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Abstract: Among natural and synthetic polymers, main-chain phosphorus-containing polyacids
(PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics,
biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic
and teichoic acids, their biocompatibility, mimicking to biomolecules providing the ‘stealth effect’,
high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological
conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various
biomedical, industrial and household applications of this type of polymers. In the present review, we
discuss the synthesis, properties and actual applications of polyphosphodiesters.
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1. Introduction

Over the past few years, synthetic polymers containing acidic phosphate groups have
been the subject of extensive research [1–7]. Their similarity to environmental inorganic
polyphosphates [8,9], nucleic acids [10] and teichoic acids (TAs) [11] (Scheme 1a), as well as
the biocompatibility of the phosphate group [5,12], offers great opportunities for the use of
these polymers for different biomedical [1,2,5,13–17], industrial [4,18] and household [19]
applications.
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Scheme 1. (a) Natural phosphorus-containing polyacids (PCPAs); (b) Two main types of synthetic
phosphorus-containing polyacids (PCPAs).
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There are two fundamentally different types of phosphorus-containing polyacids
(PCPAs). The structure of the first, the closest to natural, type of PCPA implies phosphate
fragments in a polymer backbone (main-chain PCPAs, known polymers of this type rep-
resent polyphosphodiesters, Scheme 1b). The second type, side-chain PCPAs, represent
macromolecules containing acidic phosphate or phosphonate fragments as substituents
distributed throughout the polymer backbone (Scheme 1b). The synthetic approaches to
these two types of PCPAs are essentially diverse. The areas of application of the PCPAs are
also dependent on the position of the phosphorus-containing groups inside or outside the
main polymer chain.

The present review comprises critical analysis of the synthetic approaches to the main-
chain PCPAs, polyphosphodiesters, and a brief discussion of their properties and actual
applications. Repetitive enzymatic syntheses of the close analogs of nucleic acids, reviewed
by Jones [20], and acyclic artificial nucleic acids, reviewed by Kashida and coll [21], are not
discussed in this work.

Concluding the introduction, we need to address a general issue related to the chemi-
cal nomenclature of the phosphorus-containing organic acids and esters. The point is that
the compounds of the formula (RO)2P(O)H in many works, especially works that have
been published for a long time, are termed as ‘phosphites’ (and similar names still persist
as a trade names of chemical reagents, e.g., ‘diethyl phosphite’ for (EtO)2P(O)H). In our
review, we were content to follow the rules of the International Union of Pure and Applied
Chemistry (IUPAC) that recommend the attribution of (RO)2P(O)(H/R) to ‘phosphonates’,
(RO)2P(O)(OH/OR) to ‘phosphates’, and (RO)3P to ‘phosphites’. Additionally, note that
when referring to an article in the present review, we indicated the surname of the cor-
responding author of the work which does not always coincide with the surname of the
research team leader.

2. Design and Synthesis of Polyphosphodiesters
2.1. Synthetic Approaches to Polyphosphodiesters: An Overview

In a recent review [5], Iwasaki presented several important examples of the synthetic
approaches to PCPAs. In this section, we have tried to enhance, refine and discuss alter-
native synthetic approaches to polyphosphodiesters. The synthesis of the most simple
polyphosphodiesters, poly(ethylene phosphoric acid) (PEPA) and poly(1,3-propylene phos-
phoric acid) (1,3-PPPA), was reported by Penczek’ group back in 1976 [22]. To date, multiple
approaches to polyphosphodiesters have been developed. The most evident synthetic
pathway is based on the interaction of phosphoric acid with diols reviewed by Penczek
et al. in 2015 [1] or on transesterification of dialkyl (or diaryl) phosphonates followed by
oxidation of P–H bonds [23–29]. Ring-opening polymerization (ROP) of strained cyclic
phosphonates (containing P–H bonds) and phosphates, followed by post-modification
(oxidation or hydrolysis/hydrolytic thermolysis, respectively) is another efficient path-
way to polyphosphodiesters [30,31]. Meanwhile, modern methods of the construction
of hydrocarbon fragments of the PCPA backbone, i.e., metathesis polycondensation and
polymerization [32–36], should not be dismissed (Scheme 2). Note that the use of acyclic
diene metathesis (ADMET) polycondensation in the synthesis of ‘precision polymers’ was
the subject of review by Schulz and Wagener [37].
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2.2. Polycondensation and Related Methods
2.2.1. Reactions of H3PO4 with Diols and Polyols

Phosphoric acid H3PO4 is a relatively weak tribasic acid (pKa
1 = 2.15, pKa

2 = 7.09,
pKa

3 = 12.32). With the transition to pyrophosphoric acid H4P2O7, one can note a sub-
stantial increase of acidity (pKa

1 = 1.0, pKa
2 = 2.0) and, therefore, reactivity of H4P2O7 in

comparison with H3PO4. Poly(phosphoric acid) is a well-known ‘superacid’; however, its
use in the synthesis of PCPAs is essentially restricted by the requirements of the hydrolytic
stability of PCPAs that implies the absence of di-/oligophosphate fragments in the main
polymer chain. In this way, successful synthesis of PCPAs was limited by the use of H3PO4
and H4P2O7 in polycondensation with diols and polyols. This approach was developed
mainly by Penczek and coll who studied direct condensation of H3PO4 with ethylene
glycol [38–40]. The following steps were detected during this reaction:

• The reaction starts by the relatively slow dimerization of H3PO4 with a formation of
H4P2O7 (and higher polyphosphoric acids) at 100 ◦C within 40 h, during this stage the
water was removed either in the stream of neutral gas or azeotropically with heptane.

• After the addition of EG at 100 ◦C, H4P2O7 transformed to H3PO4 immediately,
and the first phosphorylation reaction within additional 80 h was the formation
of HOCH2CH2OP(O)(OH)2 and (HOCH2CH2O)2P(O)OH, triesters were formed in
minimal amounts.

• Activation of the monophosphate esters (end groups) at any polymerization degree
with H3PO4 proceeds via conversion of monoesters into pyrophosphoric acid esters
–OCH2CH2OP(O)(OH)–OP(O)(OH)2 that represent reactive acidic sites.

• The polycondensation product is mostly linear with a structure of PEPA –(OCH2CH2
OP(O)(OH))n–.

• Some branch points (triesters) are formed only at high temperature and prolonged
polycondensation time.

The reaction resulted in the formation of relatively low molecular weight (MW) prod-
ucts, the maximum achieved degree of polymerization (DPn) was 21 after 100 h at 150 ◦C
even in the presence of Sc(CF3SO3)3 as a catalyst. Polycondensation was also accompa-
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nied by the formation of ether bonds (di- and triethylene glycol fragments were detected),
acetaldehyde and vinyl end-fragments [38,39].

To avoid dehydration side processes during the reaction with H3PO4, Penczek et al. propo-
sed the use of 2,2-dimethyl-1,3-propanediol; however, no polymers were obtained, and the
main reaction product was 2-methylbutanal formed via methyl migration (Scheme 3) [38].
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The reaction of H3PO4 with glycerol is a more complex process [40–42]. This reaction
was conducted at 100 ◦C with azeotropic water removal (heptane) or under reduced
pressure. The rate of esterification and the product ratios depended on the reagent ratios.
So, for example, for a H3PO4/glycerol ratio of 1:1 the conversion of H3PO4 reached 90%
after 35 h, whereas at a H3PO4/glycerol ratio of 1:2 even after 140 h only 80% conversion
was detected, and the ratio of 2:1 led to monoester as a main product, 15% of H3PO4
remained unreacted. Five- and six-membered cyclic esters were detected in the reaction
mixtures in minor amounts. At a 1:1 H3PO4/glycerol ratio, cross-linking was observed.
The degree of polymerization of soluble products was limited by dealkylation, leading to
the formation of di- and oligo-glycerol units, incorporated into the product structure.

Polycondensation of diglycerol (HOCH2CH(OH)CH2)2O) with H3PO4 resulted in
the formation of highly branched gels [42]. The prospects of the further use of these
polymers still remains unclear due to the unpredictability of their microstructure and
hydrolytic behavior.

In conclusion, it should be mentioned that the reaction of H3PO4 with ethylene
carbonate, first described by Munoz et al. [43] and reproduced by Imoto and coll [44],
resulted in low-MW PEPA with an unknown structure. Additionally, note that the reaction
of H3PO4 with oxirans results in a formation of triester species [45,46] and therefore cannot
be considered as a method of the synthesis of PCPAs.

2.2.2. The Reaction of Dichlorophosphates with Diols

Glycolysis of PET with a formation of bis(2-hydroxyethyl)phthalate is the most
efficient method of chemical recycling of this polymer [47,48]. The reaction of bis(2-
hydroxyethyl)phthalate with Cl2P(O)OR (R = Me, Et) resulted in the formation of copoly-
mers, further treatment by terephthaloyl chloride and NaI/acetone allowed for a copolymer
containing >P(O)–OH fragments to be obtained [49] (Scheme 4). However, the current
trends in developing actual synthetic approaches to biodegradable materials imply the
abandonment of chlorine-containing reagents, and therefore dichlorophosphates are not
currently used in the synthesis of polyphosphodiesters.
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2.2.3. Reaction of Dialkyl (or Diaryl) Phosphonates with Diols and Post-Modification

Since polymers with –O–P(O)H–O– fragments can be easily and almost quantita-
tively oxidized to corresponding poly(phosphodiesters) containing –O–P(O)(OH)–O– frag-
ments [22,23,50], polycondensation of dialkyl phosphonates (RO)2P(O)H with diols can
be considered as a prospective method of the synthesis of polyphosphodiesters. However,
when using propane-1,3-diol, a six-membered cyclic phosphonate is formed at elevated
temperatures, and further low-temperature ROP is needed for the synthesis of PCPA [51].
In addition, Penczek and coll have proposed that for the successful synthesis of high-MW
polymer the alcohol ROH has to be removed as fast as possible [52].

