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Abstract: The body of scientific literature continues to grow annually. Over 1.5 million abstracts
of biomedical publications were added to the PubMed database in 2021. Therefore, developing
cognitive systems that provide a specialized search for information in scientific publications based on
subject area ontology and modern artificial intelligence methods is urgently needed. We previously
developed a web-based information retrieval system, ANDDigest, designed to search and analyze
information in the PubMed database using a customized domain ontology. This paper presents an
improved ANDDigest version that uses fine-tuned PubMedBERT classifiers to enhance the quality of
short name recognition for molecular-genetics entities in PubMed abstracts on eight biological object
types: cell components, diseases, side effects, genes, proteins, pathways, drugs, and metabolites. This
approach increased average short name recognition accuracy by 13%.

Keywords: text-mining; ANDDigest; ANDSystem; named entity recognition; machine learning;
PubMedBERT

1. Introduction

Finding relevant information in scientific publications and patents is a significant
issue when performing almost any scientific research. The number of scientific publica-
tions only in the biological sciences field has reached colossal proportions. For example,
>34 million articles are stored in the PubMed database, and >1 million new biomedical
articles appear annually. Modern scientific information search engines, such as those used
by Google Scholar, Scopus, and PubMed [1–3], make it possible to find literature based on
queries compiled through user-specified keywords. However, such systems do not provide
practical tools for automatically extracting information from their search results, which
can sometimes reach tens to hundreds of thousands of documents. In addition, they do
not sufficiently consider the synonymy of the desired objects and their relationship with
external databases.

Another strategy is to use programs based on automatic text analysis methods. Such
systems automatically extract knowledge from documents and present it in graphical
forms, such as semantic networks. Of particular interest are systems providing the full
knowledge engineering cycle. This cycle includes automatic knowledge extraction from
unstructured texts in natural language and external databases. It also includes integrating
the obtained materials into the knowledge base as semantic networks, where nodes are the
objects recognized in the texts, and the edges are the various established interaction types
between them. In addition, such systems usually provide tools for the visualization and
analysis of the obtained results.

STRING [4], Pathway Studio [5], MetaCore [6,7], and ANDSystem [8,9] are well-
known examples of these systems. Unlike simple search engines, these programs are
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based on predefined and well-validated ontologies that describe the subject area. This ap-
proach automatically considers object synonymy and relationships with external databases
but limits the programs’ search capacities by the size of the ontologies used. However,
since their primary purpose is to establish interactions between entities and reconstruct
associative networks based on the retrieved information, such tools do not attain high
completeness values in finding documents or, in some cases, do not supply the user with
such information.

We previously developed the ANDDigest information retrieval tool [10]. It was de-
signed to find biomedical abstracts using complex search queries to PubMed, combining the
ANDSystem ontology based on dictionaries with user-provided keywords. The ANDDigest
system automatically extracts knowledge from scientific publication texts and includes
tools for automated literature search and analysis.

One essential automatic text analysis step is named entity recognition (NER). A well-
known problem of automatic biological entity name recognition in scientific publication
texts by use of the dictionary relates to linguistic ambiguities associated with the intersection
of object names with commonly used words and phrases, including abbreviations and
various terms introduced directly by the authors [11]. This problem is especially relevant
in biology and biomedicine for short gene and protein names [12–14] but is also typical in
other fields [15,16]. Existing methods for overcoming the NER problem are based on three
approaches: dictionaries, semantic–linguistic rules, and machine learning algorithms.

To date, machine learning algorithms are the most widespread method used. For
example, the POSBioTM-NER system [17] uses named entity recognition based on support
vector machines and a conditional random field (CRF). Chang et al. [18] used the vector-
ization methods of biomedical terms (word embedding) when training their CRF model.
It allowed them to significantly increase the recognition accuracy of named entities in
biomedicine compared to other approaches. Wei et al. proposed a combined machine learn-
ing method involving CRF and a bidirectional long-short-term memory network [19]. This
implementation showed better results than classical methods based on rules and templates
and CRF-based systems. A similar approach was used in the HUNER system [20].

A turning point in natural language processing (NLP) was the invention of the trans-
former neural network architecture [21]. One significant difference between transformers
and previous architectures was the lack of dependence on input sequence order during
training, providing ample opportunities for data parallelization and facilitating transformer
models trained on vast textual data arrays reaching hundreds of gigabytes. Therefore,
this architecture enabled the development of many pre-trained language models with
multi-million and even multi-billion machine learning parameters, such as Megatron [22],
GPT [23], and BERT [24]. Another essential feature of such models that distinguishes them
from earlier machine learning algorithms such as word2vec [25] and GloVe [26] was their
ability to generate context-sensitive word embeddings. The central concept is that the
numerical representation for the same word (its vector) is not static but depends on its
context. This point is significant since the meaning of a word can often change as a sentence
or the whole text develops.

Another equally significant feature is the ability to perform additional transformer
model training. This fine-tuning involves training one additional output layer while
keeping the main model weights, reflecting the relationships between words, the same.
This approach enables pre-trained models to be quickly adapted to solve diverse NLP tasks,
including NER, relation extraction, and context-based object classification.

However, the main disadvantage of most pre-trained models is that they are trained
in the general language domain, leading to insufficient accuracy when they are used
to analyze texts from narrowly focused fields, such as biology and biomedicine. This
problem mainly reflects additional linguistic ambiguities associated with the specifics of
the biological and biomedical scientific language, which contains many highly specialized
terms and abbreviations [11,27].
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Another BERT model appeared in 2020, entitled BioBERT [28]. It used the classic BERT
model [24] trained on the data from BookCorpus [29] and Wikipedia [30], with further
pre-training on open-access biomedical texts from PubMed and PubMed central. BioBERT’s
authors showed that it was more accurate for NLP tasks in biology and biomedicine than
models trained on the larger textual corpora belonging to the general language domain.

