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Abstract: Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and
yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2])
enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2]
enrichment effect on root drought stress is not clear. In this study, the effects of different drought
stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress)
and [CO2] (400 µmol·mol−1 and 800 ± 40 µmol·mol−1) on the cucumber seedling root proteome
were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results
showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found
only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under
both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino
acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell
wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and
degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2]
enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought
stress, which may be due to excessive damage to the seedlings.

Keywords: cucumber roots; CO2 enrichment; drought stress; TMT-based quantitative proteomic;
carbohydrate synthesis; amino acid metabolism

1. Introduction

Drought is a major environmental factor affecting crop growth and yield worldwide [1],
and the arid and semi-arid areas threatened by irrigation water shortages account for about
50% of China’s land area [2]. Meanwhile, atmospheric carbon dioxide concentration ([CO2])
has exceeded 415 µmol·mol−1 (https://www.CO2.earth/ accessed on 30 January 2022) and
are predicted to rise to 700–800 µmol·mol−1 by the end of the century (IPCC 2013).

Under drought stress, [CO2] enrichment can improve plant growth rate and yield
by increasing photosynthetic rate, reducing stomatal conductance and respiration, and
increasing water use efficiency, thereby alleviating the degree of plant stress and producing
a significant “CO2 fertilization effect” [3]. Previous studies on plant responses to [CO2]
enrichment have focused on the growth and development, physiology and metabolism,
and yield and quality of above-ground organs of crops [4]. As one of the important organs
of terrestrial plants, changes in environmental conditions inevitably cause changes in the
root system, which in turn affect the function of crop uptake and transport of water and
nutrients. One study showed that [CO2] enrichment promoted total fine root length (+44%)
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and observed root number (+39%) in mixed heathland and grassland [5]. Another study
showed that under drought condition, increasing [CO2] to 550 µmol·mol−1 significantly
promoted carbohydrate synthesis in maize leaves, which was then transported to the
root system to stimulate root growth and alter root physiological activity [6]. Cucumber
(Cucumis sativus L.) is one of the most important vegetable crops grown in greenhouses
around the world, and its shallow-rooted biology dictates high water requirements. Our
previous results showed that under [CO2] enrichment conditions, the root phenotype of
cucumber seedlings was significantly altered, root biomass, total length, total surface area,
and total volume were increased, endogenous phytohormone contents and antioxidant
capacity were regulated, and hydraulic conductivity was improved, ultimately mitigating
the negative effects of drought stress on the cucumber seedling roots [7,8]. These studies
can provide valuable references for understanding [CO2] enrichment to improve root
drought resistance.

In recent years, comparative proteomics have been used to study the mechanisms by
which the root system responds to drought stress and/or [CO2] enrichment. For exam-
ple, plant roots under drought stress are rich in proteins related to carbon and nitrogen
metabolism, such as malate dehydrogenase (MDH), α-mannosidase, UDP-sugar pyrophos-
phorylase, and UDP-glucose-6-phosphate dehydrogenase, suggesting that the root system
releases energy to enhance intercellular activity under stress [9,10]. Antioxidant-related pro-
teins such as dehydroascorbate reductase, quinone reductase, and glutathione-S-transferase
have been detected in roots under drought stress [11,12], as have molecular chaperones
such as HSP70, HSP60, GroEL, and other heat shock proteins that prevent the accumula-
tion and folding of inactive proteins to protect the normal growth and development of
root cells under stress [13–15]. Proteins related to stress defense as well as those related
to protein folding, modification, and degradation have been found to respond to H2O2-
ABA-induced adventitious root development in cucumber under drought stress [16]. In
addition, another study has shown that nitrogen metabolism (glutamine synthetase), energy
metabolism (glyceraldehyde-3-phosphate dehydrogenase), antioxidant metabolism (ascor-
bate peroxidase, superoxide dismutase and catalase), and chaperone protection (HSP81-1)
proteins respond to drought stress in creeping bentgrass roots under [CO2] enrichment
conditions [17].

However, few studies have been reported on the proteome of cucumber root systems
under [CO2] enrichment and drought stress. Therefore, this study aims to analyze the dif-
ferentially accumulating proteins (DAPs) associated with drought resistance in cucumber
seedling roots under [CO2] enrichment using the tandem mass tag (TMT) technique. In
addition, we analyze the changes in compounds associated with the carbon and nitrogen
metabolisms. We expect to provide new insights into [CO2] enrichment regulatory mech-
anisms in order to improve the drought resistance of cucumber seedlings and provide a
stronger theoretical basis for CO2 fertilization in greenhouse cultivation.

