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Abstract: An inflammatory response is beneficial to the organism, while an excessive uncontrolled
inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting
the resolution of inflammation is an important mechanism for protecting an organism suffering
from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and
have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis,
regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution,
resolvins play an irreplaceable role throughout the pathological process of some joint inflammation,
neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of
experiments have been conducted to study different subtypes of resolvins in different directions, the
differences in the action targets between the different subtypes are rarely compared. Hence, this paper
reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under
a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic
inflammatory diseases.
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1. Introduction

The inflammatory response is the defense response of the body’s normal tissue to a
damage factor such as a pathogen invasion [1]. Under normal circumstances, the inflam-
matory response is beneficial for the organism, but a chronic inflammatory response can
result when a disorder of an inflammation resolution causes an excessive uncontrolled
inflammatory response [2,3]. A chronic inflammatory response is dominated by hyper-
plasia, usually with lymphocyte and a plasma cell infiltration as the main pathological
manifestation [4]. A chronic inflammatory disease is a chronic inflammatory response
which is caused by an abnormal immune response and environmental factors including
rheumatoid arthritis, atherosclerosis, diabetes, nervous system diseases, etc., which se-
riously threaten human health [5]. Therefore, an excessive inflammatory response must
be resolved to prevent the onset of chronic inflammatory diseases and the restoration of
the homeostasis of organisms [6–8]. The inflammatory resolution phase is characterized
by the ceasing of a neutrophil infiltration, the recession of proinflammatory cytokines,
and the elimination of fragments and foreign matters in the inflammatory response by
efferocytosis [9,10]. Resolvins, acting as an "agonist", are metabolites of omega-3 fatty acids
and together with martins, protectins, and lipoxins, they are collectively referred to as
"special pro-decomposition mediators" (SPMs). The generation of resolvins begins with the
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peak period of inflammation and resolvins also promote an inflammation resolution better
than its lipid precursors at concentrations as low as one which is nanomolar [11,12].

Resolvins such as the E series from eicosapentaenoic acid (EPA), D series from docosa-
hexaenoic acid (DHA), and T series from docosapentaenoic acid (DPA) are synthesized
from essential omega-3 fatty acids by corresponding enzymes such as epoxidase and lipoxi-
dase [13,14]. Omega-3 fatty acid has been proved to be effective in treating COVID-19 [15],
cardiovascular diseases [16], cognitive impairment [17], rheumatoid arthritis [18], and
other complex diseases through an immune regulation. The actions of resolvins in the
inflammatory response mainly include reducing the PMN inflammatory infiltration [19–22],
decreasing inflammatory factors [23–28], improving inflammatory pain and preventing
a central sensitization [29]. The basic characteristics and biological effects of common
resolvins have been demonstrated. Since earlier studies were conducted on individual
subtypes of resolvins, using a different experimental design, a comparison of the results
is possible. Therefore, this paper reviews the possible effect of resolvins on promoting
an inflammation resolution under chronic inflammatory response state and explores their
clinical use to resolve inflammation.

2. Production and Characteristics of Resolvins

Resolvins are the products of omega-3 polyunsaturated fatty acids DHA, EPA, and
DPA metabolic catalyzed by lipoxygenases (LOXs), cytochrome P450s (CYP450s), and
cyclooxygenases (COXs) [30,31]. The D-series resolvins have been synthesized from RvD1
to RvD6, and the E series have been synthesized from RvE1 to RvE4 and 18S-RvE1. The T
series of resolvins have also been discovered and synthesized from RvT1 to RvT4 [32].

