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Abstract: The series of benzylic-substituted 1,2,4-selenodiazolium salts were prepared via cyclization
reaction between 2-pyridylselenyl chlorides and nitriles and fully characterized. Substitution of
the Cl anion by weakly binding anions promoted the formation supramolecular dimers featuring
four center Se2N2 chalcogen bonding and two antiparallel selenium· · ·π interactions. Chalcogen
bonding interactions were studied using density functional theory calculations, molecular electrostatic
potential (MEP) surfaces, the quantum theory of atoms-in-molecules (QTAIM), and the noncovalent
interaction (NCI) plot. The investigations revealed fundamental role of the selenium· · ·π contacts
that are stronger than the Se· · ·N interactions in supramolecular dimers. Importantly, described
herein, the benzylic substitution approach can be utilized for reliable supramolecular dimerization of
selenodiazolium cations in the solid state, which can be employed in supramolecular engineering.

Keywords: selenium· · ·π interactions; noncovalent interactions; chalcogen heterocycles;
chalcogen bonding

1. Introduction

A bottom-up approach to the synthesis of functional materials with programmable
structures and therefore properties is a long-standing challenge. In the past decades, co-
ordination chemistry has been successfully employed as a tool to create such materials,
which resulted in the emergence of metal-organic frameworks (MOFs) [1,2]. In analogous
fashion, supramolecular organic frameworks (SOFs) [3,4] have recently emerged, which
utilize noncovalent interactions as a tool for a programmable self-assembly. Among SOFs,
hydrogen-bonded organic frameworks (HOFs) [4–8] represent a promising class of ma-
terials. However, halogen (XB) and chalcogen bonding (ChB) have recently appeared as
powerful alternatives to the hydrogen bonding due to their directionality and tunabil-
ity [9–30]. In spite of their potential advantages, XB and ChB have received a very limited
attention for the creation of extended materials analogous to HOFs [31].

In this context, chalcogenodiazoles represent attractive objects for the creation of such
materials [32–38]. They were shown to be capable of forming symmetrical antiparallel
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supramolecular dimers via two Se· · ·N ChB interactions. These important supramolecular
synthons were intensively studied in the last years [33–38].

Recently, we described the synthesis of cationic 1,2,4-selenodiazolium salts via un-
precedented cyclization between bifunctional 2-pyridylselenyl reagents and nitriles [39–45].
The latter new heterocycles also showed a potency to form Se2N2 supramolecular dimers
in some instances. However, for some of them, Se2N2 dimers formation was not observed
when other weak noncovalent forces outcompeted the squares formation [41–43]. These
stimulated us to search for the strategies to reliably form Se2N2 synthons.

Here, we describe the synthesis of benzylic-substituted 1,2,4-selenodiazolium salts.
When halide anions were substituted by the weakly binding anions, we always observed
the formation Se2N2 squares, supported by the pair of antiparallel selenium· · · arene ChB
interactions. These interactions have been further studied and characterized using density
functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces,
the quantum theory of atoms-in-molecules (QTAIM), and the noncovalent interaction
(NCI) plot.

2. Results and Discussion

Benzylic-substituted 1,2,4-selenodiazolium chlorides 2–4 were prepared by the oxidation
of diselenide 1 with PhICl2 and sequential cyclization of in situ generated 2-pyridylselenyl
chloride with corresponding aryl acetonitriles in 78–93% yields (Scheme 1). The NMR and
mass spectrometry for data for 2–4 were in accord with the proposed structures.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 13 
 

 

tunability [9–30]. In spite of their potential advantages, XB and ChB have received a very 
limited attention for the creation of extended materials analogous to HOFs [31]. 

In this context, chalcogenodiazoles represent attractive objects for the creation of such 
materials [32–38]. They were shown to be capable of forming symmetrical antiparallel 
supramolecular dimers via two Se···N ChB interactions. These important supramolecular 
synthons were intensively studied in the last years [33–38]. 