Relatively high-MW poly(alkylene phosphonates) (Mn = 9.3–28 kDa) were obtained
by the reaction of (MeO)2P(O)H with HO–(CH2)n–OH (n = 5–10, 12) [23]. Polytranses-
terification of dimethyl phosphonate (MeO)2P(O)H and poly(ethylene glycol)s with Mn
200 Da (PEG200) and 600 Da (PEG600) resulted in copolymers with Mn = 3.5 and 7.1 kDa,
respectively [24,25]; similar results were obtained using PEG400, transesterification was
conducted within 5 h at 135 ◦C under atmospheric pressure, and then 4 h at 160 ◦C plus an
additional 15 min at 185 ◦C in vacuo (1 Torr), degree of polymerization (DPn) was 28 [26].
The reaction of H(OCH2CH2)13O H with (MeO)2P(O)H also resulted in the formation of
the polymer (Mn = 13.5 kDa) [27]. Poly(1,2-propylene glycol) (PPG)-based oligo(alkylene
phosphonate)s with DPn 12, 6 and 5 were synthesized with the use of PPG400, PPG1200
and PPG2000, respectively [28].

Triblock copolymers mPEG750-b-[(P(O)(H)O(CH2)6]17-b-mPEG750 and mPEG2000-b-
[(P(O)(H)O(CH2)6]17-b-mPEG2000 were obtained by polycondensation of (MeO)2P(O)H
with HO–(CH2)6–OH (4 h at 80 ◦C and then 9 h at 140 ◦C/1 Torr, 0.05 mol% Na to form the
catalyst), followed by the reaction with mPEG (140 ◦C/1 Torr) [53].

To achieve high molecular weights of the polycondensation products, Penczek and
coll proposed the use of diphenyl phosphonate in reaction with diols [54]. The reaction
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was conducted at 140 ◦C with the elimination of the phenol, and PCPAs with Mn up to
40 kDa were obtained (Scheme 5).
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To obtain PCPAs, PEG200- and PEG1000-based poly(alkylene phosphonate)s were
oxidized by N2O4 in CH2Cl2 [24]. The same reagent was also used for the oxidation of block
copolymers mPEG750-b-[(P(O)(H)O(CH2)6]17-b-mPEG750 and mPEG2000-b-[(P(O)(H)O
(CH2)6]17-b-mPEG2000 in CH2Cl2 at −10 ◦C [53] and poly(1,2-propylene glycol)-based
poly(alkylene phosphonate)s [28].

Chlorination of poly(alkylene phosphonate)s at 0 ◦C resulted in the formation of
poly(alkylene chlorophosphate)s that can be easily hydrolyzed with a formation of PC-
PAs [54] (Scheme 6a) or transformed into alkoxy- [23] and amino-derivatives [55] (Scheme 6b).
The degree of chlorination of poly(alkylene phosphonate)s can be varied when using
trichloroisocyanuric acid as the chlorination reagent; the quantitative yield of the corre-
sponding PCPA was confirmed by NMR monitoring of the hydrolysis of MeO[P(O)(Cl)O
(CH2CH2O)9]28H in MeCN (full conversion after 15 min at 20 ◦C) [26].
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Scheme 6. Chlorination of poly(alkylene phosphonate)s followed by the: (a) hydrolysis [54]; or (b) 
reaction with alcohols [23] and amino acid esters [55]. 

Penczek and coll [56,57] have shown that the direction and selectivity of the hy-
drolysis of poly(alkylene amidophosphate)s depend on the pH value and the structure of 
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(b) reaction with alcohols [23] and amino acid esters [55].

Penczek and coll [56,57] have shown that the direction and selectivity of the hydroly-
sis of poly(alkylene amidophosphate)s depend on the pH value and the structure of the
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substituents in a nitrogen atom. When studying model amidophosphates, preferential
cleavage of the P–O bond was detected at alkaline conditions, whereas at acidic condi-
tions (MeO)2P(O)OH was the main reaction product (Scheme 7a). Poly(1,3-propylene
amidophosphate)s demonstrated similar chemical behavior (Scheme 7b) except for an
O-ethyl-GlyGly derivative that formed 1,3-PPPA in both acidic and alkaline conditions. At
pH~8 and 37 ◦C the P–NH bond was hydrolyzed 3–4 times faster than the P–O bond in the
main chain [56].
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Another method of the transformation of poly(alkylene phosphonate)s to poly(alkylene
phosphate)s uses the Atherton–Todd reaction [25]. In particular, this reaction was used in
the synthesis of PCPAs containing (OCH2CH2)13 spacers between phosphate groups [27].
In conclusion of this section, one should refer to the successful synthesis of the polymers
containing –OP(O)(H)O–(CH2)x– units (x = 10, 17, 21, 46) with Mn 11–25 kDa by the reac-
tion of the corresponding diols with dimethyl phosphonates [58]. These polymers were
not transformed to PCPAs, there was only one step to polyethylene mimicking polymers
containing phosphate fragments in the main chain (note that similar polymers were never-
theless obtained by Wurm and coll. with the use of the ADMET approach, see Section 2.4).

2.2.4. Polycondensation of (ω-Hydroxyalkyl)phosphonic Acids

In 2020, [59] Penczek and coll. have shown that hydroxymethyl phosphonic acid can
act as a catalyst and initiator of the ROP of ε-caprolactone (εCL) with the formation of εCL
oligomers containing reactive groups on both ends of the macromolecule. Very recently
they demonstrated that these oligomers can be subjected to polycondensation at 100–110 ◦C
with a formation of PCPAs (Mn up to 25 kDa) (Scheme 8) with mostly linear microstructure
(31P NMR data) [60].
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2.3. ROP of Cyclic Phosphorus-Containing Monomers and Post-Modification
2.3.1. Synthesis of Cyclic Phosphorus-Containing Monomers

The key stage of the preparation of both cyclic phosphonates and cyclic phosphates is
a reaction of diols with PCl3 resulting in cyclic chlorophosphites [61] that can be hydrolyzed
with the formation of cyclic phosphonates (Scheme 9a) or oxidized to chlorophosphates
with subsequent substitution of Cl atom by alkoxy fragment that results in cyclic phosphates
(Scheme 9b). In some cases, the synthesis of cyclic phosphates is based on reverse reaction
sequence, i.e., substitution of Cl in chlorophosphite followed by oxidation (Scheme 9c) [62].
Cyclic phosphonates can also be synthesized by the reaction of diols with dialkyl phospho-
nates [63,64] (Scheme 9d).
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fication involved treatment with an Na mirror. The reaction of cyclic chlorophosphates 
with alcohols has limitations on the substrate. Primary and secondary alcohols usually 
give satisfactory yields of cyclic phosphates [62,67], while tert-butanol does not react in 
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Hydrolysis of chlorophosphite was carried out in CH2Cl2 solution with a mixture of
water and 1,2-dioxane (Scheme 10). It was essential to use slightly less than the stoichio-
metric amount of water (0.8 equiv.), otherwise undesirable polymerization occurred [65].
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Scheme 10. Synthesis of 4-methyl-2-oxo-2-hydro-1,3,2-dioxaphosphol [65].

The first systematic studies of the synthesis of five-membered cyclic phosphates
(2-alkoxy-2-oxo-1,3,2-dioxaphospholanes, Scheme 11), based on the reaction of cyclic
chlorophosphates with ROH, were conducted by Penczek et al. back in the late 1970s [66,67].
The synthesis of 2-chloro-2-oxo-1,3,2-dioxaphospholane was optimized recently by Becker
and Wurm [68]. 2-Chloro-1,3,2-dioxaphospholane was obtained with 67% isolated yield,
and subsequent CoCl2-catalyzed oxidation by dried air resulted in the obtaining of cyclic
chlorophosphate that was separated by vacuum distillation, the yield was 70%. Addition-
ally, note that the efficient continuous flow method of the end-to-end preparation of cyclic
phosphate monomers with a semi-continuous modular flow platform was developed very
recently by Monbaliu and coll. [69].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 43 
 

 

dation (Scheme 9c) [62]. Cyclic phosphonates can also be synthesized by the reaction of 
diols with dialkyl phosphonates [63,64] (Scheme 9d). 

O
P

O
ClOH

HO
PCl3

[O]

[H2O]

O
P

O

Cl

O

O
P

O

H

O

ROH

O
P

O

OR

O

Cyclic
phosphonates

Cyclic
phosphates

(a)

(b)
base

O
P

O
OR

ROH
base

[O](c)

(d)
RO

P
RO

H

O

 
Scheme 9. Common synthetic approaches to cyclic phosphorus-containing monomers for ROP. 

Hydrolysis of chlorophosphite was carried out in CH2Cl2 solution with a mixture of 
water and 1,2-dioxane (Scheme 10). It was essential to use slightly less than the stoichi-
ometric amount of water (0.8 equiv.), otherwise undesirable polymerization occurred 
[65]. 

 
Scheme 10. Synthesis of 4-methyl-2-oxo-2-hydro-1,3,2-dioxaphosphol [65]. 

The first systematic studies of the synthesis of five-membered cyclic phosphates 
(2-alkoxy-2-oxo-1,3,2-dioxaphospholanes, Scheme 11), based on the reaction of cyclic 
chlorophosphates with ROH, were conducted by Penczek et al. back in the late 1970s 
[66,67]. The synthesis of 2-chloro-2-oxo-1,3,2-dioxaphospholane was optimized recently 
by Becker and Wurm [68]. 2-Chloro-1,3,2-dioxaphospholane was obtained with 67% iso-
lated yield, and subsequent CoCl2-catalyzed oxidation by dried air resulted in the ob-
taining of cyclic chlorophosphate that was separated by vacuum distillation, the yield 
was 70%. Additionally, note that the efficient continuous flow method of the end-to-end 
preparation of cyclic phosphate monomers with a semi-continuous modular flow plat-
form was developed very recently by Monbaliu and coll. [69]. 