As shown in Figure 1, there are two routes for the synthesis of D series resolvins. One
route is that exogenous DHA stored in cell membranes is catalyzed by 15-lipoxygenase
(15-LOX) into 17S-H (p) DHA [33]. On the one hand, 17S-H (p) DHA is further converted
into 7(8)-epoxide intermediates by 15-LOX and becomes RvD1 and RvD2 by the related
enzymes [34,35]. RvD1 and RvD2 were first detected in human cord blood using LC-
MS/MS [36]. On the other hand, 4-(5)-epoxide intermediates are generated through 5-LOX,
and RvD3-RvD6 are generated under the action of enzymes [37,38]. RvD1 to RvD6 belong
to the 17S-D series of resolvins. RvD3 and RvD4 have been detected in human bone marrow
cells based on metabololipidomics [39,40]. Through the method of untargeted lipidomics,
RvD5 in a synovial fluid gathered from rheumatoid arthritis patients was also detected [41].
Another synthetic route is the conversion of DHA to 17R-H(p)DHA by acetylated-COX-2
(acCOX-2), which is then catalyzed to the 17R-D series of resolvins by LOXs. Although
the 17R-D series of resolvins are initially named aspirin-triggered resolvins D (AT-RvDs)
as their biosynthesis is initiated by aspirin, recent research shows that the COX-2 can be
acetylated by other agents in vivo, so these resolvins are named 17R resolvins D according
to the IUPAC nomenclature of the stereocenters [42,43]. These resolvins have the same
effects of promoting an inflammation resolution as the 17S-D series resolvins in vivo [44].

The biosynthesis of E-series resolvins normally occurs under the action of endothelial
cells and leukocytes, and EPA is converted to 18R-H(p)EPE by ASACOX-II. With the
help of 5-LOX, 18R-H(p)EPE enters the cell directly and is converted into 5S-peroxy-18R-
hydroxy-EPE [45]. In the end, the 5(S),6-epoxy intermediate is converted to RvE1 [46].
At the same time, the complete stereochemical structure of RvE1 was determined to be
5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-EPA [47]. However, RvE2 is produced after the
hydrolysis of the 5(S),6-epoxy intermediate, and RvE3 is generated after 18R-H(p)EPE is
catalyzed by 12/15-LOX [48]. By 15-LOX, EPA is converted to 15S-H(p)EPE and further
converted to 15S-hydroxy-5S-HpEPE, the precursor of RvE4 with the help of 15-LOX or
5-LOX [49]. In addition, another synthetic pathway for E-series resolvins is the conversion
of EPA to 18R-H(p)EPE and 17,18-epoxyeicosatetraenoic acid(17,18-EEP) by cytochrome
P450 oxidase [50].



Int. J. Mol. Sci. 2022, 23, 14883 3 of 16

Figure 1. The generation of D series resolvins, E series resolvins, and T series resolvins.

The T series of resolvins are derived from DPA via endothelial cyclooxygenase-2 (COX-
2). The first precursor during the production of T series resolvins is 13(R)-hydroperoxy-
docosapentaenoic acid and it is converted to 13(R)-hydroxy-docosapentaenoic acid after a
reduction [51]. When converted to 7-hydroperoxy-13(R)-hydroxy-docosapentaenoic acid,
RvT4 is obtained from the reduction in the hydroperoxy group after the transcellular
trafficking to the neutrophils [52]. The enzymatic lipoxygenase reaction occurs during
the transition to RvT1, and an allylic epoxide intermediate is formed in the process of
the conversion to RvT2 and RvT3 [53]. T series resolvins are either generated in healthy
subjects or are converted from DPA after statin therapy [4,54]. The complete stereochemical
structure of resolvins is shown in Table 1.
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Table 1. The complete stereochemical structure and related abbreviation of resolvins.

Name Structure Abbreviation

Resolvin D1 7S, 8R, 17S-trihydroxy-docosa-4Z, 9E, 11E, 13Z, 15E, 19Z-hexanoic acid RvD1
Resolvin D2 7S, 16R, 17S-trihydroxy-docosa-4Z, 8E, 10Z, 12E, 14E, 19Z-hexanoic acid RvD2
Resolvin D3 4S, 11R, 17S-trihydroxy-docosa-5Z, 7E, 9E, 13Z, 15E, 19Z-hexanoic acid RvD3
Resolvin D4 4S, 5R, 17S-trihydroxy-docosa-6E, 8E,10Z, 13Z, 15E, 19Z-hexanoic acid RvD4
Resolvin D5 7S, 17S-dihydroxy-docosa-4Z, 8E, 10Z, 13Z, 15E, 19Z-hexanoic acid RvD5
Resolvin D6 4S, 17S-trihydroxy-docosa-5E, 7Z, 10Z, 13Z, 15E, 19Z-hexanoic acid RvD6