Recently, we described the synthesis of cationic 1,2,4-selenodiazolium salts via 
unprecedented cyclization between bifunctional 2-pyridylselenyl reagents and nitriles 
[39–45]. The latter new heterocycles also showed a potency to form Se2N2 supramolecular 
dimers in some instances. However, for some of them, Se2N2 dimers formation was not 
observed when other weak noncovalent forces outcompeted the squares formation [41–
43]. These stimulated us to search for the strategies to reliably form Se2N2 synthons. 

Here, we describe the synthesis of benzylic-substituted 1,2,4-selenodiazolium salts. 
When halide anions were substituted by the weakly binding anions, we always observed 
the formation Se2N2 squares, supported by the pair of antiparallel selenium···arene ChB 
interactions. These interactions have been further studied and characterized using density 
functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, the 
quantum theory of atoms-in-molecules (QTAIM), and the noncovalent interaction (NCI) 
plot. 

2. Results and Discussion 
Benzylic-substituted 1,2,4-selenodiazolium chlorides 2–4 were prepared by the 

oxidation of diselenide 1 with PhICl2 and sequential cyclization of in situ generated 2-
pyridylselenyl chloride with corresponding aryl acetonitriles in 78–93% yields (Scheme 
1). The NMR and mass spectrometry for data for 2–4 were in accord with the proposed 
structures. 

 
Scheme 1. Synthesis of 2–10. (i) NaAuCl4, (ii) LiClO4, (iii) NBu4PF6. 

Compounds 2–4 could be recrystallized from MeOH to give single crystals suitable 
for X-ray structural analysis, which confirmed their structures (Figure 1). 

Scheme 1. Synthesis of 2–10. (i) NaAuCl4, (ii) LiClO4, (iii) NBu4PF6.

Compounds 2–4 could be recrystallized from MeOH to give single crystals suitable
for X-ray structural analysis, which confirmed their structures (Figure 1).

Selenodiazolium cations expectedly interacted with the Cl anions via a pair of “chelat-
ing” Se· · ·Cl and H· · ·Cl non-covalent interactions. Such chelation was observed earlier
for all structurally characterized selenodiazolium chlorides so far [40,42,43]. Compounds 2
and 3 did not feature Se2N2 dimers in the solid state. Instead, one of the Se σ-holes in 2
was involved in Se· · ·Cl ChB interaction with co-crystallized CH2Cl2 molecule, while in 3
this position was found vacant (Figure 1). In contrast, compound 4 formed Se2Cl2 dimers
featuring bridging Cl anions involved in two ChB interactions.

Further, we switched to salts with weakly coordinating anions, i.e., ClO4
−, AuCl4−,

and PF6
−. The compounds 5–9 were simply prepared by the addition of saturated methano-

lic solutions of NaAuCl4, NBu4PF6, or LiClO4 to 2–4 in MeOH, which resulted in the
precipitation of desired compounds in 48–67% yields (Scheme 1). Analytical data (see
Experimental Part) suggested the formation of selenodiazolium salts 5–10.
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Figure 1. Ball-and-stick representations of crystal structures of 2–4. Grey and light-grey spheres
represent carbon and hydrogen, respectively.

The structures were unambiguously established using single-crystal X-ray structural
analysis (Figure 2). Bond lengths and angles are similar to what was observed earlier for
selenodiazoles and other relevant heterocycles [46–52].

Importantly, 5, 6, 8, 9, and 10 formed supramolecular dimers in the solid state via two
antiparallel Se· · ·N and Se· · ·π ChB interactions (Figure 2). The dimerization occurred for
both benzyl and naphthylmethyl derivatives and did not depend on the nature of weakly
coordinating anion.