2. Results
2.1. Overview of Quantitative Proteomic Responses to [CO2] Enrichment and Drought Stress

In this experiment, the whole proteome of cucumber seedling roots under six treat-
ments was quantified. In total, 77,477 peptides were inferred, of which 72,101 unique pep-
tides had similarities to proteins; after removing duplicates, 5970 proteins were identified,
of which 5155 contained quantifiable information (Figure 1A, Table S1). The quantitative
repeatability of the proteins was assessed by principal component analysis (PCA), and
the degree of aggregation between replicate samples showed the high repeatability of
our experiments (Figure 1B). For a more comprehensive analysis of the effect of [CO2]
enrichment on cucumber seedling roots under drought stress using fold change >1.2 and
the p-value < 0.05 as screening criteria (Table S2), quantifiable proteins under different
[CO2] comparison groups (EC/AC, EM/AM, ES/AS) and different drought stress com-
parison groups (AM/AC, AS/AC, EM/EC, ES/EC) were selected as DAPs (Figure 1C,
Table S3). Venn diagrams were established to visualize the relationship of DAPs with [CO2]
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enrichment and different levels of drought stress. The results showed that after [CO2] en-
richment, 60 DAPs were found under all drought conditions, 34 DAPs under moderate and
severe drought stress, 346 DAPs under moderate drought stress, and 27 DAPs under severe
drought stress (Figure 1D, Table S4). Venn diagrams of DAPs under different drought stress
are shown in Figure S1A and Table S4; these reflect the commonalities and differences in
biochemical changes in cucumber roots under [CO2] enrichment and drought stress.

Figure 1. Quantitative proteome analysis of MS data and identification of differentially accumulating
proteins. (A) The basic statistics of the MS results. (B) Principal component analysis of all samples
using quantified proteins. (C) Histogram of the numerical distribution of differentially accumulating
proteins in different comparison groups. (D) Venn diagram analysis of differentially accumulating
proteins under [CO2] enrichment. Matched spectrum, number of spectrum matched with alignment
protein; Total spectrum, number of spectrum produced by mass spectrometer; Peptides, number of
peptides which spectrum hit; Unique peptides, number of identified peptides that only come from
this protein group; Identified proteins, number of proteins detected by spectrum search analysis;
Quantifiable proteins, number of proteins quantifiable; AC, atmospheric [CO2] + control condition;
EC, [CO2] enrichment + control condition; AM, atmospheric [CO2] + moderate drought stress; EM,
[CO2] enrichment + moderate drought stress; AS, atmospheric [CO2] + severe drought stress; ES,
[CO2] enrichment + severe drought stress. The same definitions hold below.

2.2. Hierarchical Clustering and Functional Classification Analysis of DAP Response to [CO2]
Enrichment and Drought Stress

In order to obtain a comprehensive understanding of the proteins identified in the
data, we annotated the functions and characteristics of these proteins in terms of GO,
protein domain, KEGG pathway, KOG functional classification, and subcellular structure
localization (Table S5). After functional classification analysis of these DAPs, we found
that these DAPs were mainly focused on four aspects: information storage and processing
(I), cell process and signaling (II), metabolism (III), and other unknown functions (IV)
(Figures 2 and S1B, Table S6).
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Figure 2. KOG functional classification chart of differential proteins under [CO2] enrichment: (I) in-
formation storage and processing, (II) cellular processes and signals, (III) metabolism, and (IV) other
unknown functions.

Then, the DAPs of each comparison groups were subjected to enrichment analysis and
cluster analysis at the level of the KEGG pathways (Table S7). The results showed that after
[CO2] enrichment, eight metabolic pathways (glycolysis/gluconeogenesis (EMP), fructose
and mannose metabolism, arginine and proline metabolism, tyrosine metabolism, amino
sugar metabolism and nucleotide sugar metabolism, secondary metabolite biosynthesis,
amino acid biosynthesis, and carbon metabolism) were significantly upregulated under
moderate drought stress, while only the ribosomal pathway was significantly upregulated
under severe drought stress (Figure 3). The changes of metabolic pathways under different
drought stress are shown in Figure S2.

In order to validate the proteomic results, we measured the activity of enzymes in the
EMP pathway and in the carbon and nitrogen metabolisms. The results showed that the
activities of hexokinase (HK), MDH, nitrate reductase (NR), glutamate synthase (GOGAT),
and glutamate dehydrogenase (GDH) decreased under the same [CO2] conditions, while
the activity of alcohol dehydrogenase (ADH) increased in cucumber seedling roots un-
der drought stress. Under [CO2] enrichment conditions, the activities of MDH and NR
increased significantly under moderate drought stress, the activity of ADH increased sig-
nificantly under severe drought stress, and the activity of GDH decreased significantly
under moderate and severe drought stress. These results are consistent with those of the
proteomic analysis (Figure 4, Table S8).
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Figure 3. Cluster analysis of the enrichment patterns of KEGG pathways of differential accumulating
proteins under [CO2] enrichment. The color blocks corresponding to the functional description of the
differentially expressed proteins in different groups indicate the degree of enrichment; red represents
strong enrichment and blue represents weak enrichment.