17R-Resolvin D1 7S, 8R, 17R-trihydroxy-docosa-4Z, 9E, 11E, 13Z, 15E, 19Z-hexanoic acid 17R-RvD1
17R-Resolvin D2 7S, 16R, 17R-trihydroxy-docosa-4Z, 8E, 10Z, 12E, 14E, 19Z-hexanoic acid 17R-RvD2
17R-Resolvin D3 4S, 11R, 17R-trihydroxy-docosa-5Z, 7E, 9E, 13Z, 15E, 19Z-hexanoic acid 17R-RvD3
17R-Resolvin D4 4S, 5R, 17R-trihydroxy-docosa-6E, 8E,10Z, 13Z, 15E, 19Z-hexanoic acid 17R-RvD4
17R-Resolvin D5 7S, 17R-dihydroxy-docosa-4Z, 8E, 10Z, 13Z, 15E, 19Z-hexanoic acid 17R-RvD5
17R-Resolvin D6 4S, 17R-trihydroxy-docosa-5E, 7Z, 10Z, 13Z, 15E, 19Z-hexanoic acid 17R-RvD6

Resolvin E1 5S, 12R, 18R-trihydroxy-eicosa-6Z, 8E, 10E, 14Z, 16E-pentaenoic acid RvE1
18S-Resolvin E1 5S, 12R, 18S-trihydroxy-eicosa-6Z, 8E, 10E, 14Z, 16E-pentaenoic acid 18S-RvE1

Resolvin E2 5S, 18R-dihydroxy-eicosa-6E, 8Z, 11Z, 14Z, 16E-pentaenoic acid RvE2
Resolvin E3 17R, 18R-dihydroxy-eicosa-5Z, 8Z, 11Z, 13E,15E-pentaenoic acid RvE3
Resolvin E4 5S, 15S-dihydroxy-eicosa-6E, 8Z, 11Z, 13E, 17Z-pentaenoic acid RvE4
Resolvin T1 7S,13R,20S-trihydroxy-8E,10Z,14E,16Z,18E-docosapentaenoicacid RvT1
Resolvin T2 7S,12R,13S-trihydroxy-8Z,10E,14E,16Z,19Z-docosapentaenoic acid RvT2
Resolvin T3 7S,8R,13S-trihydroxy-9E,11E,14E,16Z,19Z-docosapentaenoic acid RvT3
Resolvin T4 7S,13R-dihydroxy-8E,10Z,14E,16Z,19Z-docosapentaenoic acid RvT4
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3. Resolvins Receptors

RvD1, 17R-RvD1, RvD3, 17R-RvD3, RvD5, RvE1, and 18S-RvE1 can combine with the
G protein-coupled receptor (GPR32) expressed in monocyte-macrophages, lymphocytes,
endothelial cells, and vascular smooth muscle cells, while GPR18/DRV2 is a novel discov-
ered receptor of RvD2 expressed in macrophages, neutrophils, and monocytes [55,56]. In
addition, RvD1, 17R-RvD1, and RvD3 can also combine with the G protein-coupled formyl
peptide receptor 2 (ALX/FPR2) to produce anti-inflammatory effects [57–59]. Leukotriene
B4 receptor 1 (BLT1) expressed in lymphocytes and leukocytes and ChemR23 expressed
in NK cells, macrophages, epithelial cells, and dendritic cells have been proven to be the
receptors of RvE1, 18S-RvE1, and RvE2 through target screening [60,61]. The actions of
RvD4 in the phagocytosis of human leukocytes have been suggested to be related to Gs
protein and the responding G protein-coupled receptors [39]. The resolvin receptors are cell
specific and organ specific and have been shown to be affected by disease and homeostatic
states. However, the corresponding receptors of the characterized RvD6, RvE3, and T series
of resolvins have not yet been identified, and relevant studies are still needed to explore
these receptors [62].

4. Effects of Resolvins on Target Cells in Chronic Inflammatory Response

The cellular targets of resolvins depend on the unique receptor repertoire of the differ-
ent cells. Different resolvin subtypes also have common target cells, while the mechanisms
of their actions on the same cell have obvious differences, as shown in Figure 2.