The Se–π interactions resembled η6 metal–arene coordination complexes in terms of
their geometry. To obtain more insights into Se· · ·π ChB in 5, 6, 8, 9, and 10, we performed
theoretical studies starting from the calculations of the molecular electrostatic potential
(MEP) surfaces using the salts to have neutral systems. The MEP surfaces are gathered
in Figure 3. The values at both σ-holes (labeled a,c) and at the middle of both σ-holes
(labeled as b) are indicated. In all cases, the σ-hole labeled as “c” is deeper (ranging 57 to
71 kcal/mol) than the other one (“a” ranging 35 to 49 kcal/mol) due to the overlap with
the positive and adjacent H-atom of the pyridyl ring. The MEP values at the middle of
both σ-holes are also positive (“b” ranging 29 to 43 kcal/mol), thus suggesting that the
directionality of the Se· · ·π interaction is not crucial. Regarding the aromatic rings, the
MEP surfaces reveal that the values are negative, ranging from −8.5 in 5 to −21 kcal/mol
in 10. The larger negative MEP values in the aromatic rings of 9 and 10 are due to the closer
proximity of the counterion.
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spheres represent carbon and hydrogen, respectively.

The combined QTAIM/NCIplot analyses of the self-assembled dimers of the compounds
shown in Figure 3 were computed and are represented in Figure 4 along with the dimerization
energies. These dimerization energies were computed considering the salt as the monomer.
Moreover, only intermolecular interactions were represented in the plots. It can be observed
that in all cases the Se· · ·N ChBs are characterized by a bond critical point (CP) and bond
path connecting the N to the Se atoms. The bond CPs are represented as red spheres and
bond paths as orange lines in Figure 4. Moreover, the reduced density gradient (RDG)
isosurfaces were represented overlapped with the QTAIM analysis. The NCIplot analysis
shows the existence of blue disk-shaped RDG isosurfaces that further characterize the Se· · ·N
contacts, thus confirming the attractive nature of the interaction. Interestingly, a yellow RDG
isosurface is also observed connecting the blue disks that characterize the Se· · ·N bonds, as is
detailed in the enlargement given in Figure 4f, thus revealing a N· · ·N repulsion (blue and
green colors are used for attractive interactions and yellow and red for repulsive). In fact, in
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compound 8, where the N· · ·N distance is shorter, a bond CP and bond path interconnect
both nitrogen atoms, further confirming the existence of a N· · ·N interaction. The yellow
color of the isosurface evidences the repulsive contribution of this contact that is obviously
compensated by the Se· · ·N attraction. Interestingly, the existence of the Se· · ·π ChBs is also
confirmed by both the QTAIM and NCIplot analyses. The shape and extension of the RDG
isosurfaces in all compounds reveal that most of the π-cloud of the aromatic ring participates
in the ChB. The dimerization energies range from −15.6 kcal/mol in 5 to −22.6 kcal/mol in
compound 10, which confirms the importance of these interactions in the solid state of the
1,2,4-selenodiazolium salts reported herein. In an effort to estimate the relative contribution of
the Se· · ·π interaction, we also computed the dimerization energies using mutated dimers.
The mutation consists of the replacement of the aromatic ring (either phenyl or naphtyl) by a
hydrogen atom. As a consequence, the symmetrically equivalent Se· · ·π interactions in the
dimers are not established, and the binding energy is drastically reduced (see values in red in
Figure 4). The values range from −4.8 kcal/mol in 5 to−9.3 kcal/mol in compound 10, thus
revealing that the contribution of the Se· · ·π is indeed dominant in these complexes, in line
with the participation of the deeper σ-hole of selenium.
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level of theory. The values at selected points of the surfaces are given in kcal/mol.