Davagdorj et al. developed a BioBERT-based K-means model [31] that provided better
biomedical document clustering accuracy than other models. The CPRiL web service [32]
uses the BioBERT machine learning model to determine the functional relationships be-
tween small molecules and proteins in biomedical literature. This product’s harmonic
mean of the precision and recall (F1) score was 84.3%, reflecting 82.9% accuracy and
85.7% recall. The STRING system’s authors used a fine-tuned BioBERT model to classify
gene and protein names identified by their text-mining method in texts as correctly or
wrongly recognized [4].

However, the BioBERT model’s main disadvantage was that its training used the
original BERT model’s weights as the starting point. Therefore, the word embedding
vocabulary was the same as the BERT model, which is specific to the general language
domain and not very representative of the biomedical field.

This problem led to the development of the PubMedBERT model [33], trained from
scratch using only PubMed data, with its biomedicine-specific thesaurus containing about
30% more specific terms than BioBERT. A comparative study showed that it performed
best in the biomedical domain [34].

When using machine learning NER methods, one important task is establishing links
between objects identified in texts and external databases containing additional information
about them. A simple name comparison is often ineffective due to synonymy. A possible
solution to this problem is to combine modern machine learning approaches with classical
text analysis methods [4,35], such as predefined ontologies.

In this study, we developed a new version of the ANDDigest information retrieval
system (ver. 01.2022) with improved short molecular-genetic object name (≤4 characters)
recognition accuracy in PubMed texts. Further trained PubMedBERT models were used
to filter incorrectly recognized names mapped using ANDSystem dictionaries. We used
the developed models to classify object names as correctly and incorrectly recognized
based on their context in abstract texts. The classification models filter eight object types:
cell components, diseases, side effects, genes, proteins, pathways, drugs, and metabolites.
The developed filtering methods improved recognition accuracy for these entities by
13% on average.

2. Results
2.1. Web-Based Information Retrieval System ANDDigest (Ver. 01.2022)

The previously developed ANDDigest software and information system [10] were
designed to search and analyze information in scientific publications using a customized
domain ontology. Its new version also uses an ANDSystem cognitive system ontology
specific to biology and biomedicine. The general ANDDigest ver. 01.2022 module scheme
is shown in Figure 1.

ANDDigest ver. 01.2022 uses the ANDSystem’s domain ontology based on dictionaries
for 13 molecular-genetic object types (cells, components, diseases, drugs, genes, metabolites,
micro RNAs (miRNAs), molecular functions, organisms, pathways, phenotypes, proteins,
and drug side effects). Each dictionary contains the main molecular genetic object names
and synonym sets.

A search query to ANDDigest can be performed by selecting specific biological object
names from the corresponding dictionaries or only their types. In addition, the user can
enter additional clarifying keywords. Search queries automatically consider all synonyms
of the entered object. The search is performed using all objects from the corresponding
dictionary when the user specifies the object type but not its name.
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Figure 1. A schematic illustration of ANDDigest ver. 01.2022. Green and red colors highlight new
modules and data changes compared to the previous version.

Search results are presented as a set of mapped texts containing the specified entities
from the domain ontology and a graph of semantic relationships between their objects. In
addition, the system provides flexible filtering and sorting functions for the identified doc-
uments, including filtering by the statistical significance level of the semantic relationships
between pairs of objects, the impact factor of a scientific journal, and the publication date.

ANDDigest can calculate trends, indicating the scientific community’s interest in the
specific object from ANDSystem’s ontology based on its number of mentions in PubMed,
using the non-parametric Mann–Kendall test [36,37]. Such dynamics are calculated in two
ways: (a) standard—the total number of documents mentioning the mapped object per
year; (b) normalized—the ratio of the number of documents mentioning the object to the
total number of published documents per year.

A new combined NER module is implemented in ANDDigest ver. 01.2022, namely
combined artificial intelligence (AI) (Figure 1). This module integrates dictionary-based
NER and filtering of incorrectly recognized short object names using context-based classifi-
cation, which is performed by fine-tuned PubMedBERT transformer neural networks.

2.2. Context-Based Classification of Incorrectly Recognized Objects

Classification models were constructed by fine-tuning the pre-trained PubMedBERT
transformer model [31,33] for the sequence classification task using Python’s transformers
v4.16.2 library [38] with an AdamW optimizer [39] and 2 × 10−5 learning rate. All the
texts were in lowercase, and the maximum sequence length was limited to 512 words, a
standard value for BERT-based models. Each classification model was trained for 3 epochs
as a binary classifier. The peculiarity of the chosen model was that it was trained from
scratch exclusively on PubMed abstracts. This neural model was fine-tuned for each of
the groups of objects being considered to classify short names as correctly and incorrectly
recognized based on the context in which the authors mention them in their texts.

After the third epoch, each classifier’s accuracy for long names was estimated by
calculating Mathew’s correlation coefficient (MCC). The training results for each model are
shown in Figure 2.
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Figure 2. The classification model’s training results for each selected group.

All negative sets were created using long object names of a single selected type for
each classifier. Therefore, they could potentially cause the classifiers to perform well at
distinguishing short gene and protein names from those specific types but not others. How-
ever, publicly available manually curated gold standard datasets only partly cover objects
considered in the ANDSystem’s ontology [9]. Therefore, gold standards for each type were
manually constructed from ANDSystem’s dictionary mapping (see Supplementary File S1)
to validate the obtained classifiers on the short object names (≤4 characters) of the corre-
sponding types. Each corpus contained a short object name mapped by ANDSystem, its
position in the sentence, the corresponding abstract’s PubMed ID, year of publication, the
sentence from which it was extracted, and a label indicating whether it was correctly or
incorrectly identified.

The classification accuracy of short object names with the developed models was as-
sessed using a developed gold standard that contained molecular genetic entity names from
the ANDSystem ontology marked up in scientific article abstracts and manually annotated.
In total, the gold standard contained >57 thousand unique sentences from >29 thousand
PubMed abstracts in which at least one short object name (≤4 characters) was present. The
following object types were considered: genes/proteins, metabolites/drugs, diseases/side
effects, pathways, and cellular components. The gold standard was manually created in
collaboration with experts while developing the new ANDDigest version (01.2022).

Each model was reassessed with the gold standard, and their accuracies for the short
names recognition task were calculated using receiver operating characteristic (ROC) curves.
The results are shown in Figure 3.