Figure 2. Different actions of resolvins on several target cells.

4.1. Effects on Neutrophils

Neutrophils constitute the cell’s first line of immune defense. Activated neutrophils
may release neutrophil extracellular traps (NETs) during a distinct form of cell death,
which promote inflammation. RvE1 regulates CD18 in neutrophils, downregulates the
phosphorylation of AKT and MAPK, and inhibits a superoxide production and migration
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between epithelial and endothelial cells [63,64]. RvD1 stops neutrophil chemotaxis, inhibits
a neutrophil migration, and downregulates the actin aggregation and the expression of
adhesion molecules via miR-21 and miR-155 [65]. 17R-RvD1 decreases the expression of
p-selection and its ligand CD24 in neutrophils, while RvD2 decreases CD62L shedding in
human neutrophils [66]. Bacterial and viral infections trigger an uncontrolled inflammation
upon contact with excess NETs and clearance obstacles of NETs. The newly found T series
resolvins dose- and time-dependently reduce NETs in human neutrophils and restricted
neutrophil infiltration and NETs in a murine Staphylococcus aureus infection [67].

4.2. Effects on Macrophages

Macrophages produce a large number of inflammatory cytokines during autoinflam-
matory diseases that cause a cascade of release of inflammatory mediators and are therefore
regarded as inflammatory triggers [68]. Macrophages are critical for restoring homeostasis,
and their function contributes to the pathological development of fibrosis, atherosclerosis,
cancer, and other chronic diseases in the event of a persistent injury or failure to resolve in-
flammation [69]. RvE1, RvD1, RvD2, RvD3, and RvD5 can all act on macrophages, but their
effects are exerted in different ways. RvE1 reduces the expression of the HO-1 and NADPH
oxidase subunit p47Phox, while RvD1 induces the transition from M1 macrophages to M2
macrophages [70,71]. RvD2 regulates the transcription factor IRF4, while RvD3 and RvD5
enhance efferocytosis and phagocytosis of M2 macrophages [34,55]. Monocytes are the
precursors of macrophages, and the functions of RvE1 on monocytes are to decrease the
shedding of L-selectin and the expression of integrin CD18, while RvD1 decreases CD11b,
CD68, and GR-1 [72]. RvD1 and RvD2 regulate a macrophage polarization through multiple
targets, while the activation of the PKA pathway is necessary [73,74]. RvD1 can regulate
miR-208a and miR-219 in macrophages to target regulating IL-10 and 5-lipoxygenase [58,75].
RvT2 in the T series stimulates the clearance of NETs by macrophages through increas-
ing intracellular cyclic adenosine phosphate and phospho-AMP-activated protein kinase
(AMPK) in both human and mouse cells [67].

4.3. Effects on Lymphocytes

Lymphocytes are the smallest leukocytes and include T cells, B cells, and natural killer
(NK) cells. A lymphocyte infiltration is a key step in the tissue damage caused by a chronic
inflammatory response in which lymphocytes migrate abnormally into nonlymphoid
tissues [76]. B cells are the target cells of RvD1, which reduces their production of IgE,
while RvD2 protects against an alveolar bone loss by decreasing CD4+ T cells [77,78]. RvD5
has been assessed to significantly inhibit the Th17 cells’ differentiation and proliferation,
and RvD1 controls downstream miR-30e-5p to increase Treg and reduce the differentiation
of Th17 to repair the imbalance in the Treg/Th17 ratio [79,80]. RvE1 not only inhibits the
proliferation of Th17 but it also affects Th17s secretion of IL-17 and increases the expression
of CCR-5 [81]. In addition, RvE1 facilitates the cell migration of NK to remove eosinophilic
granulocytes and apoptotic PMNs by CMKLR1, and RvD1 also reduces the secretion of
TNF-α and IL-6 in acinous cells by upregulating NF-κB [82–84].