Further, we were interested how introduction of electron deficient aryl substituent
would affect the self-assembly of the corresponding selenodiazolium salts with weakly
coordinating anion. Electron-deficient arenes are very weak Lewis bases, and their η6

metal complexes are very scarce. Thus, we expected that selenodiazolium cations car-
rying electron deficient aryls would not undergo supramolecular dimerization via two
Se· · ·N and Se· · ·π ChB interactions. In order to verify this hypothesis, we prepared
compound 7, whose structure in the solid state was established by means of single-crystal
X-ray crystallography (Figure 5).
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As we expected, 7 did not feature Se· · ·π ChB. This further demonstrate the predictable
behavior of benzylic-substituted selenodiazolium salts towards self-aggregation via two
Se· · ·N and Se· · ·π ChB interactions in the solid state and supports the theoretical analysis
above that demonstrates the dominant role of the Se· · ·π ChB in the self-assembled dimers.
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3. Materials and Methods
3.1. General Remarks

All manipulations were carried out in air unless specified. All the reagents used in this
study were obtained from the commercial sources (Aldrich, TCI-Europe, Strem, ABCR).
Commercially available solvents were purified by conventional methods and distilled
immediately prior to use. NMR spectra were recorded on a Bruker Avance neo-700;
chemical shifts (δ) are given in ppm and coupling constants (J) in Hz. C, H, and N elemental
analyses were carried out on a Euro EA 3028HT CHNS/O analyzer. Di(2-pyridyl)diselenide
was prepared as reported earlier [39,40].

3.2. X-ray Crystal Structure Determination

The single-crystal X-ray diffraction data were collected on three-circle Bruker Smart
APEX-II (2, 3), Bruker D8 QUEST (4, 6, 8), and Bruker D8 Venture (9) diffractometers
(graphite monochromator, w and j scanning mode) and on a four-circle Rigaku Synergy
S diffractometer equipped with a HyPix6000HE area-detector (graphite monochromator,
shutterless ω-scan mode) (5, 7, 10). For 2–4, 6, 8, and 9, the data were indexed and in-
tegrated using the SAINT program [53] and then scaled and corrected for absorption
using the SADABS program [54]. For 5, 7, and 10, the data were integrated and cor-
rected for absorption by the CrysAlisPro program. For details, see Table S1 (Electronic
Supporting Information). The structures were determined by direct methods and refined
by full-matrix least-squares technique on F2 with anisotropic displacement parameters for
non-hydrogen atoms. The hydrogen atoms in all compounds were placed in calculated
positions and refined within riding model with fixed isotropic displacement parameters
(Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups). All calcula-
tions were carried out using the SHELXTL program [55].

One molecule of MeOH in the unit cell (V = 232 A3 in one void) of 9 was found to be
disordered over multiple positions and could therefore not be modelled satisfactorily. It
was removed from the electron density map using the OLEX solvent mask command.

Crystallographic data for all investigated compounds were deposited with the Cam-
bridge Crystallographic Data Center, CCDC 2220382-2220390. Copies of this information
may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CHB2
1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk,
accessed on 18 November 2022).

3.3. Computational Details

The single-point calculations of the self-assembled dimers of compounds 5, 6, 8, 9, and
10 were performed using the Turbomole 7.2 program [56]. The level of theory used was
PBE0-D3/def2-TZVP [57–60] since it has been recently used for similar interactions [61].
The MEP surfaces were generated at the same level of theory and the 0.001 a.u. isosurface.
The QTAIM [62] distribution of CPs and bond paths and NCIplot RDG isosurfaces [63]
were plotted using the VMD program [63]. The following settings were used for the RDG
plots: s = 0.45 a.u.; cut-off ρ = 0.04 a.u.; and color scale −0.025 a.u. ≤ sign(λ2)ρ ≤ 0.025 a.u.