Figure 4. Cont.
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Figure 4. Effects of [CO2] enrichment on the activities of related enzymes in roots of cucumber
seedlings under drought stress. (A) Hexokinase, (B) Alcohol dehydrogenase, (C) Malate dehydroge-
nase, (D) Nitrate reductase, (E) Glutamate synthase, (F) Glutamate dehydrogenase. All results are
expressed as the mean ± standard deviation (SD) of three repeated values; *, difference is signifi-
cant at the 0.05 level; **, difference is significant at the 0.01 level; ***, difference is significant at the
0.001 level.

2.3. Non-Structural Carbohydrate Contents of Cucumber Seedling Roots under Drought Stress
Changed by [CO2] Enrichment

Proteomic analysis showed that [CO2] enrichment regulated the sugar metabolism
pathway in drought-stressed cucumber roots, suggesting that [CO2] enrichment may
alleviate drought stress by increasing the content of osmoregulators such as sugars. To test
this inference, the contents of non-structural carbohydrates in cucumber seedling roots
under [CO2] enrichment and drought stress were measured (Figure 5, Table S9). Under
the same [CO2] conditions, the contents of total sugars, sucrose, reducing sugars, glucose,
fructose, raffinose, and stachyose in cucumber seedling roots increased with the degree of
drought stress, while the starch content decreased with the degree of drought stress. [CO2]
enrichment significantly enhanced starch and glucose contents under control, glucose and
stachyose contents under moderate drought stress, and sucrose, fructose, raffinose, and
stachyose contents under severe drought stress compared with atmospheric [CO2].
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Figure 5. Effects of [CO2] enrichment on the contents of non-structural carbohydrates in roots of
cucumber seedlings under drought stress. (A) Starch, (B) Total sugar, (C) Sucrose, (D) Reducing
sugar, (E) Glucose, (F) Fructose, (G) Raffinose, (H) Stachyose. All results are expressed as the
mean ± standard deviation (SD) of three repeated values; *, difference is significant at the 0.05 level;
**, difference is significant at the 0.01 level; ***, difference is significant at the 0.001 level.

2.4. Nitrogen and Organic Acid Contents of Cucumber Seedling Roots under Drought Stress
Regulated by [CO2] Enrichment

Proteomic analysis showed that [CO2] enrichment altered the amino acid metabolism
and EMP pathway in cucumber seedling roots under drought stress. The relevant com-
pound contents were determined, and it was found that total nitrogen content significantly
decreased with the degree of drought stress, while citric acid content significantly increased
with the degree of drought stress under the same [CO2] conditions. [CO2] enrichment
significantly increased pyruvic acid content under both control and moderate drought
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stress, increased total nitrogen content while decreasing NH4
+-N content under moderate

drought stress, and increased NO3
−-N content under severe drought stress compared

to atmospheric [CO2]. In addition, the EM treatment had the highest total phenol and
flavonoid contents, and there was no significant difference in free amino acid content
between treatments (Figure 6, Table S10).

Figure 6. Effects of [CO2] enrichment on the contents of metabolism-related compounds in roots of
cucumber seedlings under drought stress. (A) Total nitrogen, (B) NH4

+-N, (C) NO3
−-N, (D) Free

amino acid, (E) Pyruvic acid, (F) Citric acid, (G) Total phenols, (H) Flavonoid. All results are expressed
as the mean ± standard deviation (SD) of three repeated values; *, difference is significant at the 0.05
level; **, difference is significant at the 0.01 level; ***, difference is significant at the 0.001 level.

2.5. Correlation Analysis

Correlation analysis of cucumber seedlings root biochemical indexes of different
treatments was performed (Figure 7). The results showed that flavonoid content was
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significantly and positively correlated with total nitrogen content, while it was significantly
and negatively correlated with reducing sugar, sucrose, fructose, and raffinose content.
NH4

+-N content was significantly and negatively correlated with total nitrogen, NO3
−-N,

and free amino acid content. Starch content was significantly and negatively correlated
with total sugar, reducing sugar, sucrose, glucose, fructose, raffinose, and stachyose content.
Total nitrogen and total sugar content were significantly and negatively correlated, as were
pyruvic acid and citric acid content, while the total content of phenols was not correlated
with any of the other indicators.

Figure 7. Correlation analysis between biochemical indicators; red indicates positive correlation, blue
indicates negative correlation.