4.4. Effects on Astrocytes

Astrocytes are the most widely distributed cells in the brain and dynamically regulate
a neural and synaptic plasticity, the blood-brain barrier (BBB) homeostasis, and the trans-
mission of signals [85] that are closely related to inflammation and Alzheimer’s disease [86].
Astrocytes promote and maintain a microglial activation, leading to a chronic inflammatory
response, in addition to regulating the activity of oligodendrocytes and cells of the adaptive
immune system and controlling an infiltration of the central nervous system [87,88]. RvD1
can activate the ALX4/FPR2 receptor in astrocytes and induce higher levels of mitochon-
drial phagocytosis to eliminate damaged mitochondria [89]. Another study showed that
RvD1 impaired a neuronal cell death through miR-146b and miR-219a-1–3p to enhance
functional recovery [26]. 17R-RvD1 has effects on the neuronal dysfunction by impairing
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and downregulating the neuronal plasticity [90]. It can not only decrease the release of
TNF in LPS and IFN-γ-stimulated astrocytes, but also reduce the TNF-induced activation
of ERK1/2 [91]. Zhang et al. showed that GPR18 was expressed in astrocytes, and the acti-
vation of RvD2-GPR18 mediated an anti-nociceptive effect by regulating the Akt/GSK-3β
signal pathway in a radicular pain rat model [92].

4.5. Effects on Endothelial Cells

Endothelial cells, which are found at the inner wall of the blood vessels, are the
target of RvD1, RvD2, and RvE1. The junction of interendothelial adhesion molecules
forms the endothelial cell barrier that regulates the vascular permeability and leukocyte
extravasation. An increased or prolonged leukocyte recruitment leads to the increased
expression of interendothelial adhesion molecules during the chronic inflammatory re-
sponse [93]. RvD2 regulates the production of NO and the expression of adhesion receptors
in endothelial cells [94]. RvD1 activates the ENaC and Na+-K+-ATP axes by regulating
the ALX/cAMP/PI3K signaling pathways and effectively blocks the interaction between
endothelial cells and monocytes as well as the inactivation of SHP2 and PP2A [95]. In
addition, RvD1 upregulates the expression of ZO-1, occludin, and tight junction proteins
to protect against the impairment of the endothelial barrier function through the IκBα
pathway [96]. RvE1 has been demonstrated to attenuate an endothelial senescence by
reducing not only the expression of the pro-IL-1β proteins pP65 and NLRP3 but also the
generation of the NLRP3 inflammasome complexes [97].

4.6. Effects on Cancer Cells

The steps of chronic inflammation-induced cancer syndrome include a cell transfor-
mation, promotion, survival, proliferation, invasion, angiogenesis, and metastasis [98].
Resolvins specifically inhibit the cancer progression stimulated by cell fragments through
a reprogramming of macrophages to enhance the clearance of fragments, and counter
regulating cytokines or chemokines released by human macrophages [74,99]. In addition,
resolvins can stimulate the antineoplastic activity of neutrophils [100]. Resolvins also
inhibit the differentiation of cancer-associated fibroblasts in a hepatocellular carcinoma
and pancreatic cancer [101,102]. Besides affecting the function of immune cells in a tumor
microenvironment, resolvins can also directly act on tumor cells. When acting on A549
lung cancer cells, RvD1 and RvD2 inhibit the epithelial–mesenchymal transition (EMT)
by reducing the phosphorylation of PI3K to downregulate the expression of N-cadherin
and ZEB1 and modulate the macrophage polarization to inhibit cancer growth [74,103,104].
RvD1 inhibits the secretion of a cartilage oligomeric matrix protein (COMP) by targeting
FPR1/ROS/ROXM1 signaling, thereby impeding the cancer stem-like properties and EMT
of hepatocellular carcinoma cells [101]. Moreover, increasing the expression of monocyte
chemoattractant protein-1 (MCP-1), stimulating PMNs reprogramming, and promoting
a protective PMN-dependent recruitment are potential ways that RvD1 inhibits tumor
growth [100]. RvE1 and RvD1 reduce the activity of NF-κB/AP-1 to prevent the transition
from a liver injury and hepatitis to liver cancer [105]. The anticancer actions of resolvins,
mainly including RvD1, RvD2, and RvE1, are achieved with the receptor-dependent promo-
tion of a tumor debris clearance and the inhibition of tumor cell growth mediated by cells
in the tumor stroma [99]. However, 17R-RvD1 inhibits EMT by reducing the expression of
mTOR, Pkm2, and Nrf2 to downregulate E-cadherin and vimentin [20].