 
Scheme 11. Synthesis of five-membered cyclophosphates, the yields on the last sage are given [67]. 

2-Methoxy-2-oxo-1,3,2-dioxaphospholane (methyl ethylene phosphate, MeOEP) 
contained, after distillation, an impurity of (MeO)2P(O)OCH2CH2Cl, and the final puri-
fication involved treatment with an Na mirror. The reaction of cyclic chlorophosphates 
with alcohols has limitations on the substrate. Primary and secondary alcohols usually 
give satisfactory yields of cyclic phosphates [62,67], while tert-butanol does not react in 

Scheme 11. Synthesis of five-membered cyclophosphates, the yields on the last sage are given [67].

2-Methoxy-2-oxo-1,3,2-dioxaphospholane (methyl ethylene phosphate, MeOEP) con-
tained, after distillation, an impurity of (MeO)2P(O)OCH2CH2Cl, and the final purification
involved treatment with an Na mirror. The reaction of cyclic chlorophosphates with al-
cohols has limitations on the substrate. Primary and secondary alcohols usually give
satisfactory yields of cyclic phosphates [62,67], while tert-butanol does not react in the right
way due to the low reactivity of tert-butanol at ambient conditions and low thermal stability
of tBuOEP.

The choice of the base is essential in the synthesis of cyclic phosphates by the reaction
of chlorophosphates with alcohols. The presence of the traces of the ammonium salts
complicates the separation of cyclic phosphates because of their acid-catalyzed polymer-
ization. The use of lutidine was proposed in the first work devoted to the synthesis of
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ethylene phosphates [67], and it was this base that was used in the synthesis of unstable
2-benzyloxy-2-oxo-1,3,2-dioxaphospholane (benzyl ethylene phosphate, BnOEP) [70].

Because of the low thermal stability of tBuOEP and other tert-butyl alkylene phos-
phates, alternative approaches to these valued monomers were developed. Nakamura et al.
have used oxidation of cyclic phosphites by N2O4 [71] (Scheme 12a), and recently Ni-
fant’ev et al. proposed a two-stage approach based on reaction of 2-chloro-1,3,2-dioxaphos-
pholane with tert-butanol followed by oxidation of 2-tert-butyl-1,3,2-dioxaphospholane by
3-chloroperbenzoic acid (mCPBA) [62] (Scheme 12b).
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mPCBA [62].

The synthesis of deoxyribose-based five-membered cyclic phosphonate stands some-
what apart from most other 1,3,2-dioxaphospholane derivatives, this compound was ob-
tained by the reaction of methyl-2-deoxyribofuranose with P(NEt2)3 [72].

2.3.2. ROP of Cyclic Phosphorus-Containing Monomers

ROP of cyclic phosphonates and phosphates (Scheme 13a) represents the common
strategy of the controlled synthesis of functional biodegradable polymers [30,31]. This pro-
cess is subject to the general thermodynamic rules for the ROP of cyclic monomers [73] that
predict high reactivity of more strained five-membered cycles [67,74–76] and temperature-
dependent reactivity of six-membered cycles [75,76]. Different catalysts have been used
successfully in controlled ROP of cyclic phosphonates and phosphates with the formation
of polyphosphoesters (PPEs) (Scheme 13b). The data on the synthesis of polymers suitable
for post-modification to polyphosphodiesters are summarized in Table 1.
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Table 1. Synthesis of polyphosphonates and polyphosphates suitable for post-modification with a
formation of PCPAs. The structures of the catalysts are presented in Scheme 13b.

Entry Monomer Catalyst Reaction Conditions/Conversion, % Mn, kDa DPn
a ÐM Refs.
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Table 1. Cont.

Entry Monomer Catalyst Reaction Conditions/Conversion, % Mn, kDa DPn
a ÐM Refs.
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a Degree of polymerization.

MeOEP represents the simplest five-membered cyclic phosphate. Minimal sterical hin-
drance in phosphorus atoms complicate the ROP of MeOEP by the formation of branched
polymers. Coordination catalyst Mg1 demonstrated high activity in polymerization of
MeOEP at −20 ◦C with a formation of a mainly linear polymer [62,91]; however, when
using an organocatalyst TBD, highly branched polymers formed [62,79]. Nifant’ev and coll.
found that TBD-catalyzed polymerization of MeOEP in the presence of trimethyl phosphate
leads to linear poly(MeOEP) with given DPn and narrow molecular weight distribution
(MWD) even at a >99% monomer conversion degree [79]. Note that the DBU/TU catalyst
was moderately active in the polymerization of MeOEP [62,78]. Polymerization of other ster-
ically non-hindered monomer 4-(acetoxymethyl)-2-methoxy-2-oxo-1,3,2-dioxaphospholane
(Table 1, Entry 2), initiated by iBu3Al, was found to be a reversible process [50].

Besides MeOEP polymerization, TBD/BnOH-catalyzed ROP of –NHCH2CH2OMe-
substituted ethylene phosphate with the formation of almost linear homopolymers, DBU
was inactive in this reaction [90]. Poly(tBuOEP) was first obtained by Nakamura et al.
back in 1981 with the use of Et2Mg initiator [71]. The reaction was conducted at an
elevated temperature (40 ◦C) and took an extended period of time (10 h). The polymer
of methyl-substituted analog of tBuOEP was obtained under the same conditions. In
the ROP of six-membered tert-butyl cyclic phosphate, partially hydrolyzed El3Al was
used as a catalyst [71]. Nifant’ev and coll. preferred to polymerize tBuOEP with the
use of coordination catalyst Mg1, including the synthesis of block copolymers containing
poly(tBuOEP) fragments [62,86,87,92].

In the end of this section, it should be noted that poly(phosphoester)s can be obtained
by ring-opening metathesis polymerization of unsaturated cyclic phosphates [93]; how-
ever, this synthetic approach has not been applied to polyphosphodiesters. In addition,
hypothetic structures of the main-chain PCPAs are not limited by ‘diesters’, and cyclic
phosphonates (e.g., 2-methoxy-1,2-oxaphospholane 2-oxide [94]) might be considered as
starting monomers for the synthesis of a new structural type of main-chain PCPAs using
ROP and post-modification.

2.3.3. Post-Modification of the Poly(alkylene phosphonate)s

Oxidation of the polymers containing –P(O)H– fragments in the main chain represents a
promising synthetic approach to PCPAs. In earlier studies, N2O4 in CH2Cl2 was found to be
an efficient oxidizing reagent (Scheme 14), the resulting polyacids precipitated [22,50,65,76].
Wang et al. reported the use of DMF as a solvent for oxidation [95]. It is worth pointing out
here that the formation of HNO3 during oxidation may assist the cross-linking between
PCPAs’ polymer chains thereby decreasing the control on polymer MWD and architecture,
thus, for example poly(1,2-propylene phosphoric acid) (1,2-PPPA) synthesized in DMF had
Mw = 12.9 kDa and Ð = 2.6 [95].
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Scheme 14. Oxidation of poly(alkylene phosphonate)s [22,50,65,76].

In an early work of Penczek’s group, the reaction with O3 was proposed as an efficient
method of the transformation of poly(alkylene phosphonate)s to corresponding polyphos-
phates [72] (Scheme 15). Note that starting poly(alkylene phosphonate) was obtained via
ROP of cyclic phosphoramidite followed by acid hydrolysis of the polymer obtained.
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2.3.4. Post-Modification of Poly(alkylene phosphate)s

The most evident synthetic pathway to PEPA is based on hydrolysis of the ester
side groups with a maintaining of poly(alkylene phosphate) backbone (Scheme 16). The
first attempt of such hydrolysis was made by Gehrmann and Vogt back in 1981 with the
use of 1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.l] heptane homopolymer of unidentified
structure [96].
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Scheme 16. Hydrolytic pathway to PEPA.

For poly(MeOEP), the dependence of the ratio of hydrolysis of the methyl ester (side
group) and the backbone was established by Baran and Penczek by an example of the
model linear phosphate (MeOCH2CH2O)2P(O)(OMe) [97], the ratio of the rate constants
kside/kbackbone in water at 25 ◦C was ~5.0 at pH 2 and becomes equal to unity at pH ~12.
Evidently, such selectivity is insufficient for the synthesis of PEPA from poly(MeOEP) with
the retention of the polymer backbone.

In addition, Wurm and coll. recently conducted a separate study of the hydrolysis
of poly(MeOEP) and poly(EtOEP) [78] under both acidic (at pH 0, 1M HCl) and basic
(pH 11, Na2CO3/NaOH buffer) conditions. They found that under basic conditions these
polymers undergo a backbiting hydrolysis resulting in the release of alkyl (2-hydroxyethyl)
hydrogen phosphate as the main degradation product (Figure 1a). High hydrolytic stability
of polymer with urethane-blocked CH2CH2OH end-group (Figure 1b,c) confirms this
mechanism. In this way, the hydrolytic approach to PEPA should not be overestimated. That
is probably why the search for other nucleophilic agents and leaving groups were carried
out to develop efficient synthetic approaches to PEPA and other poly(phosphodiesters)
based on poly(alkylene phosphate)s.
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Already in the first communication on coordination ROP of MeOEP, Penczek demon-
strated high efficiency of the use of aq. Me3N in the synthesis of PEPA (~90% dealkylation
efficiency) [22]. The reaction of poly(MeOEP) (Mn = 22 kDa) with 30% aq. Me3N at 50 ◦C
for 10 h, followed by a pass through a cation exchange resin to exchange the NMe4

+ ions by
protons resulted in high-MW PEPA with 85% yield [98]. A similar approach was used by
Iwasaki group in the preparation of PEPA, cholesterol-(PEPA)n (n = 24, 46, 106) and different
PEPA-containing copolymers [80–82,99–101]. A sufficiently high selectivity was achieved
when Et3N was used as a dealkylation agent for the linear high-MW poly(MeOEP): the rate
of dealkylation of the side groups and the backbone was ~500:1 [22].