3. Discussion
3.1. [CO2] Enrichment Improves Carbohydrates Content and Energy Metabolism

In this experiment, we found that many DAPs with reduced abundance in cucumber
seedling roots under moderate and severe drought stress were involved in the EMP path-
way (Table S7). Previous studies have shown that nearly 20% of the responsive proteins in
plant cells under drought stress are related to carbohydrate and energy metabolism [18].
[CO2] enrichment increased starch and sucrose contents under drought stress (Figure 5)
while increasing the abundance of sugar transport protein (STP) along with twelve key
enzymes in the EMP pathway under moderate drought stress (Table S7). Photosynthetic
products synthesized in leaves and transported to roots can be converted into non-structural
carbohydrates, mainly in the form of soluble sugars and starch, where soluble sugars can
be used directly for growth and respiration while starch is used for energy storage [19].
Although drought inhibited CO2 fixation and transport in leaves, the relative amount of
photosynthetic products allocated to roots increased due to increased expression of STP
under [CO2] enrichment, which promotes sugar transport from source to sink, reduces
cellular osmotic potential, and provides sufficient substrates for the EMP pathway, en-
hancing the root resistance of cucumber seedling roots to moderate drought stress [20–23].
Zhou et al. [24] showed that [CO2] enrichment can improve the transport of sugars from
leaves to stems and promote the survival of the single bud stem of grape. Studies by
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Calvo et al. [25] on barley and Li et al. [26] on cucumber showed that plants can produce
more sugars under [CO2] enrichment to increase root biomass as well as the organic acid
and amino acid contents.

Among the DAPs associated with the EMP pathway, FK was able to catalyze the
transfer of phosphate groups from ATP to fructose and improve the synthesis of cell
wall polysaccharides, which repairs the energy deficiency and osmotic damage in plants
after drought stress [27]. Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP)
catalyzes the ATP-independent transformation between fructose 6-phosphate (F6P) and
fructose 1,6-bisphosphate (FBP) to maintain ATP homeostasis under stress [28]. Fructose-
bisphosphate aldolase (ALDO) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
were positively correlated with drought resistance [29,30]. Notably, overexpression of
GAPDH-related regulatory genes in rice can control the excessive accumulation of H2O2
and reduce oxidative stress in cells [31]. Pyruvate decarboxylase (PDC) and ADH catalyze
the conversion of pyruvic acid to acetaldehyde, ensuring the continuation of EMP and
consuming the NADH produced during EMP to protect cells from acidification [32]; ADH
abundance is upregulated under severe drought stress, which was consistent with our
enzyme activity determination results (Figure 4).

This study identified that [CO2] enrichment increased the abundance of the rate-
limiting enzyme MDH in the tricarboxylic acid cycle (TCA cycle) (Table S7, Figure 4);
Li et al. [33] have previously shown that [CO2] enrichment increases the activity of MDH
in cucumber leaves under salt stress. Under moderate drought stress, [CO2] enrichment
increased the abundance of ribose-5-phosphate isomerase 3, transketolase, and fructose-1,6-
bisphosphatase (FBPase) in the pentose phosphate pathway (PPP), while FBPase remained
increased under severe drought stress (Table S7), perhaps leading to the inference that
[CO2] enrichment can enhance the stability of the EMP pathway and TCA cycle under
drought stress by promoting the abundance of related proteins in the PPP [34]. In addition,
[CO2] enrichment increased NADH dehydrogenase abundance under moderate drought
stress (Table S7); this change suggests that [CO2] enrichment can enhance cellular energy
production by increasing the protein abundance associated with the electron transport
chain, thereby decreasing drought stress damage by maintaining the normal metabolic
activity of the root system as much as possible [35,36].

3.2. [CO2] Enrichment Improves Amino Acid Metabolism and N Remobilization

In our study, NO3
− content decreased, NH4

+ content increased, and NR and GOGAT
activities decreased under drought stress. This is consistent with Li et al. [37], who studied
the metabolic processes in cucumber leaves under salt stress and suggested that the de-
crease in NR activity was induced by the decrease in NO3

− content. The reduced activity
of NR and GOGAT may then lead to a decreased rate of assimilation of NH4

+ into amino
acids, intracellular accumulation and toxicity [38]. We found that [CO2] enrichment in-
creased the abundance of NR and GOGAT while decreasing the abundance of GDH under
moderate drought stress. The increase in NR abundance may be due to [CO2] enrichment
alleviating the inhibitory effect of drought stress on root vigor, increasing total biomass
in the underground [7,8], and favoring root uptake of inorganic nitrogen, which in turn
induce an increase in NR abundance [37]. The glutamine synthetase GS-GOGAT cycle is the
main pathway for NH4

+ assimilation in higher plants, and GDH plays a complementary
role in the GS-GOGAT cycle [39]. Therefore, in our experiment, the decrease in GDH
abundance and increase in GOGAT abundance indicates that cucumber roots under [CO2]
enrichment mainly eliminated NH4

+ produced under moderate drought stress through
GOGAT [40]. [CO2] enrichment increased the abundance of adenylate kinase (ADK),
linoleate 13S-lipoxygenase, and other key enzymes for amino acid biosynthesis under
moderate drought stress (Table S7); these are involved in the synthesis of eleven common
amino acids, such as glutamate, methionine, and proline. ADK is a phosphotransferase
that catalyzes the interconversion of various adenosine phosphates and plays an important
role in cellular energy homeostasis [41], while linoleate 13S-lipoxygenase oxidizes and
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alpha-linolenate is involved in jasmonic acid synthesis [42]. In short, [CO2] enrichment
promotes amino acid metabolism and biosynthesis of certain amino acid derivatives under
moderate drought stress, which is consistent with the findings of Cui et al. [43] with respect
to cucumber leaves.