5. Mechanism and Clinical Translation of Resolvins for Chronic Inflammatory
Diseases Treatment

Due to the fact that the receptors of resolvins are located on different target cells, tissues,
and organs, different resolvins have different effects on different diseases. Increasing
evidence and research have been provided to clarify the relationship between resolvins and
the chronic inflammatory response as well as chronic inflammatory diseases. Therefore,
resolvins have been gradually applied in clinical practice based on their mechanism.
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5.1. Effects on Pain

Research on heat pain sensitivity and osteoarthritis pain in 250 healthy volunteers
and 62 volunteers affected with knee osteoarthritis was performed to measure endogenous
17-HDHA, RvD1-3, RvD5, and RvE1 by LC-MS. The study concluded that the level of 17-
HDHA was closely related to increasing heat pain thresholds, and its effect on the sensitivity
of the heat pain and osteoarthritis pain was based on the level of DHA [106]. A mouse model
of postoperative pain induced by a tibial bone fracture (fPOP) was used to show that RvD1
and RvD5 could reduce mechanical allodynia and cold allodynia and that RvD1 inhibited
mechanical hyperalgesia by regulating CGPR [107]. Further research indicated that RvD1
increased a cell-selective polarization by regulating the NK-κB nuclear translocation and
M2-type polarization in microglial cells, thereby reducing the neuropathic pain [108]. RvD2
alleviated hyperalgesia in cystitis rats by activating GPR18 and inhibiting TRPV1, and
RvD5 exhibited sex differences in the modulation of pain and inhibited neuropathic pain
only in male mice [109,110]. The ERK signaling pathway is a common target regulated
by RvD1 and RvE1, while RvD1 significantly alleviates neuropathic pain by inhibiting
the Nod-like receptor protein 3 (NLRP3) inflammasome in the ERK signaling pathway,
and RvE1 alters the mechanical allodynia by inhibiting the ERK phosphorylation in spinal
dorsal horn neurons [111,112]. RvD1 and RvE1 have analgesic effects on bone cancer pain,
and RvD1 can additionally promote the upregulation of endocannabinoids through CB2
receptors, so RvD1 has a stronger analgesic effect on bone cancer than RvE1 [113].

5.2. Effects on Atherosclerosis

Fat-fed Ldlr−/− mice were administered RvD1 to test whether SPMs, especially
RvD1, were related to facilitating efferocytosis in atherosclerosis and suppressing plaque
necrosis by a targeted a mass spectrometry platform. Finally, the research confirmed that
RvD1 had the ability to promote a plaque stability by accelerating lesional efferocytosis
and decreasing lesion oxidative stress and necrosis [114]. To examine whether RvE1 could
reduce atherosclerosis, a mouse model of ApoE*3 Leiden mice fed a hypercholesterolaemic
diet was used, and the RvE1 effects of protecting against atherosclerosis and decreasing
a lesional inflammation had been demonstrated to involve regulating the expression of
immune responses and inflammatory genes in arteries without changing the serum amyloid
A and plasma cholesterol [115]. The proliferation and migration of vascular smooth muscle
cells (VSMCs) is a significant feature of the atherosclerotic lesions. Research shows that
RvE1 can block the migration of the human great saphenous vein mesangial cells stimulated
by a platelet-derived growth factor and reduce the phosphorylation of the platelet-derived
growth factor receptor-β to control the formation of atherosclerosis [116]. RvE1 inhibits
the contractions of both the human pulmonary artery (HPA) and rat thoracic aorta (RTA),
while RvD1 and RvD2 only control the contractions of the RTA. These results indicate
that resolvins provide useful novel therapeutics and have the characteristic of increasing
the activity of thromboxane contractile for pulmonary arterial hypertension [11]. Viola
et al. have demonstrated that the delivery of RvD2 and Maresin 1 induces macrophages to
transform into the repair phenotype and stimulate the collagen synthesis of smooth muscle
cells [117]. Elajami et al. tested the endogenous SPMs profiles of six patients suffering from
stable coronary artery disease (CAD) through targeted metabololipidomics, and the results
showed that the absence of RvE1, RvD1, RvD2, RvD3, and RvD5 appeared in CAD patients.
After a treatment with Lovaza (one capsule contains 840 mg of EPA and DHA), 17R-RvD3
and RvD6 were increased in patients with CAD, and the result also showed that SPMs
could promote a macrophage phagocytosis in blood clots [118,119]. In addition, RvD1 was
able to reduce M1-type macrophages in patients with ApoEε3/ε3 but increased M1-type
macrophages in patients with ApoEε3/ε4 [17]. Resolvins, as natural receptor agonists
mainly associated with the stability of plaques and a lack of proatherogenic side effects,
have a great potential as a new therapy for CAD [120]. Patients with Chagas disease always
develop chronic myocarditis when the infection is untreated. 17R-RvD1 modulates a local
and systemic inflammation in mouse cardiac tissue chronically infected with parasites,
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reduces cellular infiltration, and reduces cardiac hypertrophy and fibrosis in the early
chronic phase of the disease, providing a strategy for improving drug therapy [121].

