatibility [264]. Titanium composites with calcium phosphate compounds have
also a great interest in joint prostheses due to their appropriate compressive strength and
biocompatibility [265]. Titanium can be electrospun, generally in combination with selected
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polymers, to form ultrathin fibers. Subsequent calcination processes may lead to hollow
nanofibers which have a well-demonstrated interest as implant materials thanks to their
high mass transfer capability (i.e., transportation of biomacromolecules) and a reasonable
surface porosity that enhances the interaction with the surrounding tissues [266]. Highly
porous, hollow TiO2 nanofibers (NFs) were fabricated through coaxial electrospinning
using a solution of a titanium precursor, polyvinyl acetate (PVAc) for the shell, and a
solution of PVAc and CaCO3 for the core [267]. The hollow and porous nanofibers were
obtained after treatment with diluted HCl of the calcined fibers. CaCO3 was employed as a
pore-forming agent and also for its nucleating effect. In fact, the CaCl2 that was formed
after the acid treatment was an excellent nucleating agent for CPCs deposition during
biomimetic mineralization.

The pursuit of novel materials to enhance bone regeneration has led to the develop-
ment of HAp composites with different inorganic materials that can improve the mechanical
strength and stiffness, induce the fibroblasts and osteoblast adhesion and proliferation,
as well as improve the stimuli-response of the nanocarrier and the electrical conductiv-
ity [268–270]. Among the new inorganic materials being studied, MXenes, a type of 2D
material based on carbides/nitrides of transition metals, has attracted attention due to the
presence of multiple functional groups, the large specific surface area, good NIR absorp-
tion, and localized surface plasmon resonance that is associated with high photothermal
conversion under laser irradiation [268–270]. Respecting the last property, the elaboration
of MXenes-HAp composites provides an opportunity for preformed thermal ablation of
tumor cells while promoting the bone repair of the affected area [269,271]. Based on the
good mechanical and biological properties, further investigation should be carried out to
determine the potential of electrospun scaffolds that incorporate MXenes-HAp composites
for regenerative medicine applications.

HAp NPs can be encapsulated with high efficiency into electrospun P3HB nanofibers.
These showed high mechanical strength, metabolic activity, and mineralization and, conse-
quently, were promising materials for bone tissue regeneration [272].

The use of PCL as a matrix polymer for tissue regeneration is increasing, despite the
problems derived from the use of organic solvents in conventional electrospinning (i.e., a
risk to decrease the capacity of cells to form new tissues in vivo due to the toxicity of
not completely removed traces of the solvent), and there is a necessity to reduce the PCL
intrinsic hydrophobicity by blending with hydrophilic polymers. The emulsion electrospin-
ning of a PCL/HAp oil-in-water emulsion has been proposed as a viable alternative [273].
Thus, a PCL toluene solution incorporating different percentages of HAp was dispersed in
an aqueous phase containing PVA, which was used as a template polymer and removed
after washing the electrospun scaffold [274]. TEM micrographs (Figure 17) revealed the
confinement of HAp in the PCL matrix. Nevertheless, its presence on the fiber surface
was evidenced after water washing. Agglomerates were significant in the preparations
with the highest HAp content. Scaffolds having 30% HAp showed a clearly enhanced
osteoblast proliferation.

Fiber formation has been studied for the PCL/HAp system, and it was found that the
viscoelastic interaction between the dispersed and continuous phases was fundamental [275].
Uniform and coalescence of confined droplets were attained by the optimization of PVA
content in the continuous phase. PCL concentration was also relevant to stretch and
effectively orient the caged droplets.

Emulsion electrospinning appears as an ideal process to encapsulate hydrophilic drugs
and minimize the burst effect and obtain a long-term sustained release. Clear examples
of drug retention of samples prepared by emulsion electrospinning correspond to the
encapsulation of lactase in poly(D,L-lactide) (PDLLA) [276], the nerve growth factor (NGF)
in copolymers of lactide and ε-caprolactone (PLCL) [277], or bovine serum albumin BSA in
PDLLA [278].
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Figure 17. TEM images of unwashed and washed matrices of PCL and PCL/HAp (10%, 30%, and
40% of HAp with respect to PCL) obtained by emulsion electrospinning. Reproduced with permission
from [274].