The S-adenosyl-L-methionine (SAM) cycle provides precursors for ethylene and
polyamines, supplies methyl groups for many biomolecules, and plays an important
role in enhancing plant drought tolerance [44,45]. After [CO2] enrichment, the abundance
of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO) in
the SAM cycle increased under moderate drought stress (Table S7). Studies have shown
that SAM synthesizes ACC through ACS and then ethylene through ACO, and the increase
of ACC and ethylene contents can enhance drought resistance [46,47]. These results imply
that [CO2] enrichment can increase ethylene content in cucumber roots under drought
stress; however, in this study, only ACO abundance increased with increasing stress level in
the SAM cycle, which may be due to excessive damage to the cucumber roots under severe
drought stress resulting in a limited alleviating effect of [CO2] enrichment. In our results,
the abundance of ubiquitin-conjugating enzyme E2 (UBE2) was upregulated under moder-
ate and severe drought stress after [CO2] enrichment. Overexpression of UBE2 in soybean,
peanut, and arabidopsis has been found to improve drought tolerance [48,49], suggesting
that [CO2] enrichment can promote remobilization of amino acids from inactivated proteins
to alleviate drought stress in cucumber roots.

3.3. [CO2] Enrichment Reduces Drought-Induced Damage in Roots

[CO2] enrichment can help plants to resist oxidative stress damage by regulating the
synthesis of secondary metabolites [50,51]. Kiba et al. [52] reported that [CO2] enrichment
induced the expression of the anadenosine phosphate–isopentenyltransferase (AtIPT3)
and cytochrome P450 monooxygenase (CYP735A2) genes by increasing the sugar content
in the root system, leading to an increase in cytokinin content in the root system. Our
previous study showed that [CO2] enrichment prevented the decreasing trend of cytokinin
content under drought stress [8]. In this experiment, after [CO2] enrichment, the abun-
dance of 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA)
pathway and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) and 4-hydroxy-3-
methylbut-2-enyldiphosphate synthase (HDS) in the 2-C-methyl-D-erythritol 4-phosphate
(MEP) pathway were upregulated under moderate drought stress (Table S7). Dimethylallyl
diphosphate (DMAPP), a product of both of these pathways, provides a precursor for cy-
tokinin synthesis [53]. Tyagi et al. [54] demonstrated in grapes that cytokinin increased the
abundance of phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H); our
results show that [CO2] enrichment increased the abundance of PAL and C4H in cucumber
roots under moderate drought stress, possibly promoting the synthesis of flavonoids, total
phenols (Figure 6), or lignin. This further confirms our previous findings that cucumber
roots under [CO2] enrichment have higher free radical scavenging capacity [7].

Meanwhile, after [CO2] enrichment, disease resistance protein (RAR1), yellow-leaf-
specific gene 9 (YLS9)-like protein, CBS domain-containing protein CBSX3, ferredoxin, and
five kinds of major latex protein (MLP)-like proteins all showed differential accumulation
in cucumber roots under moderate drought stress (Table S7). Among them, RAR1 can
prevent cell dehydration, MLP-like protein can be a positive regulator of downstream
signal transduction in response to drought stress [55], YLS9-like protein acts as a late
embryogenesis abundant protein to prevent cell dehydration, and CBSX3 and ferredoxin
can help maintain dynamic intracellular redox homeostasis by interacting to regulate the
level of H2O2 [56].

[CO2] enrichment increased the abundance of xyloglucan endotransglucosylase/
hydrolase (XTH), tubulin-folding cofactor (TBC), actin-depolymerizing factor (ADF), and
profilin in roots under moderate drought stress (Table S7). Among these, the role of XTH in
drought resistance has been confirmed by Cho et al. [57], tubulin and actin are important
components of the plant cytoskeleton [58], TBC controls the availability of tubulin subunits
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and microtubule stability, and profilin and ADF regulate actin as binding proteins. These
results indicate that [CO2] enrichment can have a positive effect on the dynamic reorga-
nization of the cytoskeleton in cucumber roots under drought stress, especially moderate
drought stress [59,60]. In addition, four proteins involved in fatty acid metabolism (FAB2
(acyl-(acyl-carrier-protein) desaturase), accB (acetyl-CoA carboxylase biotin carboxyl carrier
protein), DGAT1 (diacylglycerol O-acyltransferase 1), and patellin-6) were upregulated
under moderate drought stress, whereas only accB was upregulated under severe drought
stress (Table S7). We speculate that [CO2] enrichment can maintain the cell membrane
integrity of cucumber seedling roots under different degrees of drought stress by increasing
the content of unsaturated fatty acids in membrane lipids [61,62].