5.3. Effects on Diabetes

In conjunction with the interactions among adipocytes, macrophages, and other im-
mune cells infiltrating the adipose tissue, adipose tissue produces an inflammatory re-
sponse, which in turn contributes to the development of type 2 diabetes mellitus (T2DM)
by leading to an insulin resistance [122]. Research was performed with twenty-four T2DM
patients randomized to a three-period crossover study including drinking red wine for
4 weeks or the equivalent volumes of water or dealcoholized red wine to measure the
effects of red wine on plasma SPMs of T2DM patients and the difference between patients
and healthy volunteers. Red wine did not appear to differentially affect any SPMs, and
the SPM levels in T2DM patients were higher than those in healthy volunteers. This re-
search proves that increasing the SPM level is a homeostatic response to counter ongoing
inflammation [123]. In addition, by researching dorsal root ganglion (DRG) neurons in a
T2DM mouse model fed with a high-fat diet for 8 weeks and administered daily injections
of RvD1, the results showed that RvD1 could promote the growth of DRG neurites and
indicated that neuropathy, such as the slow nerve conduction caused by T2DM, could be
reversed by RvD1 [124]. The results showed that a supplementation with polyunsaturated
fatty acids could be an effective therapy for diabetic neuropathy. The most recent research
showed that the MAPK-NF-κB signaling pathway was the target of RvD1 for fungal growth
and the inflammatory response against Aspergillus fumigatus keratitis in diabetes [125].
RvD5 prevents the elevation of IL-1β in the hippocampus and prefrontal cortex of type
1 diabetes mellitus rats, thereby intervening in behaviors related to depression and anxiety.
RvE3 plays a role in glucose homeostasis by activating PI3K and Akt phosphorylation to
enhance the adipocyte uptake of glucose [126].

5.4. Effects on Anti-Depression and Wound Healing

Different resolvin subtypes also play the same role through different mechanisms. In
terms of anti-depression, RvD1 plays an anti-depression role through the transmission of
glutamic acid or PI3K/AKT signaling, while RvD2 can also act on MEK/ERK [127]. The
activation of mTORC1 signaling is the key anti-depressive role of RvD1, RvD2, RvE1, RvE2,
and RvE3 [25,128–132]. In addition, RvD2 promotes the healing of periapical bone lesions
and the regeneration of pulp-like tissue by enhancing the expression of dentin matrix acidic
phosphoprotein 1 (DMP1) and the phosphorylation of STAT3 [133]. To promote wound
healing, the effect of RvE1 is obviously better than that of RvD2, while the effect of RvD1 is
weaker than that of RvD2 [134]. Resolvin D6-isomer (RvD6si) contributes to the functional
recovery and wound healing of corneal tissue by restoring an innervation after injury [135].