3.4. Synthetic Procedures

Synthesis of 2. The solution of PhICl2 (21.6 mg, 0.08 mmol) and phenylacetonitrile
(500 µL) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (24.9 mg, 0.08 mmol)
in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h. After that,
a solution was decanted from colorless crystalline precipitate, which was washed with
Et2O (3 × 1 mL) and dried under vacuum. Yield: 45.6 mg (93%). 1H NMR (600 MHz,
CD3OD) δ 9.46 (d, J = 6.8 Hz, 1H, H5), 8.98 (d, J = 8.7 Hz, 1H, H8), 8.39 (t, J = 8.4 Hz, 1H,
H7), 7.98 (t, J = 7.0 Hz, 1H, H6), 7.42–7.24 (m, 5H, from Ph’s), 4.74 (s, 2H, CH2). 13C NMR
(151 MHz, CD3OD) δ 170.6 (C3), 158.2 (C9), 140.3 (C5), 137.7 (C8), 127.9 (C7), 124.2 (C6),
134.1 (C from Ph’s), CH from Ph’s: 130.6, 130.2, 129.0; 38.4 (CH2). MS (ESI+), found:
275.0082 [M–Cl]+; calcd for C13H11N2Se: 275.0082.
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Synthesis of 3. The solution of PhICl2 (15.6 mg, 0.06 mmol) and 2-(naphthalen-1-
yl)acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (17.8 mg,
0.06 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from colorless crystalline precipitate, which was washed
with Et2O (3 × 1 mL) and dried under vacuum. Yield: 39 mg (90%). 1H NMR (600 MHz,
CD3OD) δ 9.62 (d, J = 6.7 Hz, 1H, H5), 8.98 (d, J = 8.7 Hz, 1H, H8), 8.49–8.42 (m, 1H,
H7), 8.11–8.03 (m, 2H), 7.97–7.88 (m, 2H), 7.56–7.43 (m, 4H), 5.18 (s, 2H, CH2). 13C NMR
(151 MHz, CD3OD) δ 170.3 (C3), 157.8 (C9), 140.2 (C5), 137.7 (C8), 135.5, 133.6, 130.9, 130.5,
129.8, 129.0, 127.7, 127.6, 127.1, 126.5, 124.9 (C7), 124.0 (C6), 36.4 (CH2). MS (ESI+), found:
325.0239 [M–Cl]+; calcd for C17H13N2Se: 325.0238.

Synthesis of 4. The solution of PhICl2 (22 mg, 0.08 mmol) and 2-(2,6-dichlorophenyl)
acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (25 mg,
0.08 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from yellow crystalline precipitate, which was washed
with Et2O (3 × 1 mL) and dried under vacuum. Yield: 47 mg (78%). 1H NMR (600 MHz,
D2O) δ 9.59 (d, J = 6.9 Hz, 1H, H5), 8.85 (d, J = 8.6 Hz, 1H, H8), 8.47 (t, J = 8.3 Hz, 1H),
8.56–8.41 (m, 1H, H7), 8.19–8.05 (m, 1H, H6), 7.55 (d, J = 8.1 Hz, 2H), 7.42 (dd, J = 8.5, 7.8 Hz,
1H), 5.01 (s, 2H, CH2). 13C NMR (151 MHz, D2O) δ 168.3, 155.0, 134.0, 136.2, 135.9, 130.6,
129.4, 128.6, 126.1, 123.3, 33.7 (CH2).

Synthesis of 5. The solution of PhICl2 (28.6 mg, 0.08 mmol) and phenylacetonitrile
(500 µL) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (24.9 mg, 0.09 mmol) in
CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h. After that, a
solution was decanted from colorless crystalline precipitate, which was washed with Et2O
(3 × 1 mL) and dried under vacuum. Addition of the MeOH solution (100 µL) of NaAuCl4
(50 mg) to MeOH solution of 2 (1 mL) resulted in the formation of yellow microcrystalline
precipitate. Yield: 64 mg (65%). 1H NMR (600 MHz, Me2CO-d6) δ 9.74 (d, J = 6.8, 1H, H5),
9.16 (d, J = 8.6, 1H, H8), 8.61 (ddd, J = 8.5, 7.2, 1.1 Hz, 1H, H7), 8.23 (t, J = 7.0, 1H, H6),
7.52–7.36 (m, 5H), 4.94 (s, 2H, CH2). 13C NMR (151 MHz, Me2CO-d6) δ 169.7 (C3), 158.1
(C9), 140.6 (C5), 137.5 (C8), 130.5, 129.7, 128.6, 127.4 (C7), 124.2 (C6), 133.7 (C from Ph),
38.1 (CH2).