Dealkylation of the polymer obtained by ROP of 4-CH2OAc substituted MeOEP
(Table 1, Entry 2) was performed by using aq. R3N or NaI in acetone solution. The best
results were obtained by the latter method. However, the extent of dealkylation did not
exceed 80% [50].

To obtain PEPA, Wooley and coll. Conducted hydrolysis of poly(ethylene phos-
phoramidate) obtained by ROP of the corresponding cyclic substrate (Scheme 16, R =
–NHCH2CH2Ome) in three different acidic buffer solutions having pH values of 1.0, 3.0 and
5.0 [90]. At pH 5.0, only 7% of the phosphoramidate bonds were converted into phosphate
in 130 h. At pH 3.0, greater than 23% of the phosphoramidate bonds were cleaved over
130 h. At pH 1.0, complete hydrolysis was reached within 10 h. Significantly faster and
selective formation of PEPA was observed when polymer of allyl ethylene phosphate
(Scheme 16, R = –CH2CH=CH2) was treated by PhSNa in DMF/H2O [84,85]. Additionally,
note that partial (~20%) hydrolysis of the homopolymer of but-3-yn-1-substituted ethylene
phosphate (for structural formula see Table 1, Entry 7) occurred during thiol−yne click
reaction with (L)-cysteine [102].

Another efficient way to PCPA is based on thermolysis of polyphosphates containing
tert-butoxy fragments. Even at 1981 Nakamura and coll. have shown formation of the
corresponding PCPAs with elimination of isobutylene during thermolysis of poly(tBuOEP)
at 140 ◦C, as well as poly(4-methyl-2-hydroxy-1,3,2-dioxaphospholane 2-oxide) and poly(4-
methyl-2-hydroxy-1,3,2-dioxaphosphorinane 2-oxide) at 130 ◦C (Scheme 17) [71]. The



Int. J. Mol. Sci. 2022, 23, 14857 14 of 41

authors have noted that copolymers were partially cross-linked due to formation of P–O–P
bonds under heat.
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To avoid similar cross-linking, Nifant’ev and coll. proposed the use of proton sol-
vents (water, MeOH) for thermolysis of poly(tBuOEP) [86]. Due to the presence of proton 
solvents, the reactions were completed after 15 min (in H2O) or after 1 h (in MeOH) at 80 
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To avoid similar cross-linking, Nifant’ev and coll. proposed the use of proton solvents
(water, MeOH) for thermolysis of poly(tBuOEP) [86]. Due to the presence of proton solvents,
the reactions were completed after 15 min (in H2O) or after 1 h (in MeOH) at 80 ◦C. By
this method, copolymers containing poly(tBuOEP) blocks were successfully converted into
PEPA-containing macromolecules (Figure 2). The presence of bases (NaOAc, Na2CO3)
completely blocked P–O–P cross-linking [86].
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In the end of this Section, it would be worth highlighting that the use of ROP in 
controlled synthesis of PCPAs is still limited by the next significant drawbacks: 
• Loss of control over polymer architecture and MWD: sterically non-hindered cyclic 

phosphates can form highly branched poly(alkylene phosphate)s. Switching be-
tween the ‘living’ (linear polymer, ĐM~1) and ‘immortal’ (transesterification of the 
polymer chain, branched polymer, ĐM > 1) ROP modes can occur at elevated tem-
peratures and/or in case of wrong catalyst’ choice. Moreover, even in the presence of 
‘good’ catalysts, complete conversion of the monomer greatly increases the risk of 
subsequent transesterification. 

• This is why better chain control can be achieved when using sterically hindered cy-
clic phosphates, e.g., tBuOEP, despite its minor synthetic accessibility and very low 
reactivity that limits the use of this monomer in the synthesis of stat- and 
block-copolymers. 

• The use of cyclic phosphonates eliminates the problem of branching and DPn con-
trol, but severe oxidation of the P–H bond at the final stage puts the end to a con-
venient option to introduce biomolecules or usable functional groups at the stages of 
ROP initiation or termination. 

• The nature of the catalytic ROP imposes severe restrictions on the nature of the side 
substituent R in the molecule of cyclic phosphate (Scheme 16). So, for example, the 

Figure 2. 1H NMR spectrum (400MHz, D2O, 20 ◦C) of PEPA-containing triblock copolymer obtained
after thermolysis of mPEG2000-b-(εCL)16-b-(tBuOEP)61H in D2O at 80 ◦C in the presence of NaOAc.
Reprinted with permission from [86]. Copyright (2018) Elsevier B. V.

Another common approach to PCPAs is based on the lability of benzyl phosphates
towards catalytic hydrogenolysis. To avoid the use of H2, Iwasaki et al. carried out
elimination of the BnO groups in copolymers poly(EtOEP)-ran-poly(BnOEP) via 4 h of
stirring in HCOOH in the presence of Pd/C (8 wt%) [70,88,89] (Scheme 18), note that in [89]
cholesterol was used as a ROP initiator.
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In the end of this Section, it would be worth highlighting that the use of ROP in
controlled synthesis of PCPAs is still limited by the next significant drawbacks:

• Loss of control over polymer architecture and MWD: sterically non-hindered cyclic
phosphates can form highly branched poly(alkylene phosphate)s. Switching between
the ‘living’ (linear polymer, ÐM~1) and ‘immortal’ (transesterification of the polymer
chain, branched polymer, ÐM > 1) ROP modes can occur at elevated temperatures
and/or in case of wrong catalyst’ choice. Moreover, even in the presence of ‘good’
catalysts, complete conversion of the monomer greatly increases the risk of subsequent
transesterification.

• This is why better chain control can be achieved when using sterically hindered
cyclic phosphates, e.g., tBuOEP, despite its minor synthetic accessibility and very
low reactivity that limits the use of this monomer in the synthesis of stat- and block-
copolymers.

• The use of cyclic phosphonates eliminates the problem of branching and DPn control,
but severe oxidation of the P–H bond at the final stage puts the end to a convenient
option to introduce biomolecules or usable functional groups at the stages of ROP
initiation or termination.

• The nature of the catalytic ROP imposes severe restrictions on the nature of the side
substituent R in the molecule of cyclic phosphate (Scheme 16). So, for example, the
–CH2CH2CN group, widely used in automated (!) synthesis of DNA analogs [103]
and in synthesis of PCPAs with the use of ring-opening metathesis polymerization
(ROMP) [104], has not found application in the ROP/deprotection approach to PC-
PAs, despite the fact that the synthesis of six-membered cyclic phosphate with this
substituent was synthesized by Lapienis and Penczek back in 1977 [66].

• Additionally, in general, between fundamental studies of the ROP/deprotection ap-
proach to PCPAs in the late 1970s–1980s (conducted for the most part by the Penczek’
group) and relatively recent works (scientific groups of Wooley, Wurm, Iwasaki, Ni-
fant’ev), a two-decades gap in investigations is clearly visible, which affected the
progress in this scientific direction.

2.4. Metathesis Polycondensation

In 2014 Wurm and coll. proposed an efficient synthetic approach to polyphospho-
diesters based on ADMET polycondensation of bis(alkenyl) chlorophosphates, catalyzed
by the first generation Grubbs catalyst [32]. In bulk polymerization, DPn of 39 was
achieved, and when using 1-chloronaphthalene as a solvent, DPn was 47 and 126 for ‘chloro
monomers’ containing –(CH2)2– and –(CH2)9– spacers between vinyl and phosphate frag-
ments, respectively (Scheme 19). Functionalized PCPAs were then obtained by the reactions
of poly(alkylidene chlorophosphate)s with PhOK or (2-hydroxyethyl)methacrylate (HEMA)
in the presence of water.
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During further studies, copolymers containing P–OH and P–OEt substituents (Scheme 20a)
in 2:8 and 1:9 ratios (Mn = 19.3 and 10.3 kDa, respectively) and low-MW homopolymer of
(CH2=CHCH2CH2O)2P(O)OH (Mn = 1.7 kDa) were obtained [33]. The reaction was also
conducted in the presence of the first-generation Grubbs catalyst, the Mn of the 1:4 copoly-
mer was 19.3 kDa. To prepare potentially biodegradable analogs of polyolefins, Wurm and
coll. [34] also used ADMET polycondensation of HO–P(O)(O(CH2)8)CH=CH2)2 and copoly-
condensation of this monomer with PhO–P(O)(O(CH2)8)CH=CH2)2 in different ratios in
the presence of Hoveyda−Grubbs catalyst (Scheme 20b). After catalytic hydrogenation,
homopolymers demonstrated promising physico-mechanical characteristics.
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The use of monomers containing highly reactive P–Cl and P–OH bonds can com-
plicate ADMET polycondensation. Wurm and coll. demonstrated feasibility of the 2-
acetylthioethyl ester fragment as a protective group for the P–OH functionality in low molec-
ular weight phosphates as well as polyphosphates [35]. In order to obtain ‘polyethylenes’
containing –P(O)OH– fragments and –(CH2)20– spacers between them, Wurm and coll. [36]
synthesized a new monomer containing –OCH2CH2Br substituent at phosphorus atom. AD-
MET polycondensation and subsequent hydrogenation resulted in poly(phosphotriester),
its deprotection to PCPA was carried out in two stages using 2-acetylthioethyl ester protec-
tive group (Scheme 21)