5.5. Effects on Rheumatoid Arthritis

Rheumatoid arthritis (RA) is characterized by chronic inflammation and progressive
joint destruction. The levels of RvD1 and RvE1 in patients with RA had been measured
and were significantly lower than those in healthy individuals and patients in remission
of RA [136]. RvD1 restrains the expression of TRAP, cathepsin K, TNF-α, IL-1 β, IFN-γ,
and PGE2 to inhibit the differentiation and activation of osteoclasts [137]. The mech-
anism of RvD1 against RA had been further elucidated in a collagen-induced arthritis
(CIA) mouse model; that is, RvD1 alleviated the progression of RA by inhibiting CTGF
via the upregulation of miRNA-146a-5p [138]. Research has indicated that the level of
RvD3 was reduced in delayed-resolving arthritis mice and RA patients and RvD3 could
reduce joint leukocytes [40]. Furthermore, an SKG arthritic mouse model was used to
explore the actions of RvD5, and the results showed that RvD5 weakened the osteoclast
differentiation to interfere with the genesis of osteoclasts involved in the pathogenesis of
RA [79]. Another research indicated that GPR101 was the top candidate receptor for RvD5
to display antiarthritic action by regulating neutrophil and macrophage responses [139].
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RvE1 inhibits bone resorption and osteoclastogenesis through suppressing the expression
of the transcription factors nuclear factor of activated T cells c1 (NFATc1) and c-fos [140].

5.6. Application of Resolvins in the Treatment of Pre-Diseases

A clinical study aimed to evaluate the SPM levels in offspring supplied with fatty acids
during pregnancy and at 12 years of age. This was the first time that RvE1, RvE2, RvE3,
RvD1, 17R-RvD1, and RvD2 had been identified in human cord blood. A supplementation
with n-3 fatty acids in pregnancy can significantly increase SPM precursors and DHA-
derived 17-HDHA at birth but not at 12 years [36]. The application of the accumulative
score relies on the gene expression related to the generation, metabolism, and signaling
of D series resolvins to comparatively analyze the relationship between the resolution of
inflammation and tumorigenesis. As a result, a higher RvD score distinguishes patients with
an improved resolution of inflammation who can benefit from an anticancer treatment [141].
Regardless of the method of directly supplementing exogenous resolvins or increasing
endogenous resolvins, resolvins have certain effects on the resolution of inflammation and
the maintenance of homeostasis in vivo. Numerous animal and clinical experiments have
provided the basis for the development of new anti-inflammatory drugs and the treatment
of chronic diseases caused by inflammation.

6. Further Perspectives

Resolvins are a series of endogenous lipid mediators with a positive effect on inflam-
mation resolution, and their origin and chemical structure have been confirmed for many
years. Studies of receptors have reported a few receptors for resolvins; however, the recep-
tors of the T-series resolvins RvD6 and RvE3 are not clear, so a further study of resolvin
receptors can provide new evidence and directions for us to resolve inflammation. Many
human and animal experiments have also substantiated that resolvins can reduce the joint
pain and stiffness of RA, reduce vessel inflammation in coronary heart disease, promote
plaque stability, and improve the metabolic parameters and complications of diabetes.
The mechanism of action of the resolvins in the process of an inflammation resolution is
complex, and the existing evidence is only the tip of the iceberg. A large number of studies
still need to be confirmed and explained.

In inflammatory diseases, there are naturally expressed resolvins in many organs.
However, as its biosynthetic precursor omega-3 polyunsaturated fatty acid cannot be
synthesized by the human body itself, the resolvins obtained from the body are very limited.
As resolvins are endogenous lipid mediators and are sensitive to light, heat, and oxidation,
synthesis costs are very high in vitro and production supplies are limited, so it is difficult
to perform a large-scale production and new drug industry chain formation. According
to systems’ biology theory and methods, resolvins can be regarded as the breakthrough
point in the search for related correlative proteins and signaling pathways to elucidate the
mechanism of anti-inflammatory prescriptions and drugs. The cross-analysis of multiple
layers and multi-omics may be a way to provide a basis for new anti-inflammatory drugs
research to discover novel drugs with fewer side effects and significant therapeutic effects
on chronic inflammatory diseases as soon as possible.

7. Conclusions

With the development of detection techniques and a deeper understanding of the
chronic inflammatory response, the study of resolvins will no longer be limited to simple
individual subtypes of resolvins. Hence, this paper reviews not only the production process
and characteristics of resolvins but also possible mechanisms by the subtypes of resolvins
in a chronic inflammatory response and explores their clinical use to resolve inflammation.
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