Synthesis of 6. The solution of PhICl2 (16.5 mg, 0.06 mmol) and 2-(naphthalen-1-
yl)acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (19 mg,
0.06 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from colorless crystalline precipitate, which was washed
with Et2O (3 × 1 mL) and dried under vacuum. Addition of the MeOH solution (100 µL)
of NaAuCl4 (50 mg) to MeOH solution of 3 (1 mL) resulted in the formation of orange
microcrystalline precipitate. Yield: 46 mg (58%). 1H NMR (600 MHz, Me2CO-d6) δ 9.95 (d,
J = 6.8 Hz, 1H, H5), 9.18 (d, J = 8.7 Hz, 1H, H8), 8.66 (ddd, J = 8.4, 7.3, 0.9 Hz, 1H, H7), 8.31
(td, J = 7.0, 1.1 Hz, 1H, H6), 8.13 (d, J = 8.4 Hz, 1H), 8.01 (dd, J = 17.6, 8.2 Hz, 2H), 7.59–7.50
(m, 4H), 5.38 (s, 2H, CH2). 13C NMR (151 MHz, Me2CO-d6) δ 169.6 (C3), 157.8 (C9), 145.6,
140.6 (C5), 138.0 (C8), 135.0, 133.3, 130.4, 129.5, 129.1, 127.3, 126.9, 126.4, 125.3, 125.18 (C7),
124.1 (C7), 36.2 (CH2).

Synthesis of 7. The solution of PhICl2 (16.1 mg, 0.06 mmol) and 2-(2,6-dichlorophenyl)
acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (18.5 mg,
0.06 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from yellow crystalline precipitate, which was washed
with Et2O (3 × 1 mL) and dried under vacuum. Addition of the MeOH solution (100 µL)
of NaAuCl4 (50 mg) to MeOH solution of 4 (1 mL) resulted in the formation of orange
microcrystalline precipitate. Yield: 39 mg (48%). 1H NMR (600 MHz, Me2CO-d6) δ 10.01
(d, J = 6.8 Hz, 1H, H5), 9.21 (d, J = 8.6 Hz, 1H, H8), 8.67 (ddd, J = 8.4, 7.2, 1.0 Hz, 1H, H7),
8.38–8.32 (m, 1H, H6), 7.63–7.58 (m, 2H), 7.46 (dd, J = 8.6, 7.5 Hz, 1H), 5.19 (s, 2H, CH2).
13C NMR (151 MHz, Me2CO-d6) δ 155.2, 140.9, 137.8, 137.0, 131.7, 131.4, 129.7, 129.5, 127.6,
124.3, 34.6 (CH2).
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Synthesis of 8. The solution of PhICl2 (22 mg, 0.08 mmol) and phenylacetonitrile
(500 µL) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (25 mg, 0.08 mmol) in
CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h. After that, a
solution was decanted from colorless crystalline precipitate, which was washed with Et2O
(3 × 1 mL) and dried under vacuum. Addition of the MeOH solution (100 µL) of NaClO4
resulted in the formation of colorless microcrystalline precipitate. Addition of the MeOH
solution (100 µL) of LiClO4 to MeOH solution of 2 (1 mL) resulted in the formation of
colorless microcrystalline precipitate. Yield: 40 mg (67%). 1H NMR (600 MHz, Me2CO-d6)
δ 9.73 (d, J = 6.8 Hz, 1H, H5), 9.14 (d, J = 8.6 Hz, 1H, H8), 8.59 (ddt, J = 8.5, 7.2, 1.0 Hz, 1H,
H7), 8.20 (t, J = 6.9 Hz, 1H, H6), 7.49–7.38 (m, 5H), 4.92 (s, 2H, CH2). 13C NMR (151 MHz,
Me2CO-d6) δ 158.2, 140.5, 137.7, 133.9, 130.5, 129.7, 128.9, 128.5, 127.4, 124.1, 38.1 (CH2).