2.5. Other Synthetic Approaches to Polyphosphodiesters
2.5.1. The Use of Unsaturated 2-Cyanoethyl Phosphates

The synthesis of phosphodiester hydrogels (this Section) and sequence-defined oligop-
hosphodiesters (see Section 2.6) relies on the use of sensitivity of 2-cyanoethyl phosphates
to bases (Scheme 22a). So, for example, bis(methacryloyl)(2-cyanoethyl)phosphate was
synthesized, polymerized, and deprotected with a formation of PCPAs (Scheme 22b) [104].
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2.5.2. Bis(methacrylate) Phosphonates and Their Post-Modification

Diliën and coll. proposed efficient synthetic approach to monomers for the synthesis
of PCPA-containing hydrogels, based on the reaction of (PhO)2O(O)H or H3PO3 with
2-hydroxyethylmethacrylate (HEMA), followed by the Atherton–Todd reaction with N-tert-
butyl-4-hydroxybutanamide and CCl3Br/NEt3 (Scheme 23). Free-radical polymerization of
this monomer followed by thermal deprotection via elimination of stable five-membered
iminoester resulted in formation of the polymers containing main-chain –P(O)OH– frag-
ments [105].
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2.5.3. Hydrolytic Polymerization of Spiro(acylpentaoxy)phosphoranes

Saegusa and coll. have demonstrated that spiro-phosporanes can react with water to
form polymers containing phosphodiester and phosphotriester monomer units [106]. The
ratio of monomer units was determined by the reaction time and the solvent (Scheme 24),
the maximum MW was 2.3 kDa.
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2.5.4. Thiol-Ene Polyaddition

Recently Wurm and coll. proposed a new approach to PCPAs based on metal-free-
radical thiol-ene polyaddition of dithiol comonomer and bis(alkenyl) phosphate to produce
alternating copolymer with hydrophilic ethylene glycol segments in the polymer back-
bone (Scheme 25). To increase the hydrophilicity of the polymer, it was oxidized to the
sulfone [107].
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2.5.5. Chain-End Vinyl Functionalization

Iwasaki described the use of methacrylamide-containing initiator in ROP of MeOEP,
followed by the reaction with Me3N, to obtain functionalized Na-PEP (Scheme 26) suitable
for free-radical graft polymerization [101]. Strictly speaking, the products of the latter
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reaction cannot easily be classified as ‘main’- or ‘side’-chain PCPAs, such attribution
depends on the length of the grafted polymer.
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2.5.6. The Use of Bridged Cyclic Phosphates

Highly branched phosphate nanogels were obtained by polymerization of bridged
cyclic phosphoester, 3,6-dioxaoctan-1,8-diyl bis(ethylene phosphate) and tris(2-aminoe-
thyl)amine, in the presence of Triton X-100 in cyclohexane [108]. The product of this reaction
contained three types of structural fragments (Scheme 27).
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2.5.7. Post-Modification of Polyphosphodiesters

Polyphosphodiesters contain reactive acidic P–OH fragments and can of course be
chemically modified. The reaction of PCPAs with oxirans (oxyethylation) stops when all of
the acidic groups are consumed [23], the synthesis of PEGylated polyphosphoesters requires
the addition of an ‘external’ acid. Iwasaki synthesized polyphosphoester containing P–
OCH2OAc and P–OH groups by the reaction of poly(EtOEP)-ran-PEPA with acetoxymethyl
bromide [70].

2.6. Sequence-Defined Oligophosphodiesters

Nucleic acids are PCPAs that serve as the primary information-carrying molecules in
cells. These natural PCPAs can be considered as sequence-defined poly(phosphodiesters)
containing limited numbers of the ‘building blocks’. The maximum of the researchers’
interests in this area was highest during the 1980s, organochemical approaches to artificial
DNA and close DNA analogs had been reviewed by Caruthers in 1991 [103]. The synthesis
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of ‘artificial’ nucleic acids is based on ‘phosphoramidite’ chemistry (Scheme 28), initially
developed for solid-phase DNA synthesis [103].
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In further research of ‘informational’ PCPAs, different types of spacers between 
phosphate fragments were investigated, including variably alkyl-substituted [116], 
N-(alkyl)-N,N-bis(alkylene)amine [114], N-(amidoalkyl)-N,N-bis(alkylene)amine [117], 
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Sequence-defined PCPAs were recently reviewed by Häner et al. [110], Charles and
Lutz [111], and by Grass et al. [112]. High efficiency of the phosphoramidite approach
was demonstrated mainly by Lutz and coll. in the preparation of sequence-defined PC-
PAs of different structures [109,111,113–115]. In particular, a series of sequence-defined
poly(phosphodiester)s were synthesized based on a cross-linked polystyrene bead with the
use of three monomers 0–2 (Scheme 29a) prepared from the corresponding 1,3-diols [113].
Monomers 0 and 1 were also used in the synthesis of ‘coded’ copolymers containing
deprotected comonomer units τ and υ (Scheme 29b) with a primer sequence containing
three thymine nucleotides (TTT) [109]. During the latter study, copolymer with DPn >100
was prepared.
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In further research of ‘informational’ PCPAs, different types of spacers between phos-
phate fragments were investigated, including variably alkyl-substituted [116], N-(alkyl)-



Int. J. Mol. Sci. 2022, 23, 14857 21 of 41

N,N-bis(alkylene)amine [114], N-(amidoalkyl)-N,N-bis(alkylene)amine [117], alkoxya-
mine [118], photo-editable substituted aryl [119].

A carefully developed strategy of the synthesis of ‘artificial’ NAs was further used
in the preparation of aptamer-b-poly(phosphodiester) conjugates containing conventional
nucleic acid fragments [115]. Interesting examples of the use of phopshoramidite chemistry
was reported by Serpell et al. who have synthesized two sequence-isomeric polymers
from dodecane diol (C12) and hexa(ethylene glycol) (HEG)-containing substrates, namely,
C1210-b-HEG10 block and (C12–HEG)10 alternating copolymers [120] (Scheme 30).
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‘Reading’ of the information is no less important and a no less time-consuming task in
comparison with ‘recording’ using the phosphoramidite approach [121,122]. Real prospects
of the use of ‘digital’ synthetic PCPAs for data storage are unclear at the moment; however,
DNA and its synthetic analogs are clear leaders among other data storage materials by the
criteria of the lifetime and storage capacity. Although, this leadership is in place by the
criterion of the price too (Figure 3) [112].
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Lutz and coll. have vividly illustrated the efficiency of the ‘molecular’ encryption with
the use of ‘digital’ PCPAs by an example of the portrait of Antoine Laurent de Lavoisier
(Figure 4) [123].
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of the ten mass tags, which facilitate the decryption of the digital sequence by mass spectrometry;
(b) Polymer encryption. (i) Pixelation of the portrait of Lavoisier (20 × 22), (ii) transformation
into a 440-bits string with 0 (white) and 1 (black), (iii) compression, (iv) translation into a chemi-
cal monomer sequence employing the building blocks shown in (a). Reprinted with permission
from [123]. Copyright (2021) Institut de France Academie des Sciences.

3. Properties and Applications of Polyphosphodiesters
3.1. Physico-Chemical Characteristics of Polyphosphodiesters
3.1.1. Physical State and Mechanical Properties of Polyphosphodiesters

PEPA and its close analogs represent amorphous compounds, but with the increasing
of the number n of –(CH2)n– fragments between phosphate groups beginning with n = 5
poly(alkylene phosphate)s demonstrate explicit crystalline behavior (Figure 5) [23].
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Figure 5. Oriented crystalline structure formed when the poly(decamethylene phosphate) sample
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Society.

The products of ADMET (co)polycondensation of HO–P(O)(O(CH2)8)CH=CH2)2 and
PhO–P(O)(O(CH2)8)CH=CH2)2 (Scheme 20b) represent low-crystalline materials. Their
hydrogenation resulted in an increase in crystallinity; however, copolymers with low con-
tent of P–OH fragments were too brittle. The increase in the supramolecular P–OH . . . O=P
cross-linking as a result of an increase in the content of phosphodiester fragments showed
a significant impact on the material properties: higher glass-transition and melting temper-
atures were observed and an increase in the storage modulus was detected. Hydrogenated
homopolymer of the phosphodiester monomer also demonstrated the shape memory
effect [34].

The polymer platelets were prepared by solution crystallization of polymers con-
taining –(CH2)10– spacer between –OP(O)(OCH2CH2Br)O– fragments (Mn = 15.9 kDa,
ÐM = 1.67) [36], a pseudohexagonal crystal structure with the phosphate groups remanat-
ing from the two opposing surfaces of the crystal formed. Further surface modifications (see
Scheme 21) resulted in the formation of the OP(O)(OH)O– fragments. Wurm and coll. pro-
posed that similar PE-like polymers can be used as a general platform to design chemically
functional anisotropic materials with the possibility of degradation of the phosphoester
bonds combined with the crystallinity of PE.

3.1.2. Solution and Colloidal Behavior

Solutions of 1,2-PPPA in distilled water did not exhibit phase transition temperature
at any concentration [95]. 1,3-PPPA demonstrates similar behavior; however, poly(1,5-
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pentylene phosphoric acid) swells slowly in water and forms a gel-like material after
absorbing up to 1000% of H2O [23].

Hirano and Iwasaki have demonstrated the ability of Chol-PEPA sodium salts to form
stable nano-sized micelles in combination with PLA using a solvent evaporation method
for micelle preparation: when compared with Chol-PEG, PEPA derivatives have shown
weak dependence of the particle size on the pH values (Figure 6) [80].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 25 of 43 
 

 

Hirano and Iwasaki have demonstrated the ability of Chol-PEPA sodium salts to 
form stable nano-sized micelles in combination with PLA using a solvent evaporation 
method for micelle preparation: when compared with Chol-PEG, PEPA derivatives have 
shown weak dependence of the particle size on the pH values (Figure 6) [80]. 

 
Figure 6. Particle size and polydispersity index (PDI) of PLA/PEP106·Na NPs (a) and PLA/PEG NPs 
(b) suspended in water (•) and PBS (▪) during days 1–7. Reprinted with permission from [80]. 
Copyright (2017) Elsevier B. V. 