Laminins are high molecular-weight proteins that form part of the ECM and have an
influence on cell differentiation, migration, and adhesion [279]. HAp and laminin have been
encapsulated together for the first time by emulsion electrospinning and employing PLCL
as a polymer matrix. Fibers showed an appropriate structure and the scaffold revealed good
mechanical properties (e.g., Young’s modulus of 37.0 MPa) and enhanced proliferation of
fibroblasts [280].

Emulsion electrospinning has also been applied to obtain scaffolds based on a PCL-
PEO mixture that incorporates the platelet-derived growth factor-BB (PDGF-BB) and differ-
ent percentages of a HAp/tricalcium phosphate mixture [281]. The release of lysozyme was
studied as a model protein. Its interactions with the ceramic component caused a delayed
release, a feature that could be avoided with the addition of the cetyltrimethylammonium
bromide surfactant. Human MSCs expressed higher levels of osteogenic markers with
respect to scaffolds without the growth factor. The technique seems suitable to incorporate
growth factors to promote osteoinduction and facilitate bone tissue regeneration.

The use of emulsifiers may be problematic due to their detrimental effects on the
scaffold’s mechanical properties and also because of their leaching at the implantation site.
The use of solid particles (Pickering stabilizers) to stabilize the oil–water interface has been
proposed as an interesting alternative to conventional emulsifiers. Furthermore, particles
can provide new functionalities. The positive effect of HAp NPs to stabilize oil-in-water
emulsions has also been reported [282]. Specifically, HAp was used as a stabilizer for the
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preparation of PCL/HAp scaffolds by emulsion electrospinning [283]. Materials displayed
a high osteoblast cell proliferation efficacy and bio-mineralization capacity.

Scaffolds of PCL-grafted acrylic acid (PCL-g-AA) and HAp have been obtained by
emulsion electrospinning in absence of an emulsifier [284]. In this case, PVA was added
in the water phase as a template polymer. Interestingly, it was found that the carboxylic
groups of AA were able to establish interactions with PVA and HAp in such a way that the
oil-in-water emulsions were stabilized.

MEW allows the production of scaffolds with an appropriate pore size (ca. 100 µm) to
favour cell ingrowth and tissue vascularization and avoid the use of toxic organic solvents,
which are two of the main challenges of conventional electrospinning. Works concerning
the preparation of melt electrospun written scaffolds constituted by a single thermoplastic
polymer are abundant, but these scaffolds can be considered bio-inert and, consequently,
without a specific interest in tissue regeneration. Nevertheless, it has recently been de-
scribed the preparation of 3D PCL/HAp structures by direct writing technology [285]. PCL
appears as an ideal polymer due to its flexibility and low melting point. The experimental
procedure consisted of the preparation of homogeneous PCL/HAp films by the solvent
casting of the corresponding dispersion. The cast samples were then chopped and placed
in the syringe barrel of the MEW device. Confocal microscopy images demonstrated con-
tinuous cell growth with the highest spreading and bridging for scaffolds incorporating 7%
of HAp.

Polymer degradation is a serious restriction of MES that limits the use of samples with
a high melting point. Laser melt electrospinning has recently been proposed as a method to
minimize degradation due to the use of rapid and uniform CO2 laser heating. In this way,
PLA/HAp scaffolds have successfully been prepared by this laser MES method, considering
that the dispersion and hydrophilicity of fiber mats are carefully investigated [286].