The optimal thresholds for positive predictions were calculated using the reconstructed
ROC curves. The curve’s threshold was considered optimal when the difference between
true (TPR; y-axis)- and false (FPR; x-axis)-positive rates was maximized. Detailed values
for each model are provided in Table 1.

The highest accuracy (area under the ROC curve (AUC) = 95.5%) was obtained with
the diseases/side effects group. This finding can be explained by the specificity of PubMed
abstracts, which focus on biomedicine, and by the contextual peculiarities in how disease
names are often used. The lowest accuracy was obtained with the cellular pathways group
(AUC = 0.835). This finding likely reflects the very small number of short names in the
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cellular pathways dictionary (n = 61), the contexts in which pathway names are used, and
the closeness of their names to common words.
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ferent object types. Genes/proteins (area under the ROC curve (AUC) = 94.0%). Diseases/side
effects (AUC = 95.5%). Cell components (AUC = 90.7%). Cellular pathways (AUC = 83.5%).
Drugs/metabolites (AUC = 89.8%).

Table 1. TPR, FPR, and optimal thresholds for each classification model.

Group TPR FPR Optimal Threshold (Positive)

Cellular components 0.85 0.17 0.9999737739562988

Diseases/side effects 0.85 0.08 0.9999943971633911

Genes/proteins 0.89 0.13 0.9999139308929443

Cellular pathways 0.80 0.21 0.9998261332511902

Drugs/metabolites 0.89 0.20 0.9999928474426270

The calculated ROC curves and AUC values for each model after deleting the repeating
names within the same sentence are provided in Supplementary File S2. The change in
AUC values compared to the full gold standard was no more than 0.001, except for the
genes/proteins model, for which the decrease was 0.023.

The calculated thresholds for the developed neural networks were used to analyze
the PubMed abstracts previously mapped by ANDSystem. Only abstracts containing
short object names of corresponding types were considered (>10 million total documents).
Statistics on the obtained results are shown in Figure 4.

The results of the additional verification of the accuracy of developed models, based
on the well-known gold standards, are shown in Table 2, and the ROC curves are available
in Supplementary File S3. It should be noted that in general, despite the smaller number of
examples for short names of cell components and pathways, the obtained values correlate
with the results obtained using our own gold standard, developed with the ANDSystem
ontology. The obtained results indicate the possibility of standalone application of the
developed models to mapped-out document texts, including full-text articles.
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Figure 4. Proportions of correctly and incorrectly recognized short object words in PubMed
texts after dictionary-based mapping and filtering with the developed fine-tuned neural networks.
Short object names’ absolute numbers and proportions are based on their correctly or incorrectly
recognized classification.

Table 2. AUC values for each model, calculated using the existing gold standards for objects of any
length, and for short objects only.

Classification Model AUC All Names AUC Short Names

Cellular components 0.919 0.906

Diseases/side effects 0.934 0.943

Genes/proteins 0.924 0.897

Cellular pathways 0.864 0.731

Drugs/metabolites 0.944 0.928

3. Discussion

We developed a new version of ANDDigest (ver. 01.2022; Figure 1) incorporating a
new combined text-mining AI NER module. The new module performs dictionary-based
object mapping and filtering of short names erroneously recognized in texts.

Integration of the new module into ANDDigest ver. 01.2022 significantly increased the
quality of object name recognition in texts. Due to the additional use of fine-tuned neural
networks after the mapping stage, the recognition accuracy for short names (≤4 characters)
increased by 13% on average. It should be noted that most recognition errors are tradi-
tionally associated with short names due to their linguistic ambiguity [11,40,41]. This
problem leads to many false results when searching for relevant scientific literature based
on user queries.

For example, one synonym for coproporphyrinogen oxidase is COX, which intersects
with a Cox proportional-hazards model [42], widely used in biomedical literature. There-
fore, even the previous version of ANDDigest identified >41,000 documents mentioning
this object when searching only a smaller number of PubMed abstracts, most of which
contained Cox. However, the new version recognized that most of those results were on the
Cox regression model, returning only 1750 documents containing this term in the desired
context after the context-based filtering.

Another example is contagious pustular dermatitis, which is a zoonotic disease caused
by the Orfviridae parapoxvirus. One of its widely used synonyms is Orf [43]. The database of
the previous version of ANDDigest contains >6400 documents, mentioning this disease. At
the same time, a visual analysis showed that more than 80% of such texts were dedicated to
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the abbreviation of the open reading frame. Additionally, in some erroneously found docu-
ments, this term was a part of the code names of drugs, for example, Orf 12592 (5-hydroxy
analog of propranolol) [44]. After applying the neural network filtering, the number of
the found documents containing the Orf diseases was reduced to 562. Manual verification
showed that erroneously recognized names were excluded from these documents.

The combined AI NER text-mining module performs short name recognition filtering
for eight object types: proteins, genes, drugs, metabolites, diseases, side effects, cellular
components, and cellular pathways. The greatest number of incorrectly identified names
filtered out using this module was for genes and diseases: 16% of all recognized short
names of this type (Figure 3).

The least filtered were short names of cellular pathways (biological processes). The
recognition accuracy of these objects in the gold standard without the new AI NER module
was about 60%; this increased to 82% with the new AI NER module. The difficulty in
identifying cellular pathway names using the proposed approach can be explained by the
context in which these objects occur in the text, which is very similar to objects of other
types, such as diseases.

Example Use of ANDDigest Ver. 01.2022 with Comorbid Diseases

Currently, a large proportion of the biomedical literature focuses on the problem of
disease comorbidity. Comorbidity reflects the frequent joint manifestation of diseases
in patients. Positive comorbidity reflects increased frequency and negative comorbidity
reflects decreased frequency [45]. Our previous studies using the ANDSystem focused
on molecular genetic mechanisms underlying positive disease comorbidities, such as
asthma with hypertension [46,47] and pre-eclampsia associome [48]. In addition, we
explored diseases with negative comorbidities, such as asthma with tuberculosis [49].
However, widely used approaches for identifying the molecular genetic mechanisms
underlying comorbid diseases search for common associated genes [50,51]. In particular,
we have shown that the proportion of genes simultaneously associated with two diseases
is significantly higher for pairs of comorbid diseases compared to pairs of randomly
selected diseases [51].