Cholesterol-containing random PEPA/poly(EtOEP) copolymers (Scheme 18) were 
modified to 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles. The ζ-potential 
of the vesicles was decreased by an immobilization copolymer, the release rate of 
5-carboxyfluorescein from the vesicles containing 3% of copolymer was most reduced. In 
addition, the enzymatic degradation of DOPC was reduced by immobilization with the 
polyphosphoester ionomers [89]. 

A complex of cholesterol (Ch)-terminated Na-PEP with bovine serum albumin 
(BSA) was formed at 90 °C through the hydrophobic interactions between the lipophilic 
moieties of the protein and the cholesteryl groups of the Ch-Na-PEP chains. The com-
plexes dispersed in an aqueous medium (27–51 nm, DLS data) exhibited a high stability 
in size for up to 1 month and efficiently inhibited the thermal aggregation and sedimen-
tation of BSA, in contrast with Na-PEP and Ch-PEG. In addition, Ch-Na-PEP was able to 
protect the complexed BSA against proteolytic digestion [81]. 

3.1.3. Chemical Stability of Polyphosphodiesters 
As shown by Baran and Penczek [97], dialkyl phosphates are relatively stable in 

broad pH intervals. Iwasaki et al. have shown that the presence of –OP(O)(OH)O– frag-
ments in the main chain of the poly (ethylene phosphate) copolymer containing –OEt and 
–OCH2OC(O)Me fragments significantly affects the cleavage of the latter fragments in 
contact with esterase and further phase behavior with a formation of thermoresponsive 
PPEs [70].  

3.2. Metal Complexation of the Polyphosphodiesters and Polymer-Inorganic Hybrids 
3.2.1. Complexation of Polyphosphodiesters with Metal Ions  

Back in 1990, Wódzki and Kłosiński studied the complexation and transport of Mg2+ 
and Ca2+ ions by polyphosphodiesters and found that the affinity of phosphate groups for 
magnesium ions is strongly dependent on the type of phosphodiester linkage: the shorter 
spacer between phosphate groups (e.g., –CH2CH(CH2OH)–) diminished the Mg2+ 
transport and favored the Ca2+ transport, which had not occurred when using 1,3-PPPA 
[124]. 

Addition of Ca2+ to the aqueous solutions of 1,2-PPPA significantly changed the 
phase transition properties. At 20 °C, up to 20 wt % 1,2-PPPA solutions remained a liquid 
in the presence of up to 0.7 M CaCl2. A 25 wt % 1,2-PPPA solution was obtained at 20 °C 

Figure 6. Particle size and polydispersity index (PDI) of PLA/PEP106·Na NPs (a) and PLA/PEG
NPs (b) suspended in water (l) and PBS (n) during days 1–7. Reprinted with permission from [80].
Copyright (2017) Elsevier B. V.

Cholesterol-containing random PEPA/poly(EtOEP) copolymers (Scheme 18) were
modified to 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles. The ζ-potential
of the vesicles was decreased by an immobilization copolymer, the release rate of 5-
carboxyfluorescein from the vesicles containing 3% of copolymer was most reduced. In
addition, the enzymatic degradation of DOPC was reduced by immobilization with the
polyphosphoester ionomers [89].

A complex of cholesterol (Ch)-terminated Na-PEP with bovine serum albumin (BSA)
was formed at 90 ◦C through the hydrophobic interactions between the lipophilic moieties
of the protein and the cholesteryl groups of the Ch-Na-PEP chains. The complexes dispersed
in an aqueous medium (27–51 nm, DLS data) exhibited a high stability in size for up to
1 month and efficiently inhibited the thermal aggregation and sedimentation of BSA,
in contrast with Na-PEP and Ch-PEG. In addition, Ch-Na-PEP was able to protect the
complexed BSA against proteolytic digestion [81].

3.1.3. Chemical Stability of Polyphosphodiesters

As shown by Baran and Penczek [97], dialkyl phosphates are relatively stable in
broad pH intervals. Iwasaki et al. have shown that the presence of –OP(O)(OH)O– frag-
ments in the main chain of the poly (ethylene phosphate) copolymer containing –OEt and
–OCH2OC(O)Me fragments significantly affects the cleavage of the latter fragments in
contact with esterase and further phase behavior with a formation of thermoresponsive
PPEs [70].

3.2. Metal Complexation of the Polyphosphodiesters and Polymer-Inorganic Hybrids
3.2.1. Complexation of Polyphosphodiesters with Metal Ions

Back in 1990, Wódzki and Kłosiński studied the complexation and transport of Mg2+

and Ca2+ ions by polyphosphodiesters and found that the affinity of phosphate groups for
magnesium ions is strongly dependent on the type of phosphodiester linkage: the shorter
spacer between phosphate groups (e.g., –CH2CH(CH2OH)–) diminished the Mg2+ trans-
port and favored the Ca2+ transport, which had not occurred when using 1,3-PPPA [124].

Addition of Ca2+ to the aqueous solutions of 1,2-PPPA significantly changed the phase
transition properties. At 20 ◦C, up to 20 wt % 1,2-PPPA solutions remained a liquid in the



Int. J. Mol. Sci. 2022, 23, 14857 25 of 41

presence of up to 0.7 M CaCl2. A 25 wt % 1,2-PPPA solution was obtained at 20 ◦C in 0.5 M
CaCl2, and exhibited a rapid phase transition to a nonflowing gel when the temperature
was raised to 36 ◦C. At concentrations of 1,2-PPPA below 10 wt %, only precipitates were
observed even at high temperatures. Increasing the polymer or the Ca2+ concentration led
to lower phase transition temperatures [95].

Bis(2-hydroxyethyl)phthalate-based copolymers (Scheme 4) have demonstrated high
affinity to Ca2+ ions, which was manifested in changes in thermal properties of copolymers
(increase of the glass transition temperature and melting range, up to 15 and 30 ◦C, respec-
tively) and in mechanical characteristics of the polymer films (two- to three-fold increase in
Young’s modulus and hardness) [49]. However, no follow-up was given to these materials
in the development of polymer scaffolds for biomedical applications.

PPG-based oligo(alkylene phosphate)s were applied as cation-selective macroion-
ophores in a multimembrane hybrid system [28]. Their solutions in dichloroethane formed
the flowing liquid membrane (FLM) circulating between two polymer cation exchange
membranes, and subsequently, between two polymer-made pervaporation membranes.
It was found that the copolymer macroionophores activate the preferential transport of
Zn2+ cations from aqueous solutions containing competing Cu2+, Ca2+, Mg2+, K+, and
Na+ cations. Depending on the MW of PPG used in the synthesis of copolymer, the
following separation orders were observed: for MW 400 and 1200 Da Zn2+ > Cu2+ >> Ca2+,
Mg2+, K+, Na+; for MW 2000 Da Zn2+ > Cu2+, Ca2+ >> Mg2+, K+, Na+. Due to moderate
separation selectivity, complexity of the multimembrane hybrid system setup, and the
unpredictable effect of additional factors (e.g., water transfer or uptake), the idea of the use
of polyphosphodiesters in liquid membranes stalled.

When studying two sequence-isomeric C1210-b-HEG10 and (C12–HEG)10 copolymers,
synthesized with the use of solid phase phosphoramidite approach (Scheme 30) [120],
Serpell and coll. Hypothesized that in the presence of Mg2+ C1210-b-HEG10 would give
conventional spherical star micelles, whereas the alternating (C12–HEG)10 would show
no self-assembly. However, experiments with the use of Mg2+ containing buffer have
demonstrated the formation of non-isotropic particles (107 ± 5 nm) at 4 µM concentration
of (C12–HEG)10, and formation of large, highly anisotropic, higher order structures at 7-
-100 µM concentrations. It is quite possible that the detection of untypical colloidal behavior
can be attributed to the use of sequence-defined copolymers, because in the case of statistical
copolymers the manifestation of the similar effects is mitigated by heterogeneity of the
microstructure and broadening of the MWD.

3.2.2. Effects of the Polyphosphodiesters on Crystal Growth and Morphology

The effect of mPEG750-b-[(P(O)(H)O(CH2)6]17-b-mPEG750 and mPEG2000-b-[(P(O)(H)
O(CH2)6]17-b-mPEG2000 triblock copolymers on crystallization of CaCO3 was studied by
Penczek and coll. in 2005, the formation of microsherical and ‘hollow closed’ microspherical
(Figure 7) crystallites was detected [53].

As shown by Jerome and coll. [85], the presence of block copolymer mPEG5000-b-
(PEPA)16 has led to the formation of porous CaCO3 microspheres with uniform size dis-
tribution, the best results were achieved when using supercritical carbon dioxide (scCO2)
technology. The marked difference between PEPA and the products of H3PO4/glycerol
polycondensation is clearly seen in Figure 8 that demonstrates the morphology of the
CaCO3 particles obtained in the absence and in the presence of PCPAs, in particular,
sodium poly(ethylene phosphate) (Na-PEP) [40].
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3.2.3. Hybrid Nanoparticle Formation by Polyphosphodiesters

Magnetite nanoparticles, functionalized by PCPA (Scheme 20a) containing P–OH
and P–OEt substituents in 1:9 ratio, exhibited a bimodal distribution with 18 and 113 nm
particle diameters, in contrast with NOs stabilized by oleic acid and catechol-functionalized
PPEs [33].

As was mentioned in Section 2.3.4, in 2019 Wurm and coll. described polymeriza-
tion of but-3-yn-1-yl ethylene phosphate, followed by thiol-ene click reaction with (L)-
cysteine [102]. The resulting copolymer zPBYP (Figure 9a) was used for coating of Au
nanoparticles (AuNPs, citrate-coated AuNP@citrate were used as a starting material) with
a formation of AuNP@zPBYP, followed by cross-linking of cysteine fragments (AuNP@X-
zPBYP). When compared with each other and with PEGylated AuNP@PEG, AuNP@X-
zPBYP showed the highest cytokine adsorption (Figure 9b).