Hybrid processes combining MEW and solution electrospinning have also been con-
sidered since MEW cannot mimic well the structure of the nanoscale ECM. A micro/nano
hierarchical structure has, for example, been produced by stacking PCL layers prepared
by MEW and electrospun layers of crosslinked Gel nanofibers (Figure 18) [287]. Results
pointed out that both cell adhesion and proliferation (Saos-2 cells) and osteoconductivity
were improved using the hybrid scaffold. Furthermore, cell penetration was not inhibited
by the solution electrospun layers. Mineralized calcium nodules were randomly distributed
in all the areas of scaffolds as revealed by alizarin red S staining.
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6. Perspective and Conclusions

The advances in the development of scaffolds for hard tissue regeneration have been
impressive during the last decades. A great understanding of requirements and possibilities
has been acquired but, in general, we are still far away from an ideal solution. Nowadays,
it appears fundamental the implication and effective collaboration of experts in different
scientific areas (e.g., biology, material science, computer science, and electronics). Clinical
experience, biological basic principles, and commercial practicality should be combined to
obtain optimized designs that involve cells, scaffolds, and active stimuli.

It seems primordial to improve the characteristics of material surfaces in order to
develop smart materials with sensory capacities and switchable characteristics according to
the changes occurred in the cellular environment. Progress is still necessary to effectively
integrate the new constructs into the immune system of the host. Prevention of bacterial
infections and biofouling is a vital problem that is not completely solved and that is
clearly needed due to the high costs associated with defective implants. The interest in the
production of multifunctional and hierarchical scaffolds is evident, as well as the increased
applications that are derived. It appears fundamental that there are multiple options that
can be given by the combination of different processing techniques, as well as the loading
and delivery of bioactive molecules (e.g., inorganic Hap, growth factors, antibacterial,
and anti-inflammatory agents, etc.) The selection of appropriate materials, blends, and
composites is still challenging, as well as the selection of the appropriate matrix formulation
able to mimic specific biological tasks.

Electrospinning offers great variability for processing different materials with highly
variable architectures, as well as a high capacity to load a great diversity of active com-
pounds. This high versatility combined with reduced cost and scalability makes electro-
spinning one technique necessary to build complex architectures and offer systems with
the capacity to mimic the ECM environment in living tissues and to design new cancer
therapy strategies. In addition, electrospun mats provide shorter hemostasis time and faster
recovery than offered by traditional devices, such as sutures. Different designs based on
electrospinning are ideal approaches to obtain a local and sustained delivery of bioactive
agents with highly different characteristics and properties. Coaxial and emulsion elec-
trospinning of core–shell-structured nanofibers are powerful techniques to obtain control
over the release kinetic of entrapped molecules. Multifunctional and stimuli-responsive
electrospun patches appear as highly promising systems for local and triggered drug de-
livery and, consequently, for improved therapeutic efficacy. Great efforts are currently
focused to improve both the yield and efficiency of electrospinning (e.g., needle-free, multi-
needle, and pulse gas-assisted electrospinning), but probably more improvements are
necessary to achieve industrial mass production. It is also critical to produce electrospun
scaffolds with improved mechanical properties and be interested in the addition of ce-
ramic nanocompounds (e.g., HAp), and even the application of thermal treatments able to
enhance fiber bonding.

Although emulsion and coaxial electrospinning offer alternatives to improve scaffold
design and drug loading, each one of them exhibits disadvantages that must be taken into
account when elaborating on the scaffolds. For example, the main disadvantage of coaxial
electrospinning is the requirement of a complex apparatus and, as two electrospinning tips
and two solutions are prepared in order to create the core–sheath fibers, the establishment
of the processing parameters for each layer can represent more time. In the case of emulsion
electrospinning, sometimes the use of an emulsifier is required to stabilize the emulsion.
On another hand, there is not complete control over the inside or outside placement of the
pharmaceutical agent in the structure of the fiber, which also conditions the reproducibility
of the fibers.

In addition to the mentioned limitations of the techniques, it appears that additional
research concerning in vivo validation is still necessary before the use of these new systems
in clinical trials and commercial medical devices.
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