The study of the molecular genetic mechanisms for coronavirus disease 2019 (COVID-19)
is extremely important in the context of the current pandemic [52]. We previously analyzed
metabolomic data for the blood plasma of patients with COVID-19 using the ANDDigest
and ANDSystem tools [53]. Therefore, we analyzed the comorbidity of COVID-19 with other
diseases as a test case for applying the new ANDDigest ver. 01.2022 tool. The query formed to
search for all documents mentioning COVID-19 and any other disease is shown in Figure 5.
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Figure 5. The search query used to find PubMed documents containing COVID-19 and mentioning
at least one other disease with ANDDigest ver. 01.2022.

ANDDigest ver. 01.2022 identified 182,445 abstracts mentioning COVID-19 and at
least one of 3504 other diseases after short name filtering. Next, the resulting list of diseases
was filtered based on the statistical significance of their co-occurrence with COVID-19
(false discovery rate (FDR) < 0.05) in scientific publication abstracts, identifying 84 signif-
icant diseases. The ten most common statistically significant diseases co-occurring with
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COVID-19 are listed in Table 3. A list of all diseases co-occurring with COVID-19, including
non-significant ones, is provided in Supplementary Table S4.

Table 3. The top 10 diseases that significantly co-occurred with COVID-19 in the query results.

Rank Disease Document
Number

Co-Occurrence Score
(p-Value) FDR p-Value (<0.05)

1 Severe COVID-19 4584 2.08593 × 10−8 3.496523 × 10−6

2 Pneumonia 3944 7.00031 × 10−8 4.968849 × 10−6

3 Fever 3396 2.77321 × 10−8 3.506271 × 10−6

4 Acute respiratory distress syndrome 2600 3.20772 × 10−8 3.593681 × 10−6

5 Severe acute respiratory syndrome 2573 1.65303 × 10−8 3.496523 × 10−6

6 Infectious diseases 2524 3.42188 × 10−8 3.627905 × 10−6

7 Influenza 2431 3.36938 × 10−9 2.689255 × 10−6

8 Viral infection 2336 3.68056 × 10−8 3.627905 × 10−6

9 Breathlessness 1935 4.75682 × 10−8 4.236009 × 10−6

10 Fatigue 1738 1.01457 × 10−8 3.203274 × 10−6

Pneumonia, fever, and influenza were among the most frequently co-occurring dis-
eases. The relationship between these pathologies with COVID-19 is widely discussed in
the literature [54,55]. Interestingly, one disease significantly associated with COVID-19 in
the literature was delirium (33rd on the list; see Supplementary Table S4b). Delirium is a
syndrome characterized by abrupt changes in attention, awareness, and cognitive abilities.
The literature discusses many factors involved in delirium’s etiology. These include neu-
roinflammation, cerebrovascular dysfunction, altered brain metabolism, neurotransmitter
imbalance, and neural network connectivity disruption [56]. In particular, some studies
report that delirium is observed in elderly patients with severe COVID-19 [57,58].

We used ANDDigest ver. 01.2022 to identify common associated genes for these two
diseases using the following queries: find all publications that mention COVID-19 and at least
one gene, and find all documents containing delirium and at least one gene. The first query
identified 3447 genes, of which 162 significantly co-occurred with COVID-19 (FDR < 0.05).
The second query identified 441 genes, of which 162 significantly co-occurred with delir-
ium. The intersection of these two gene lists contained 230 genes common to both diseases
(Supplementary File S5). They included the sigma-1 receptor (FDR (COVID-19) = 3.57 × 10−5;
FDR (Delirium) = 6.00 × 10−5), which was significant for both diseases. The sigma-1 receptor
has diverse functions, including regulating neuroinflammation, neurotransmitters, neuro-
genesis, endoplasmic reticulum stress, and mitochondrial function. The sigma-1 receptor’s
significant associations with COVID-19 and delirium in the literature are consistent with its
important roles in their pathologies. A graph showing the growth in publications mentioning
this gene over time is shown in Figure 6.

This gene’s role in delirium has been previously discussed [59]. The role of the
sigma-1 receptor as a functional host-dependency factor for the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) virus that causes COVID-19 has also been discussed
in the literature. In particular, studies have shown that the knockout or knockdown of the
sigma-1 receptor causes a consistent reduction in SARS-CoV-2 replication, suggesting that
the sigma-1 receptor is important in SARS-CoV-2 replication [60].
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4. Materials and Methods
4.1. PubMed Abstracts Corpus

The analysis used a corpus of >34 million English PubMed abstract texts retrieved in
July 2022.

4.2. Selection of a Maximum Length Threshold for the Analyzed Short Terms

Acronyms and abbreviations are one of the main sources of errors related to recog-
nition of names of entities in biological literature [40,41]. At the same time, such names
are present in about 15% of all PubMed abstracts, and approximately in the same pro-
portion of clinical texts [61]. In this regard, we decided to focus on length, which is most
typical for such entities when selecting a threshold value, using the corpus of abstracts,
developed by Sohn et al. [62]. This corpus is the gold standard, containing 1250 randomly
selected abstracts, where biomedical abbreviations were manually annotated. In total it
includes 1224 names, 1121 of which correspond to unique full names. The analysis showed
that 81% of all acronyms and abbreviations contained in it are terms that do not exceed
4 characters in length.

4.3. Dictionary-Based NER

Preliminary dictionary-based mapping of the molecular genetic object names in texts is
performed using the text-mining algorithms implemented in ANDSystem [11]. Then, all the
recognized entities matching the corresponding dictionary are divided into three groups: terms
with a length of ≤4 characters (short names), terms with a length of >4 but <15 characters,
and terms with a length of ≥15 characters (long names). The distributions of object names by
group, length, and type are shown in Figure 7.