4. Materials and Methods
4.1. Plant Material, Growth Conditions, and Experimental Design

Cucumber (Cucumis sativus L., Cucurbitaceae, ‘Jinyou No. 35’, Tianjin Kernel Cucum-
ber Research Institute, Tianjin, China) was used as test material; uniformly germinated
seeds were selected and sown in 50-hole black plastic trays (54 cm length, 28 cm width,
and 5 cm height) containing a mixed substrate of peat, perlite, and vermiculite (volume
ratio was 3:1:1) and placed in a tunnel for cultivation. After the emergence of the second
true leaves of cucumber, uniformly grown seedlings were transplanted into lightproof
containers (35 cm length, 28 cm width, and 12 cm height) containing 7 L of Japan Ya-
mazaki nutrient solution (0.5 mM NH4H2PO4, 2.0 mM Ca(NO3)2·4H2O, 3.2 mM KNO3,
1.0 mM MgSO4·7H2O, and full-strength trace elements). Six seedlings were planted in
each container, and 16 containers per treatment were used as replicates. There were 96
biological replicates per treatment (16 containers × 6 plants). A split plot design was used;
the main plots were [CO2] (atmospheric [CO2] (A, 400 µmol·mol−1) and [CO2] enrichment
(E, 800 ± 40 µmol·mol−1). Liquid CO2 cylinders were used to provide CO2, infrared ab-
sorption principle-based sensors (Auto, Beijing, China) were used to determine [CO2], and
the split plot factor was drought stress, with PEG 6000 used to simulate drought stress
conditions, including control condition (C, nutrient solution), moderate drought stress
condition (M, nutrient solution containing 5% PEG 6000, ψw = −0.05 Mpa), and severe
drought stress condition (S, nutrient solution containing 10% PEG 6000, ψw = −0.15 MPa).
Cucumber seedlings were randomly placed in four self-designed open-top tunnels (6 m
length, 6 m width, and 2.6 m ridge height), with other environmental factors maintained
as described in detail in a previous study (see Figure 8) [8]. The roots of seedlings were
sampled on the fifth day of treatment.

4.2. Measurements of Biochemical Indices

For each treatment, 15 cucumber plants were randomly selected, then the cucumber
root samples were dried to constant weight at 80 ◦C, mixed, and ground. Soluble sugar
and starch contents were determined using 0.5 g samples according to the method of
Rosa et al. [63]. Carbohydrates were extracted using 0.1 g samples with 10 mL of 80% (v/v)
ethanol. Sucrose, fructose, and glucose contents were analyzed according to the method
in [33]. Total nitrogen content was determined by the Kjeldahl method using 0.2 g of sample
digested in a mixture of H2SO4-H2O2 [64].

For each treatment, 15 cucumber plants were randomly selected, then the cucumber
root samples were mixed and weighed 0.5 g/0.2 g and immediately frozen in liquid
nitrogen and stored at −80 ◦C. Stachyose and raffinose contents were determined by high-
performance liquid chromatography (HPLC) according to the method of Lü et al. [65].
Free amino acid content was determined by the ninhydrin reaction [66], and NO3

−-N
and NH4

+-N contents were determined by the salicylic acid method [67] and phenol-
hypochlorite method [68], respectively. Hexokinase (HK) and MDH were extracted and
determined according to the method of Li et al. [33]. Nitrate reductase (NR) activity was
determined by the sulfanilic acid method [69]. Glutamate synthase (GOGAT) activity
was determined by measuring the decrease in absorption at 340 nm caused by enzymatic
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oxidation of NADH [33]. Pyruvic acid, citric acid, total phenol and flavonoid contents,
and alcohol dehydrogenase (ADH) and glutamate dehydrogenase (GDH) activities were
determined using kits according to the manufacturer’s instructions (Comin Biotechnology
Co., Ltd., Suzhou, China). Among them, pyruvic acid content was determined using the
2,4-dinitrophenylhydrazine colorimetric method, total phenol content was determined
using the Folin-Ciocalteu colorimetric method, citric acid content was determined using the
oxidized brominated complex colorimetric method, and flavonoid content was determined
using the Al3+ colorimetric method. ADH and GDH activities were determined using
the decrease in absorption at 340 nm caused by consumption of NADH due to catalytic
acetaldehyde and catalytic NH4

+, respectively.

Figure 8. Schematic diagram of experimental design. Cucumber seedlings were placed in four
open-top tunnels for hydroponics and two of them were treated with [CO2] enrichment using gas
cylinders. There were six treatments in total, with 96 biological replicates per treatment.