3.3. Biomedical Applications of Polyphosphodiesters

Due to the presence of –P(O)(OH)– fragments, polyphosphodiesters exhibit such
properties as acidity (and therefore ability to form salts with metal cations and organobases)
and bone affinity (as a natural consequence of the similarity of the phosphodiester fragment
in PCPA and PO4

3− anion in bone mineral). Polyphosphodiesters are also subjected to
hydrolysis, which makes them potentially valuable biodegradable polymer materials for
various clinical applications. However, the studies of polyphosphodiesters have not yet
made it beyond the laboratory despite many promising results obtained.
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solution containing no NPs. The figure is the heatmap showing the concentrations of the various
cytokines. Reprinted with permission from [102]. Copyright (2019) American Chemical Society.

3.3.1. Polyphosphodiesters and Cell Viability/Metabolism

It is clear that biomedical application of PCPAs requires the absence of adverse impact
of PCPAs on a living organism. Given the relatively high hydrolytic lability of P–OR
bond, main-chain and side-chain PCPAs should be considered separately. For polyphos-
phodiesters, the possible impact may be caused by the formation of alkyl phosphates
(RO)P(O)(OH)2 that represent both relatively strong acids and organic compounds with
acutely under-researched properties. A wide range of polyphosphodiesters have been stud-
ied to date by different cytotoxicity tests. Differences in the used cell cultures, experimental
methods and conditions do not allow us to summarize the data in the table, and just a brief
summary of the facts will be given here.

In both HeLa cells and RAW 264.7 mouse macrophage cells, no cytotoxicity was
detected for Na-PEP over the range of concentrations from 5 to 1250 µg/mL [90]. The
effect of Na-PEP (in comparison with inorganic polyphosphate) on viability of the os-
teoblastic MC3T3-E1 cells was studied by Iwasaki et al. [83], the cell compatibility of
Na-PEP was better than that of inorganic polyphosphate, visible decrease in cell viability
was observed only from the 10 mg·mL−1 concentration of Na-PEP. Cholesterol-initiated
PEPA/poly(EtOEP) copolymer demonstrated no hemolysis activity or cytotoxicity against
MC3T3-E1 cells [80,89]. No cytotoxicity was detected during experiments on adipose-
tissue-derived multipotent mesenchymal stem cells (ADSCs) adhesion and proliferation in
the presence of Na and Ca salts of PEPA [125] (Figure 10).
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Figure 10. The results of 7-day cell adhesion and proliferation experiments for the solutions of
PEPA metal salts diluted by the factors of 1000, 100 and 10. The starting solutions of the salts were
prepared in phosphate/metal molar ratios of 1:1 (Na-PEP, Ca1-PEP) and 2:1 (Ca2-PEP). The initial
concentration of phosphate groups was 0.443 mmol/g. The percentage of the cell viability relative to
control (additive-free plates) is presented. Reprinted with permission from [125]. Copyright (2019)
MDPI.

Cytotoxicity test of the random PEPA/EtOEP (H/E) copolymers (see Scheme 18)
with mouse osteoblastic cells (MC3T3-E1) showed that the adverse effect of polyphos-
phoester ionomers on cell viability was significantly lower than was that of pamidronate
(H2NCH2CH2C(OH)(PO3HNa)2), e.g., the IC50 of copolymer with H21E79 composition was
approximately 200 times greater in mass concentration than that of pamidronate. Note the
IC50 value of H21E79 was tripled by sodium salt formation [88].

The 1,2-PPPA with a pKa 2.3 showed no toxicity to COS-7 and MRC-5 cells up to a
concentration of 5.4 mg/mL [95].

Hyperbranched 3,6-dioxaoctan-1,8-diyl bis(ethylene phosphate)-based polymers (see
Scheme 27) did not significantly affect the cell viability of the MDA-MB-231 cancer cells [108],
thus providing the purity of the further experiment on loading and release of the anticancer
drug (see Section 3.3.5).

A very important finding of the Iwasaki’ group was that Na-PEP did not trigger any
change in osteoblast cell viability; however, the polymer diminished human osteoclasts and
their ability to resorb bone at concentrations as low as 10−4 mg·mL−1 [99] (Figure 11). This
was the first report on using PPEs for selective inhibition of human osteoclast functions,
indicating high potential of polyphosphodiesters as an effective polymer prodrug for
osteoporosis treatment.

Since some polyphosphodiesters have a similar backbone structure to TAs, which
makes up the cell walls of Gram-positive bacteria, Iwasaki and coll. synthesized a copoly-
mer of Na-PEP and 2-(but-3-yn-1-yloxy)-1,3,2-dioxaphospholane 2-oxide p(EP/BYP), which
mimics TA (terminal C≡C fragment was then used for insertion of fluorescent fragments via
azide-click reactions) [82]. Copolymers showed no cytotoxicity with RAW 264.7 mammalian
macrophages up to 10 mg·mL−1 concentrations. It was found that RAW 264.7 exhibited
higher uptake of copolymers than L929 mammalian fibroblasts. It was shown that high-MW
copolymer (DPn = 127) led to the highest intracellular transportation and the least gene
expressions of IL-6 and TNF-α.
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3.3.2. Polyphosphodiesters and Cell Differentiation

Nifant’ev et al. [125] reported that the calcium PEPA salts clearly induced osteogenic
differentiation of the ADSCs, whereas the sodium salts were inactive within the margin of
experimental error (Figure 12). Significant mineralization of the extracellular matrix during
the cultivation of ADSCs with Ca-PEP was also detected.

More recently, Iwasaki and coll. performed a comprehensive study of the osteoblast
differentiation with the use of Na-PEP and mouse osteoblastic cells MC3T3-E1 in a differen-
tiation medium containing Na-PEP and poly(MeOEP) for comparison [126]. Substantial
differentiation was detected for Na-PEP and described in Figure 13.
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Figure 12. Differentiation of adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs)
with the solutions of PEPA salts Na-PEP, Ca1-PEP and Ca2-PEP of different concentrations, in the
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expression of the BMP-2 gene in ADSCs on days 7 (a) and 14 (b). RT-PCR analysis. Statistical
difference between a test group and control (* p < 0.05, ** p < 0.01, *** p < 0.001). Reprinted with
permission from [125]. Copyright (2019) MDPI.
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3.3.3. Polyphosphodiesters and Nucleic Acids, Proteins and Other Substances in the Body

Polymers for biomedical applications should possess long-term stability in the blood-
stream and should effectively minimize the interaction of the nanocarrier and blood compo-
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nents, e.g., poly(ethylene glycol) functionalization (PEGylation), so-called ‘stealth coating’,
can prevent recognition by the reticuloendothelial system, thus preventing preliminary
elimination of nanoparticles from the bloodstream and providing prolonged periods of
circulation. It is thought that PEG can reduce non-specific protein adsorption and thereby
confer a ‘stealth effect’. However, as demonstrated by Wurm and coll. [127], both PEG
and poly(EtOEP), pre-exposed to plasma proteins, exhibit a low cellular uptake, whereas
those not pre-exposed showed high non-specific uptake. In this way, the stealth effect still
requires a specific adsorption of clustering proteins (apolipoprotein J). However, whether
polyphosphodiesters have shown a stealth effect, is still an open question.

For the development of bone-targeting polymeric prodrugs and other materials for
bone surgery and tissue engineering it is essential that Na-PEP is inert toward thrombin, as
shown by Iwasaki’ group, the adsorption of Na-PEP on thrombin-immobilized sensor was
not observed [83].

In model experiments, both hyperbranched polymer’s (see Scheme 27) nanogel and
PEG-6000 showed very limited bovine serum albumin (BSA) adsorption [108]. When
studying bis(methacrylate)-based hydrogel (see Scheme 22), full hemocompatibility and the
absence of the protein absorption from the coagulation cascade were demonstrated [104].

DNA complexation of Na-PEP was studied by Iwasaki and coll. [128] who studied
the effects of molecular crowding with Na-PEP on the thermodynamics of DNA duplexes,
triplexes and G-quadruplexes. Thermodynamic analysis demonstrated that Na-PEP signifi-
cantly stabilized the DNA structures. At lower polymer concentrations, the stabilization
was attributed to a shielding of the electrostatic repulsion between DNA strands by the
sodium ions of Na-PEP. At higher polymer concentrations, the DNA structures were entrop-
ically stabilized by volume exclusion, which could be enhanced by electrostatic repulsion
between phosphate groups in DNA strands and in Na-PEP. Additionally, increasing Na-PEP
concentration resulted in increasing enthalpy of the DNA duplex but decreasing enthalpy
of DNA G-quadruplex, indicating that the polymers also promoted dehydration of the
DNA strands [128]. These results allowed us to elucidate the mechanisms involved in
stabilizing DNA structures.

3.3.4. Biocompatibility and Inflammatory Effect of Polyphosphodiesters

Despite their importance for biomedical applications, tissue biocompatibility and
ability to cause inflammation remains mostly unexplored for polyphosphodiesters. The
tissue response of polymer (see Scheme 27) nanogel after intramuscular injection was
studied in C57BL/6J mice [108]. Histological analysis revealed no visible inflammatory
reaction at the injection site after 7 days, which was comparable to muscle samples receiving
PBS injections.

3.3.5. Bone Affinity of Polyphosphodiesters and Their Prospects for Bone Surgery

This aspect of the use of PCPAs had been recently reviewed by Iwasaki [5]. Here, we
will only briefly list and discuss some interesting and new results.