The justification for filtering short names is that the most significant error associated
with semantic concept ambiguity is their more frequent intersection with common words
and various abbreviations [13–16]. For example, one synonym for the cyclin-dependent
kinase 4 inhibitor B gene is p15. This word often occurs in texts as a page number. Another
example is flu, traditionally used as a synonym for influenza. However, the UniProt
database contains information on an Escherichia coli gene (UID: P39180) with the same
name. Similarly, the tic term often corresponds to impaired nervous system functioning in
biomedicine. However, this term was introduced as an abbreviation for tumor-initiating
cells in a study on epithelial–mesenchymal transition [63].
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Figure 7 shows that most references to short names in >10 million scientific publication
abstracts belong to metabolites. This finding reflects the fact that this dictionary contains
numerous chemical element names whose length does not exceed two letters, such as Ca
(calcium), Pb (lead), and Mg (magnesium). Moreover, most of these terms also intersect
with different abbreviations. For example, CA is also used as a short name for California,
mg as milligrams, while in medicine, Pb can be short for peripheral blood. Another example
is the name gold, which is often used in the context of the gold standard.

These examples highlight errors that might appear when using only dictionary-
based mapping methods. One solution to this problem is the subsequent filtering of
such dictionary-mapped entities according to their context.

4.4. Training Sets

Five object groups were considered: (1) proteins and genes, (2) diseases and side
effects, (3) drugs and metabolites, (4) cellular components, and (5) cellular pathways. The
protein and gene vocabularies were combined into a common vocabulary, as were those
for diseases and side effects, and for drugs and metabolites. Our analysis did not consider
organisms, phenotypic traits, miRNAs, molecular functions, and cells.

The automated formation of training samples for each classification model was based
on the following algorithm: mapped PubMed texts containing long object names of the
corresponding type from the group being considered were selected as positive examples.
The mapping was performed using the ANDSystem’s ontology and text-mining approach.
Terms of ≥15 characters were considered as long. The number of examples mentioning
such names for each selected group exceeded 1 million (Figure 7), making it possible to use
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them as training sets. Often several objects can be mentioned in the text, and a given name
can appear multiple times in the text. Therefore, to provide the neural network with the
ability to consider the context of a particular object in the specific part of the sentence, the
classified term was separately replaced by a special tag: <ANDSYSTEM-CANDIDATE>. A
schematic illustration of the algorithm is shown in Figure 8.
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Positive examples for objects of another group were used as negative examples.
Therefore, for the drugs/metabolites and diseases/side effects groups, data from the
genes/proteins group were used as negative examples, while for the genes/proteins, cellu-
lar components, and cellular pathways groups, data from the diseases/side effects group
were used as negative examples. Each model’s learning set comprised 512,000 training
and 50,000 validation examples, with positive and negative examples in a 1:1 ratio. All
classification models were trained on the context of objects with ≥15 characters.

4.5. Gold Standards

To assess the accuracy of the classification models, in relation to names of the groups
being considered from the ANDSystem ontology, where the length did not exceed the
selected threshold value, a gold standard was prepared containing positive and negative
examples of dictionary-based recognition.

The process of preparing the gold standard included the following steps: at first,
the PubMed texts were automatically downloaded in blocks from their official ftp server.
Then, using the previously implemented ANDDigest and ANDSystem pipeline, each block
of data was automatically pre-processed, which included converting texts into a unified
format, their normalization, removing duplicating texts, and dictionary-based mapping of
objects. Next, for each model, we randomly selected a block of pre-processed data, where,
according to the groups of objects selected for classification, all abstracts containing short
names, whose length did not exceed 4 characters, were allocated.

The obtained mapped texts for each group of objects were manually analyzed by
a single specialist. At the same time, since some of the sentences contained repeated
short names, an additional variant of corpuses was prepared from which such repetitions
were excluded.
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For an additional assessment of the accuracy of each classification model, we used the
existing gold standards containing manually mapped objects, with types that intersected
with the ANDSystem ontology (Table 4).

Table 4. List of the well-known gold standards, used for the additional evaluation of the accuracy of
the fine-tuned classification models.

Gold Standard Description Types of Objects Considered Reference

BioRED

Rich biomedical relation extraction dataset
(BioRED), containing several types of
molecular-genetics entities and their
relationships, expertly labeled in a corpus of
600 PubMed abstracts.

Disease/Side effects,
Drugs/Metabolites,
Genes/Proteins

[64]

NCBI Disease corpus
The corpus is made of 793 fully annotated
PubMed abstracts, containing 6892 disease
mentions, mapped to 790 unique concepts.

Disease/Side effects [15]

NLM-Chem
The NLM-Chem corpus contains 150 full-text
articles with over 5000 unique chemical names,
annotated by ten expert NLM indexers.

Drugs/Metabolites [65]

CRAFT

The Colorado richly annotated full-text corpus
contains 97 full-text biomedical articles,
annotated by using the nine biomedical
ontologies and terminologies.

Cell pathways,
Cell components,
Genes/Proteins

[66]

Using the selected corpuses, for each model, 2 groups of positive and negative ex-
amples were formed in a 1:1 ratio. In the first case, all lengths of annotated object names
were used as positive examples. In the second, only short names were considered. For
negative examples, the names of entities from gold standards corresponding to other object
types were taken, excluding positive ones for each corresponding model. The process of
generating examples was carried out with the same algorithm used for the preparation of
training samples (Figure 8).

As positive examples for the disease and side effects model, the mapped names
corresponding to the DiseaseOrPhenotypicFeature type from the BioRED corpus were
used: 5545 examples were generated for names of any length and 1127 for short names only.
These examples were expanded with texts, containing the disease entities’ names from the
NCBI Disease gold standard: 4953 and 1040 examples, respectively. To generate negative
examples, a similar number of all other types of objects from the BioRED dataset was used,
and the objects were selected consecutively, according to their mention in the text.

Names mapped as chemical entities from the BioRED corpus, were used to generate
positive examples for the drug/metabolite classifier. The corpus enabled the creation of
4429 examples for any name length and 1080 only for short ones. These data were ex-
panded with information from the NLM-Chem corpus. Due to the fact that NLM-Chem
is a gold standard built using the full texts of articles, its separate blocks, enclosed in-
side <text></text> tags with a mapped chemical compound, were used as a context.
All blocks that did not exceed 250 characters in length were excluded. Based on NLM-
Chem, 11,561 more positive examples were generated for all lengths and 3731 for short
names only. Negative examples were formed using the BioRED corpus, in the same way
as the previous model.