4.3. Protein Extraction, Trypsin Digestion, and TMT Labeling

Root samples with 0.2 g were fully ground into powder in liquid nitrogen with a
pre-cooled mortar. The powder was combined with a four-fold volume of lysis buffer (con-
taining 10 mM dithiothreitol, 1% protease inhibitor, and 2 mM EDTA) and sonicated. An
equal volume of Tris-equilibrated phenol was added prior to centrifugation at 5500× g for
10 min at 4 ◦C. The supernatant was aspirated and added a five-fold volume of 0.1 M ammo-
nium acetate/methanol, then the solution was allowed to form a precipitate overnight. The
protein precipitate was washed with methanol and acetone, the precipitate was redissolved
with 8 M urea, and the protein concentration was determined with a BCA kit according to
the manufacturer’s instructions.

For digestion, the protein solution was reduced with 5 mM dithiothreitol for 30 min at
56 ◦C and alkylated with 11 mM iodoacetamide for 15 min at room temperature in darkness.
The urea concentration of the samples was diluted to below 2 M by adding 0.1 M TEAB.
Trypsin was added at a ratio of trypsin to protein of 1:50 (m/m) for the first digestion
overnight and at a ratio of trypsin to protein of 1:100 (m/m) for the second 4 h-digestion.

After that, the peptides were desalted using a Strata X C18 SPE column (Phenomenex,
Torrance, CA, USA) and then vacuum-dried. The peptides were dissolved in 0.5 M TEAB
and labeled according to the TMT kit instructions. Briefly, one unit of TMT reagent was
thawed and dissolved in acetonitrile, mixed with the peptides, and incubated for 2 h at
room temperature. The resulting labeled peptides were pooled, desalted, and freeze-dried
under vacuum. The labeled peptides were first separated into 60 fractions by HPLC using
an Agilent 300 Extend C18 column (5 µm particles, 4.6 mm I.D., 250 mm length) with a
gradient of 8% to 32% acetonitrile (pH 9.0) over 60 min, then combined into 18 fractions.
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4.4. LC-MS/MS Analysis, Database Search, and Functional Classification

The combined peptides were dried through vacuum centrifugation and re-dissolved
in 0.1% formic acid and 0.2% acetonitrile, then subjected to gradient elution through a
homemade reversed-phase analytical column on an EASY-nLC 1200 UPLC system (Thermo,
Waltham, MA, USA) with the following settings: 400 nL/min constant flow, start from
8% to 16% solvent (0.1% formic acid in 90% acetonitrile) for over 30 min, 16% to 30% for
15 min, 30% to 80% for 2 min, and hold at 80% for the last 3 min. The peptides were then
subjected to an NSI source and tandem mass spectrometry (MS/MS) was performed on
a Q ExactiveTM Plus hybrid quadrupole-Orbitrap mass spectrometer (Thermo, Waltham,
MA, USA) coupled online to UPLC. Briefly, intact peptides were detected in the Orbitrap
at a resolution of 60,000 with an MS range of 350–1550 m/z for full scan. The twenty
most intense precursor ions per survey scan were selected for higher-energy collisional
dissociation (HCD) fragmentation at a normalized collision energy of 32%, and the resulting
fragments were analyzed with the Orbitrap at a resolution of 15,000 with a fixed first mass
of 100 m/z. The mass spectrometer was operated in data-dependent acquisition mode to
alternate between one MS scan and twenty MS/MS scans, with dynamic exclusion of 30 s,
automatic gain control of 5E4, a maximum inject time of 70 ms, and a signal threshold of
10,000 ions/s.

The resulting MS/MS data were processed using the Maxquant search engine (v. 1.5.2.8).
Tandem mass spectra were searched against a proteome database (Uniprot_Cucumis_
sativus_3659_PR_20181112.fasta, 23,744 sequences) concatenated with a reverse decoy
database. Trypsin/P was specified as the cleavage enzyme, allowing up to two missing
cleavages. The mass tolerance for precursor ions was set as 20 ppm in the first search and
5 ppm in the main search, and the mass tolerance for fragment ions was set as 0.02 Da.
Carbamidomethyl on Cys was specified as the fixed modification and oxidation on Met
was specified as the variable modification. FDR was adjusted to <1%, and the minimum
score for peptides was set to >40.