As shown by Iwasaki and coll., random PEPA/EtOEP (H/E) copolymers (see Scheme 18)
were able to be absorbed on the hydroxyapatite (HAp) surface [88]. Increases in the acid (H)
content in copolymer resulted in higher values of adsorption, and sodium salt of H21E79
absorbed by one and a half times more effective than corresponding polyacid. In addition,
these copolymers have inhibited HAp formation and resorption. Cholesterol-containing
random PEPA/poly(EtOEP) copolymers of the similar structure significantly improved the
affinity of the DOPC vesicles to calcium deposits generated by MC3T3-E1 cells [89].

Iwasaki and coll. also proposed sodium salts of PEPA as a new polymeric candidate
material with an affinity to HAp and bone slices [80]. The affinity of Na-PEP nanoparticles
to HAp was not suppressed by the presence of Ca2+ or low-pH conditions, which promote
bone resorption by activated osteoclasts [80]. The BSA/Ch-Na-PEP complexes are well
adsorbed onto HAp even in the presence of BSA (55 g/L) [81]. A bright and illustrious
experiment, demonstrating high bone affinity of Na-PEP, was conducted by Iwasaki’ group
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with the use of Na-PEP copolymer, containing minimal amount of Cyanine 5 Azide (Cy5Az)-
containing side groups [83]. Seventy-five hours after the intravenous injection of Cy5Az and
Na-PEP-Cy5Az, qualitatively different fluorescence distributions were detected: no/weak
signals for Cy5Az, but in the latter case fluorescence signals from bones located near the
surface were significant (see Figure 4 in [83]). These findings enable us to consider that
various types of polymeric prodrugs for bone disease treatment can be designed based on
Na-PEP.

Copolymer p(EP/BYP) (see Section 3.3.1) was modified by thiol-yne click reaction
with HS(CH2)6SCH2CH(Me)C(O)O(CH2)2OP(O)(O−)O(CH2)2NMe3

+ [129]. The bacterial
anti-attachment effects of the polymer-immobilized HAp materials were investigated via
the adhesion of S. mutans. Because of its strong attachment to the HAp surface as a result
of the anionic content, Na-PEP copolymer exhibited high bacterial anti-attachment efficacy.

In 2015 [100], Iwasaki and coll. proposed the use of Na-PEP covered PLGA micro-
spheres (prepared using the water-in-oil-in-water emulsion solvent evaporation method
from PLGA with Mw of 7–17 kDa with 1:1 lactate/glycolate ratio), α-tricalcium phosphate
(α-TCP), castor oil, and water for the preparation of particle-stabilized self-setting emul-
sions with different component ratios, CPC-P0 (0/30/35/35), CPC-10 (10/30/30/30) and
CPC-20 (20/30/25/25). After cement setting (24 h) and thermolysis at 600 ◦C, mesoporous
materials were obtained, while PLGA microparticles resulted in the formation of an inter-
connected macroporous structure in the set cements which promoted extensive invasion of
MC3T3-E1 cells.

We believe that, due to proven high affinity of the polyphosphodiesters to HAp and
bone mineral, the development of composite materials based on biodegradable polymers
and bioresorbable calcium phosphates is a very important and promising scientific direction.
Similar composites are well studied and have already been implemented in dentistry for
side-chain PCPAs; however, in the case of polyphosphodiesters the research has been
fragmentary at best.

3.3.6. Drug Delivery and Drug Release with the Use of Polyphosphodiesters

Wang et al. reported the results of the study of binding and release of lysozyme (5%
initial loading) with the use of 1,2-PPPA/Ca2+ hydrogels [95]. The release of lysozyme fol-
lowed zero-order kinetics after an onset of 1 h and completed in 22 h with no burst release.

PCPAs represent polyanions at physiological pH and are therefore capable of elec-
trostatic binding with organic bases, including drugs. However, the ability of PEPA-
containing polymers to act as a carrier of drugs with basic functional groups have not
been studied in depth. In the early work of Troev et al. [27], similar interaction between
–[O(CH2CH2O)12P(O)(OH)]n– and cytoprotective reagent amifostine (Scheme 31), applied
in the radiation or cyclophosphamide cancer treatment. In this work, the formation of the
adduct was confirmed by FT-IR spectroscopy. In further studies, the effect of the use of
polymer complex was examined in comparison with amifostine alone [130], visible positive
effects can be seen in Figure 14.

When studying formulations of the same polymer with cytostatic drug melphalan
(Scheme 31) it was shown that covalent bonding of the drug is preferable in comparison
with cation/anion complexation [131].

This research team also studied adduct of the copolymers with similar structure with
dinuclear 1,1/t,t-spermidine platinum complex (Scheme 31), obtained via covalent bonding
to poly(oxyethylene H-phosphonate)s applying the Athertone–Todd reaction [25]. The
cytotoxic activities of the adducts were determined in a panel of five chemosensitive and
one cisplatin-resistant tumor cell lines, but they were found to be less active than the
prototype dinuclear complex.

Adducts of tenofovir disoproxil (TFD) with block copolymers mPEG-b-PEPA were re-
cently studied by Nifant’ev et al. as candidates for developing a long-acting and controlled-
release formulations for anti-HIV therapy using the model of experimental HIV infection
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in vitro (MT-4/HIV-1IIIB). Judging by the values of the selectivity index, TFD exhibited an
up to 14-fold higher anti-HIV activity in the form of mPEG-b-PEPA adducts [87].
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WBI (blue circles), or the polymer complex of WR2721 at an ip dose of 50 mg/kg 30 min prior to WBI
(red circles). Reprinted with permission from [130]. Copyright (2014) Elsevier B. V.

Hyperbranched 3,6-dioxaoctan-1,8-diyl bis(ethylene phosphate)-based polymers (see
Scheme 27) contains both –P(O)(OH)– and secondary/tertiary amine fragments and there-
fore have a relatively low capacity for complexation with organobases. The studies of
the loading of doxorubicin (DOX, Scheme 31) at 10:1 nanogel/DOX weight ratio have
showed only 4% value of the drug loading [108], and doxorubicin release in the absence of
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phosphodiesterase I was found to be unbalanced (32% after 24 h and 52% after 11 days).
Anticancer efficiency of the nanogel/DOX formulation against MDA-MB-231 cells was
lower in comparison with DOX. Experiments with fluorescein isothiocyanate-modified
nanogels (average diameter 171 of nm) showed significant nanogel internalization in
MDA-MB-231 cells.

In one of their recent publications [92], Nifant’ev and coll have studied and discussed
fundamental questions dealing with biomedical prospects of PCPAs:

• compatibilization effect of copolymers, containing polyester and PEPA block, on
formation and properties of polyester/HAp composites.

• influence of PEPA on drug absorption and release by polymer/HAp composite.

It was demonstrated that BnO-(εCL)118-b-(tBuOEP)6, after deprotection with a for-
mation of PEPA block, stabilize colloidal dispersion of nano-sized HAp (50–100 nm long
and 20–50 nm wide) in solution of poly(εCL) (Mn = 87.5 kDa, ÐM = 1.46) in hehafluoroiso-
propanol. This stabilization allowed to use electrospinning (ES) for the formation of fibrous
composite material without critical HAp aggregation (Figure 15a). Different methods of
the addition of vancomycin (Scheme 31) were studied, and the best results were achieved
when vancomycin was added into spinneret solution before ES molding (Figure 15b,c).
The samples of the fibrous mats have demonstrated high activity against St. aureus. In this
way, high efficiency of the main-chain PCPA-containing compatibilizers was demonstrated,
which opens up prospects for their use in further development of polyester/Ca phosphate
composites for different biomedical applications.
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3.4. Other Applications of Polyphosphodiesters
Polyphosphodiesters as Flame Retardants

Flame retardancy is one of the critical performance parameters to be considered in the
design of polymers [132]. In industrial and academic applications, phosphorus-containing
compounds play a crucial role in polymer flame retardants (FRs), as they are less harmful
to the environment compared to the persistent and possibly bioaccumulating halogen-
based flame retardants [133]. According to a 2019 market study [134], phosphorus-based
compounds represent the third most used family of the FRs (Figure 16).
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However, most of the organophosphate flame retardants represent triesters, not PCPAs.
Wooley and coll. [90] proposed the use of the linear PEPA sodium salts as an alternative
fire-retardant material due to high thermal stability and ultrahigh phosphorus and oxygen
content (70 wt%), but it was a single work on this prospective theme. This was surprising,
given the higher synthetic availability of PEPA and PEPA analogs, obtained by polycon-
densation method. It is very possible that results of Penczek’ group will find in this field a
favorable ground for their application.

4. Conclusions

In our review, we tried to show all the diversity of the synthetic approaches to polypho-
sphodiesters and great potential of their applications. In our humble opinion, the consider-
ation of polyphosphodiesters as a particular case of biodegradable polyesters [3,4,12,15] or
tailor-made functional polyolefins [18,135] artificially and unjustifiably limit the assessment
of these type of materials. The fundamental difference of the polyphosphodiesters from
biodegradable polyesters are lower hydrolytic stability, higher biocompatibility, ability
to deliver drugs with basic fragments, and bone mineral affinity. The capability of the
polyphosphodiesters to demonstrate osteoinductive effect, as well as to form complexes
with bases, provide obvious prospects for the further fruitful development of composite
materials for bone surgery and dentistry, as well as drug delivery vehicles for different
therapeutic purposes. The very idea of the synthesis of amphiphilic block copolymers,
bringing together lipophilic block (providing micelle formation, or compatibilization with
polyester in polymer/inorganic composite) and hydrophilic polyphosphodiester block
(osteoinductive, osteoconductive, able to drug delivery) began to be realized only in the
recent years.
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59. Kaluzynski, K.; Pretula, J.; Lewinski, P.; Kaźmierski, S.; Penczek, S. Catalysis in polymerization of cyclic esters. Catalyst and
initiator in one molecule. Polymerization of ε-caprolactone. J. Catal. 2020, 392, 97–107. [CrossRef]
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