For the gene/protein classification model, all tagged texts from the BioRED gold
standard, containing objects mapped with a GeneOrGeneProduct type, were used. This
enabled the generation of 6697 positive examples for all lengths and 2859 for short names.
The obtained data were expanded with information from the CRAFT corpus, where each
line with a length of at least 250 characters and with at least one tagged gene or protein, was
considered as a context. Using the CRAFT corpus, 5358 more positive examples were added,
based on names of any length, and 2084 based on only short ones. Negative examples
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for objects of any length were formed using the BioRED corpus, while for short names,
it enabled the generation of only 2946 examples and was also expanded using the other
datasets. The expansion was achieved by adding more examples containing short names
corresponding to Diseases (NCBI Disease), Cellular Pathways (CRAFT), and metabolites
(NLM-Chem). In each case, 680 first records were used.

For the classification models for cellular pathways and cellular components, positive
examples were formed using the corresponding sections from the CRAFT corpus, while the
negative examples were generated with the BioRED dataset. This enabled the creation of
774 positive examples for the short terms, and 12,885 for terms of any length. For cellular
components, these values were 811 and 4441, respectively.

5. Conclusions

We have shown that the developed AI NER text-mining module integrated into AND-
Digest ver. 01.2022 has high efficiency in recognizing short-named entities. A feature of
the new ANDDigest version is the use of neural networks that perform binary classifi-
cation of short names for biological objects in the ANDSystem ontology based only on
the context in which they are mentioned. This approach makes it possible to overcome
linguistic ambiguities inherent to general dictionary-based text mapping methods and the
previous ANDDigest version in particular. In addition, we showed the effectiveness of our
automated generation of high-quality training samples based on the context of long names
for various object types. Moreover, preliminary dictionary mapping provides the user with
all the necessary information about the recognized entities, such as their synonyms and
links to external databases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232314934/s1.

Author Contributions: Software development, model training, and accuracy assessment were per-
formed by T.V.I. and P.S.D.; Gold standards were created by T.V.I. and V.A.I.; Analysis of comorbidity
was performed by V.A.I.; T.V.I., P.S.D., N.A.K., and V.A.I. performed writing, review and editing of
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by the Ministry of Science and Higher Education of the Russian
Federation project “Kurchatov Center for World-Class Genomic Research” No. 075-15-2019-1662
from 2019-10-31.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The new ANDDigest version (01.2022) has a web interface and is freely
available at https://anddigest.sysbio.ru/ (accessed on 11 November 2022). The fine-tuned classifi-
cation models and datasets are available upon request at the following link: https://huggingface.
co/Timofey (accessed on 11 November 2022). Codes and examples for standalone training and
application of the fine-tuned models, gold standards and output results for each corresponding
model, are available at GitHub: https://github.com/ANDDigest/ANDDigest_classification_models
(accessed on 11 November 2022).

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Beel, J.; Gipp, B. Google Scholar’s Ranking Algorithm: An Introductory Overview. In Proceedings of the 12th International

Conference on Scientometrics and Informetrics (ISSI’09), Rio de Janeiro, Brazil, 14–17 July 2009; Volume 1, pp. 230–241.
2. McEntyre, J.; Ostell, J. The NCBI Handbook; National Center for Biotechnology Information (US): Bethesda, WA, USA, 2002.
3. Jacso, P. As We May Search—Comparison of Major Features of the Web of Science, Scopus, and Google Scholar Citation-Based

and Citation-Enhanced Databases. Curr. Sci. 2005, 89, 1537–1547.
4. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The

String Database in 2021: Customizable Protein–Protein Networks, and Functional Characterization of User-Uploaded
Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms232314934/s1
https://www.mdpi.com/article/10.3390/ijms232314934/s1
https://anddigest.sysbio.ru/
https://huggingface.co/Timofey
https://huggingface.co/Timofey
https://github.com/ANDDigest/ANDDigest_classification_models
http://doi.org/10.1093/nar/gkaa1074
http://www.ncbi.nlm.nih.gov/pubmed/33237311


Int. J. Mol. Sci. 2022, 23, 14934 15 of 17

5. Nikitin, A.; Egorov, S.; Daraselia, N.; Mazo, I. Pathway Studio—The Analysis and Navigation of Molecular Networks. Bioinfor-
matics 2003, 19, 2155–2157. [CrossRef] [PubMed]

6. Nikolsky, Y.; Nikolskaya, T.; Bugrim, A. Biological Networks and Analysis of Experimental Data in Drug Discovery. Drug Discov.
Today 2005, 10, 653–662. [CrossRef] [PubMed]

7. Ekins, S.; Bugrim, A.; Brovold, L.; Kirillov, E.; Nikolsky, Y.; Rakhmatulin, E.; Sorokina, S.; Ryabov, A.; Serebryiskaya, T.;
Melnikov, A.; et al. Algorithms for Network Analysis in Systems-ADME/Tox Using the MetaCore and MetaDrug Platforms.
Xenobiotica 2006, 36, 877–901. [CrossRef]

8. Ivanisenko, V.A.; Saik, O.V.; Ivanisenko, N.V.; Tiys, E.S.; Ivanisenko, T.V.; Demenkov, P.S.; Kolchanov, N.A. ANDSystem: An
Associative Network Discovery System for Automated Literature Mining in the Field of Biology. BMC Syst. Biol. 2015, 9, S2.
[CrossRef] [PubMed]

9. Ivanisenko, V.A.; Demenkov, P.S.; Ivanisenko, T.V.; Mishchenko, E.L.; Saik, O.V. A New Version of the ANDSystem Tool for
Automatic Extraction of Knowledge from Scientific Publications with Expanded Functionality for Reconstruction of Associative
Gene Networks by Considering Tissue-Specific Gene Expression. BMC Bioinf. 2019, 20, 34. [CrossRef]

10. Ivanisenko, T.V.; Saik, O.V.; Demenkov, P.S.; Ivanisenko, N.V.; Savostianov, A.N.; Ivanisenko, V.A. ANDDigest: A New Web-Based
Module of ANDSystem for the Search of Knowledge in the Scientific Literature. BMC Bioinf. 2020, 21, 228. [CrossRef]

11. Naseem, U.; Musial, K.; Eklund, P.; Prasad, M. Biomedical Named-Entity Recognition by Hierarchically Fusing Biobert Represen-
tations and Deep Contextual-Level Word-Embedding. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

12. Pearson, H. Biology’s Name Game. Nature 2001, 411, 631–633. [CrossRef]
13. Wei, C.H.; Kao, H.Y.; Lu, Z. GnormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains.