The annotation proteome for Gene Ontology (GO) was derived from the UniProt-
GOA database (http://www.ebi.ac.uk/GOA/ accessed on 25 November 2018). Identified
proteins domains’ functional descriptions were annotated by InterProScan based on the
protein sequence alignment method using the InterPro (http://www.ebi.ac.uk/interpro/
accessed on 25 November 2018) domain database. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kaas-bin/kaas_main accessed on
25 November 2018, http://www.kegg.jp/kegg/mapper.html accessed on 25 November
2018) was used to annotate protein pathways, and Wolfpsort (http://www.genscript.com/
psort/wolf_psort.html accessed on 25 November 2018), a subcellular localization pred-
ication software, was used to predict subcellular localization. For further hierarchical
clustering based on different protein functional classifications (such as GO, Domain, Path-
way, and Complex), we first collated all the categories obtained after enrichment along with
their p-values, then filtered for those categories which were enriched in at least one of the
clusters with p-value < 0.05. This filtered p-value matrix was transformed by the function x
= −log10 (p-value). Finally, these x values were z-transformed for each functional category.
These z scores were then clustered by one-way hierarchical clustering (Euclidean distance,
average linkage clustering) in Genesis. Cluster membership was visualized as a heat map
using the “heatmap.2” function from the “gplots” R-package.

4.5. Statistical Data Analysis

All physiological data were expressed as the mean ± standard deviation (SD) of
biological replicates and subjected to analysis of variance (ANOVA) and correlation analysis
by SPSS 20 (IBM, New York, NY, USA). When analysis generated a significant p-value
(p < 0.05) for the treatments, the means were compared by Duncan’s new multiple range
test. SigmaPlot 12.5 (IBM, New York, NY, USA) was applied to draw graphs.

http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/interpro/
http://www.genome.jp/kaas-bin/kaas_main
http://www.kegg.jp/kegg/mapper.html
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
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5. Conclusions

This study combined proteomic results supported with additional biochemical data
to analyze the major KEGG pathways of DAPs in response to [CO2] enrichment and
drought stress. [CO2] enrichment increased proteins associated with carbohydrate synthe-
sis, energy, and amino acid metabolism in cucumber seedling roots under drought stress
(especially moderate drought stress) (Figure 9), significantly induced the expression of
proteins involved in stress and defense, cell wall and cytoskeleton metabolic, and effectively
maintained the balance of protein processing and degradation, which finally improved the
drought resistance of cucumber seedling roots.

Figure 9. The main differentially accumulating proteins (DAPs) of cucumber seedling root response to
[CO2] enrichment under drought stress. Black words indicate metabolites, arrows indicate metabolic
processes, and omitted processes are indicated by dashed lines. Red words indicate the upregulated
DAPs under moderate drought stress after [CO2] enrichment, green words indicate the downregu-
lated DAPs under moderate drought stress after [CO2] enrichment, and purple words indicate the
upregulated DAPs under both moderate and severe drought stress after [CO2] enrichment. Abbre-
viations: STP: sugar transport protein; HK: hexokinase; G6P: glucose 6-phosphate; F6P: fructose
6-phosphate; FK: fructokinase; PFP: pyrophosphate-fructose 6-phosphate 1-phosphotransferase; FB-
Pase: fructose-1,6-bisphosphatase; FBP: fructose 1,6-bisphosphate; ALDO: fructose-bisphosphate al-
dolase; TPI: triosephosphate isomerase; G3P: glyceraldehyde 3-phosphate; GAPDH: glyceraldehyde-
3-phosphate dehydrogenase; 1,3-bis-PGA: 1,3-bisphospho-D-glycerate; PGK: phosphoglycerate
kinase; 3-PGA: 3-phosphoglycerate; gpmI: 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase; 2-PGA: 2-phospho-D-glycerate; PEP: phosphoenolpyruvate; PDC: pyruvate decarboxylase;
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ADH: alcohol dehydrogenase; MDH: malate dehydrogenase; tktA: transketolase; aroB: 3-
dehydroquinate synthase; trpD: anthranilate phosphoribosyltransferase; PAL: phenylalanine
ammonia-lyase; C4H: cinnamate 4-hydroxylase; serA: D-3-phosphoglycerate dehydrogenase; serC:
phosphoserine aminotransferase; cysk: cysteine synthase; SDH: serine dehydratase; ilvC: ketol-
acid reductoisomerase; leuC: 3-isopropylmalate dehydratase large subunit; lysA: diaminopimelate
decarboxylase; hom: homoserine dehydrogenase; thrB: homoserine kinase; metB: cystathionine
gamma-synthase; SAM: S-adenosyl-L-methionine; ACC: 1-aminocyclopropane-1-carboxylate; ACS:
ACC synthase; ACO: ACC oxidase; NR: nitrate reductase; GOGAT: glutamate synthase; GDH:
glutamate dehydrogenase; proB: glutamate 5-kinase/delta-1-pyrroline-5-carboxylate synthase; HMG-
CoA: 3-hydroxy-3-methylglutaryl-CoA; HMGS: HMG-CoA synthase; DMAPP: dimethylallyl diphos-
phate; DXP: 1-deoxy-D-xylulose 5-phosphate; DXR: DXP reductoisomerase; HMBPP: 4-hydroxy-3-
methylbut-2-enyldiphosphate; HDS: HMBPP synthase.
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