Synthesis of 9. The solution of PhICl2 (20.3 mg, 0.06 mmol) and 2-(naphthalen-1-
yl)acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (17.8 mg,
0.06 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from colorless crystalline precipitate, which was washed
with Et2O (3 × 1 mL) and dried under vacuum. Addition of the MeOH solution (100 µL) of
LiClO4 to MeOH solution of 3 (1 mL) resulted in the formation of colorless microcrystalline
precipitate. Yield: 32 mg (61%). 1H NMR (600 MHz, Me2CO-d6) δ 9.86 (d, J = 6.8 Hz, 1H,
H5), 9.07 (d, J = 8.7 Hz, 1H, H8), 8.62–8.55 (m, 1H, H7), 8.22 (td, J = 7.0 Hz, 1H, H6), 8.10 (d,
J = 8.5 Hz, 1H), 8.01–7.92 (m, 2H), 7.57–7.44 (m, 4H), 5.30 (s, 2H, CH2). 13C NMR (151 MHz,
Me2CO-d6) δ 157.7, 140.4, 137.8, 134.9, 133.4, 130.4, 129.6, 129.4, 129.0, 127.1, 127.0, 126.9,
126.48, 125.1, 123.9, 100.9, 35.2 (CH2).

Synthesis of 10. The solution of PhICl2 (18 mg, 0.07 mmol) and 2-(naphthalen-1-
yl)acetonitrile (50 mg) in CH2Cl2 (3 mL) was added to 2,2′-dipyridyldiselenide (22 mg,
0.07 mmol) in CH2Cl2 (1 mL), and the reaction mixture was left without stirring for 5 h.
After that, a solution was decanted from colorless crystalline precipitate, which was washed
with Et2O (3× 1 mL) and dried under vacuum. Addition of the saturated MeOH solution of
tetrabutylammonium hexafluorophosphate (100 µL) to MeOH solution of 3 (1 mL) resulted
in the formation of microcrystalline precipitate. Yield: 35 mg (53%). 1H NMR (600 MHz,
Me2CO-d6) δ 9.92 (d, J = 6.9 Hz, 1H, H5), 9.15 (d, J = 8.7 Hz, 1H, H8), 8.67–8.60 (m, 1H, H7),
8.30–8.25 (m, 1H, H6), 8.13 (d, J = 8.6, 1.0 Hz, 1H), 8.03–7.98 (m, 2H), 7.59–7.49 (m, 4H), 5.36
(s, 2H, CH2). 13C NMR (151 MHz, Me2CO-d6) δ 169.5, 157.9, 140.7, 138.0, 135.0, 133.4, 130.5,
129.6, 129.2, 127.7, 127.3, 127.2, 126.9, 126.5, 125.2, 124.1, 36.2 (CH2).

4. Conclusions

We have synthesized a series of benzylic-substituted 1,2,4-selenodiazolium salts with
weakly binding anions that promote the formation self-assembled dimers with the recurrent
Se2N2 supramolecular motif. The dimers are further supported by two symmetrically
equivalent selenium· · · arene ChB interactions. The Se· · ·N and Se· · ·π ChB interactions
have been studied theoretically, and we disclosed the fundamental role of the Se· · ·π
interactions, which are stronger than the Se· · ·N interactions observed in the Se2N2 motifs.
The DFT analysis demonstrates that the stronger nature of the Se–π interactions is due to
the participation of the more positive σ-hole and to the existence of a repulsive N· · ·N
interaction in the Se2N2 motif. The relevance of the Se· · ·π interaction is further supported
by the fact that compound 7 does not exhibit the Se· · ·π interaction in the solid state due to
the presence of electron withdrawing groups in the phenyl ring.

Importantly, the herein-described strategy can be employed for reliable supramolecu-
lar dimerization of 1,2,4-selenodiazolium cations in the solid state. This supramolecular
synthon can be employed in supramolecular engineering for the creation of SOFs with
programmable structures and properties.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232314973/s1.
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