Biomed. Res. Int. 2015, 2015, 918710. [CrossRef]
14. Islamaj, R.; Wei, C.H.; Cissel, D.; Miliaras, N.; Printseva, O.; Rodionov, O.; Sekiya, K.; Ward, J.; Lu, Z. NLM-Gene, a Richly

Annotated Gold Standard Dataset for Gene Entities that Addresses Ambiguity and Multi-Species Gene Recognition. J. Biomed. Inf.
2021, 118, 103779. [CrossRef] [PubMed]
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2018, 57, 115–116. [CrossRef] [PubMed]
44. Ram, N.; Bauer, E.W.; Hesse, U.C.; Heilman, R.D. Cardiovascular Effects of 5-Hydroxypropranolol (ORF 12592) in Dogs. Arch. Int.

Pharmacodyn. Ther. 1977, 228, 118–125.
45. Gijsen, R.; Hoeymans, N.; Schellevis, F.G.; Ruwaard, D.; Satariano, W.A.; van den Bos, G.A. Causes and Consequences of

Comorbidity: A Review. J. Clin. Epidemiol. 2001, 54, 661–674. [CrossRef]
46. Zolotareva, O.; Saik, O.V.; Königs, C.; Bragina, E.Y.; Goncharova, I.A.; Freidin, M.B.; Dosenko, V.E.; Ivanisenko, V.A.; Hofestädt, R.

Comorbidity of Asthma and Hypertension May Be Mediated by Shared Genetic Dysregulation and Drug Side Effects. Sci. Rep.
2019, 9, 16302. [CrossRef]

47. Saik, O.V.; Demenkov, P.S.; Ivanisenko, T.V.; Bragina, E.Y.; Freidin, M.B.; Goncharova, I.A.; Dosenko, V.E.; Zolotareva, O.I.;
Hofestaedt, R.; Lavrik, I.N.; et al. Novel Candidate Genes Important for Asthma and Hypertension Comorbidity Revealed from
Associative Gene Networks. BMC Med. Genom. 2018, 11, 15. [CrossRef] [PubMed]

48. Glotov, A.S.; Tiys, E.S.; Vashukova, E.S.; Pakin, V.S.; Demenkov, P.S.; Saik, O.V.; Ivanisenko, T.V.; Arzhanova, O.N.; Mozgovaya,
E.V.; Zainulina, M.S.; et al. Molecular Association of Pathogenetic Contributors to Pre-Eclampsia (Pre-Eclampsia Associome).
BMC Syst. Biol. 2015, 9, S4. [CrossRef]

49. Bragina, E.Y.; Tiys, E.S.; Freidin, M.B.; Koneva, L.A.; Demenkov, P.S.; Ivanisenko, V.A.; Kolchanov, N.A.; Puzyrev, V.P. Insights
into Pathophysiology of Dystropy through the Analysis of Gene Networks: An Example of Bronchial Asthma and Tuberculosis.
Immunogenetics 2014, 66, 457–465. [CrossRef] [PubMed]

50. Hofestädt, R.; Ivanisenko, V. Integrative Analysis of Co-Morbid Multifactorial Diseases. J. Integr. Bioinform. 2018, 15, 20180088.
[CrossRef]

51. Bragina, E.Y.; Goncharova, I.A.; Garaeva, A.F.; Nemerov, E.V.; Babovskaya, A.A.; Karpov, A.B.; Semenova, Y.V.; Zhalsanova, I.Z.;
Gomboeva, D.E.; Saik, O.V.; et al. Molecular Relationships between Bronchial Asthma and Hypertension as Comorbid Diseases. J.
Integr. Bioinform. 2018, 15, 20180052. [CrossRef]

52. Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; et al.
The Lancet Commission on Lessons for the Future from the COVID-19 Pandemic. Lancet 2022, 400, 1224–1280. [CrossRef]

53. Ivanisenko, V.A.; Gaisler, E.V.; Basov, N.V.; Rogachev, A.D.; Cheresiz, S.V.; Ivanisenko, T.V.; Demenkov, P.S.; Mishchenko, E.L.;
Khripko, O.P.; Khripko, Y.I.; et al. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural
SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022, 12, 19977. [CrossRef] [PubMed]

54. Gattinoni, L.; Gattarello, S.; Steinberg, I.; Busana, M.; Palermo, P.; Lazzari, S.; Romitti, F.; Quintel, M.; Meissner, K.; Marini, J.J.; et al.
COVID-19 Pneumonia: Pathophysiology and Management. Eur. Respir. Rev. 2021, 30, 210138. [CrossRef] [PubMed]

55. Ozaras, R.; Cirpin, R.; Duran, A.; Duman, H.; Arslan, O.; Bakcan, Y.; Kaya, M.; Mutlu, H.; Isayeva, L.; Kebanlı, F.; et al. Influenza
and COVID-19 Coinfection: Report of Six Cases and Review of the Literature. J. Med. Virol. 2020, 92, 2657–2665. [CrossRef]
[PubMed]

http://doi.org/10.1093/bioinformatics/btac539
http://www.ncbi.nlm.nih.gov/pubmed/35920772
http://doi.org/10.1145/3458754
http://doi.org/10.1186/s12911-022-01967-7
http://doi.org/10.1101/2021.11.09.467905
http://doi.org/10.1002/env.507
http://doi.org/10.1093/bioinformatics/btl534
http://www.ncbi.nlm.nih.gov/pubmed/17050571
http://doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://doi.org/10.1111/ijd.13805
http://www.ncbi.nlm.nih.gov/pubmed/29057465
http://doi.org/10.1016/S0895-4356(00)00363-2
http://doi.org/10.1038/s41598-019-52762-w
http://doi.org/10.1186/s12920-018-0331-4
http://www.ncbi.nlm.nih.gov/pubmed/29504915
http://doi.org/10.1186/1752-0509-9-S2-S4
http://doi.org/10.1007/s00251-014-0786-1
http://www.ncbi.nlm.nih.gov/pubmed/24954693
http://doi.org/10.1515/jib-2018-0088
http://doi.org/10.1515/jib-2018-0052
http://doi.org/10.1016/S0140-6736(22)01585-9
http://doi.org/10.1038/s41598-022-24170-0
http://www.ncbi.nlm.nih.gov/pubmed/36404352
http://doi.org/10.1183/16000617.0138-2021
http://www.ncbi.nlm.nih.gov/pubmed/34670808
http://doi.org/10.1002/jmv.26125
http://www.ncbi.nlm.nih.gov/pubmed/32497283


Int. J. Mol. Sci. 2022, 23, 14934 17 of 17

56. Wilson, J.E.; Mart, M.F.; Cunningham, C.; Shehabi, Y.; Girard, T.D.; MacLullich, A.M.; Slooter, A.J.; Ely, E. Delirium. Nat. Rev. Dis.
Prim. 2020, 6, 90. [CrossRef]

57. Pun, B.T.; Badenes, R.; La Calle, G.H.; Orun, O.M.; Chen, W.; Raman, R.; Simpson, B.-G.K.; Wilson-Linville, S.; Olmedillo, B.H.; de
la Cueva, A.V.; et al. Prevalence and Risk Factors for Delirium in Critically Ill Patients with COVID-19 (COVID-D): A Multicentre
Cohort Study. Lancet Respir. Med. 2021, 9, 239–250. [CrossRef]

58. Hariyanto, T.I.; Putri, C.; Hananto, J.E.; Arisa, J.; Situmeang, R.F.V.; Kurniawan, A. Delirium Is a Good Predictor for Poor
Outcomes from Coronavirus Disease 2019 (COVID-19) Pneumonia: A Systematic Review, Meta-Analysis, and Meta-Regression. J.
Psychiatr. Res. 2021, 142, 361–368. [CrossRef] [PubMed]

59. Wang, Y.M.; Xia, C.Y.; Jia, H.M.; He, J.; Lian, W.W.; Yan, Y.; Wang, W.P.; Zhang, W.K.; Xu, J.K. Sigma-1 Receptor: A Potential Target
for the Development of Antidepressants. Neurochem. Int. 2022, 159, 105390. [CrossRef]

60. Gordon, D.E.; Hiatt, J.; Bouhaddou, M.; Rezelj, V.V.; Ulferts, S.; Braberg, H.; Jureka, A.S.; Obernier, K.; Guo, J.Z.; Batra, J.; et al.
Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan-Viral Disease Mechanisms. Science 2020, 370, eabe9403.
[CrossRef]

61. Veyseh, A.P.B.; Dernoncourt, F.; Tran, Q.H.; Nguyen, T.H. What Does This Acronym Mean? Introducing a New Dataset for
Acronym Identification and Disambiguation. arXiv 2020, arXiv:2010.14678.

62. Sohn, S.; Comeau, D.C.; Kim, W.; Wilbur, W.J. Abbreviation Definition Identification Based on Automatic Precision Estimates.
BMC Bioinf. 2008, 9, 402. [CrossRef]

63. Creighton, C.J.; Chang, J.C.; Rosen, J.M. Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical
Implications in Breast Cancer. J. Mammary Gland Biol. Neoplasia 2010, 15, 253–260. [CrossRef] [PubMed]

64. Luo, L.; Lai, P.T.; Wei, C.H.; Arighi, C.N.; Lu, Z. BioRED: A Rich Biomedical Relation Extraction Dataset. Brief. Bioinform. 2022,
23, bbac282. [CrossRef] [PubMed]

65. Islamaj, R.; Leaman, R.; Kim, S.; Kwon, D.; Wei, C.-H.; Comeau, D.C.; Peng, Y.; Cissel, D.; Coss, C.; Fisher, C.; et al. NLM-Chem, a
New Resource for Chemical Entity Recognition in PubMed Full Text Literature. Sci. Data 2021, 8, 91. [CrossRef] [PubMed]

66. Bada, M.; Eckert, M.; Evans, D.; Garcia, K.; Shipley, K.; Sitnikov, D.; Baumgartner, W.A.; Cohen, K.B.; Verspoor, K.; Blake, J.A.; et al.
Concept Annotation in the CRAFT Corpus. BMC Bioinform. 2012, 13, 161. [CrossRef]

http://doi.org/10.1038/s41572-020-00223-4
http://doi.org/10.1016/S2213-2600(20)30552-X
http://doi.org/10.1016/j.jpsychires.2021.08.031
http://www.ncbi.nlm.nih.gov/pubmed/34425488
http://doi.org/10.1016/j.neuint.2022.105390
http://doi.org/10.1126/science.abe9403
http://doi.org/10.1186/1471-2105-9-402
http://doi.org/10.1007/s10911-010-9173-1
http://www.ncbi.nlm.nih.gov/pubmed/20354771
http://doi.org/10.1093/bib/bbac282
http://www.ncbi.nlm.nih.gov/pubmed/35849818
http://doi.org/10.1038/s41597-021-00875-1
http://www.ncbi.nlm.nih.gov/pubmed/33767203
http://doi.org/10.1186/1471-2105-13-161

	Introduction 
	Results 
	Web-Based Information Retrieval System ANDDigest (Ver. 01.2022) 
	Context-Based Classification of Incorrectly Recognized Objects 

	Discussion 
	Materials and Methods 
	PubMed Abstracts Corpus 
	Selection of a Maximum Length Threshold for the Analyzed Short Terms 
	Dictionary-Based NER 
	Training Sets 
	Gold Standards 

	Conclusions 
	References

