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Abstract: Almost all people become infected with herpes viruses, including herpes simplex virus
type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to
all available antiviral medications. Under certain conditions, such as immunosuppression, the latent
forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have
rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating
herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for
the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively
effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the
CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can
completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial
protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with
a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line
for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without
sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are
promising therapeutic approaches to control HSV-1 infections.

Keywords: herpes simplex virus type 1; HSV-1 UL30; CRISPR/Cas9; CRISPR/CasX; Vero cell line

1. Introduction

Herpes simplex virus type 1 (HSV-1) belongs to the family Herpesviridae. Nearly 100%
of the world’s adults are infected with at least one herpesvirus during their lifetime [1].
According to the World Health Organization, about 67% of the world’s population, are
infected with HSV-1 [2]. After primary infection, HSV-1 becomes a lifelong latent form.
Reactivation of latent HSV-1 can results in recurrent ulcerated blisters on mucosal surfaces
near the primary focus of infection (orolabial or genital herpes). Reactivation leading to
ocular lesions, such as herpetic epithelial or stromal keratitis, can lead to blindness [3].
In immunocompromised individuals, herpesvirus infections often lead to severe compli-
cations, up to death. There is evidence that HSV-1 may be involved in the development
of such neuropathologies as Alzheimer’s disease [4], multiple sclerosis [5], meningitis
and encephalitis [6]. As other sexually transmitted infections, HSV-1 genital herpes may
contribute to the development of infertility, negatively affect pregnancy, up to fetal death,
cause congenital and neonatal infections [7,8]. Reactivation of herpesviruses has also been
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observed in patients infected with SARS-CoV-2 [9,10], the causative agent of the ongoing
COVID19 pandemic [11]. The combination of widespread herpesviruses latently infecting
humans and the COVID19 pandemic should draw more attention to other viruses that
could affect human health. Reactivation of latent herpesviruses can provoke complications
after organ transplantation [12,13] or xenotransplantation [14], including a recent heart
xenotransplantation from a genetically modified pig [15].

All approved drugs (Acyclovir, Valacyclovir, Ganciclovir, etc.) can only control actively
replicating herpesviruses, but cannot eliminate the latent forms [16,17]. A promising class of
helicase-primase inhibitors effectively suppresses latent forms of alpha-herpesviruses [18–20].
However, side effects prevent their widespread use in the clinic [21,22]. Moreover, immunosup-
pressed patients can develop drug-resistant variants of HSV-1 and HSV-2 [17]. Strains resistant
to helicase-primase inhibitors are also known [23]. These data demonstrate the urgent need to
search for alternative effective approaches to control herpesvirus infections.

Genome editing technologies, mainly CRISPR/Cas systems directed against major
genes, can control herpesvirus infections [24–26]. Delivery of CRISPR/Cas components in
retroviral vectors is very efficient, but raises safety concerns due to integration mutagenesis
of retroviral vectors [27,28]. Moreover, the most effective antiviral CRISPR/Cas9 systems
used two or three spacers [26,29,30]. Since Cas9 has a relatively high level of off-target
activity [31], the use of two or more spacers should reduce the safety of the system due to
an increase in the number of potential off-targets.

We and others have shown that the CRISPR/Cas9 system can effectively suppress
HSV-1 infection being expressed from plasmids [32,33]. The goal of this study is to further
improve the efficacy, duration of protection and safety of CRISPR/Cas systems against
HSV-1. We show that HSV-1 infection can be completely suppressed by plasmid-expressed
CRISPR/Cas9 using only one spacer. Moreover, for the first time we have shown that the
smallest and most precise CRISPR/CasX system can also be used to control HSV-1 infection.
Our data demonstrate the promise of developing a small, efficient and safer approach to
control herpesvirus infections using genome editing technologies.

2. Results
2.1. Characterization of the Genome HSV-1 Strain

The HSV-1 “US” strain was obtained from the State virus collection of the Gamaleya
National Research Center for Epidemiology and Microbiology (Moscow, Russia). The
genome of the strain was sequenced using Illumina technology and de novo assembled
to produce draft genome. A total of 398 contigs were obtained, N50 = 2345. It is possible
that the low N50 is due to DNA fragmentation after thermal inactivation of the virus.
Nevertheless, the quality of the draft genome was sufficient for further experiments. Using
BLAST, we determined the presence of all 79 genes characteristic of human HSV-1. Next,
we searched for the genome of the most similar HSV-1 strains. For this purpose, all
publicly available HSV-1 genome assemblies were downloaded from NCBI Virus (https:
//www.ncbi.nlm.nih.gov/labs/virus/vssi/#/ accessed on 25 September 2022) using TaxID
10298 and prespecifying a genome length between 130,000 and 160,000. The downloaded
HSV-1 genomes were compared with the genome of our “US” strain to calculate the average
nucleotide identity (ANI) using the USEARCH algorithm [34]. According to the results,
the three most similar strains were L2 (ANI = 99.7667, Supplemental Table S1), HSV-1-San-
Francisco-USA-1982-H193-CSF (ANI = 99.6848) and v48_d100_oral (ANI = 99.6772). Since
L2 is another Russian strain [35], it suggests that the US and L2 strains share some sequence
features making them distinct from other strains.

2.2. UL30 Identified as an Effective Anti-HSV-1 Target of the CRISPR/Cas9 System

In our study, we targeted the plasmid-expressed CRISPR/Cas9 system against those HSV-1
genes that have previously been found to be relatively effective targets for CRISPR/Cas systems
delivered in lentiviral constructs, meganucleases delivered in AAV vectors or genes that are
supposedly important for HSV-1 infection in vivo. These genes are the ICP0, UL8, UL19, UL27,
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UL29, UL30, UL35, and UL52 genes (Table 1). The spacers targeting these genes (their positions
are marked in Figure 1a) were cloned into vector PX458 individually (against ICP0, UL19, UL27,
UL30, and UL35) or in pairs (UL8/UL29, UL52/UL29, UL19-B/UL30-B, UL19-2D/UL30-2D,
UL19-3D/UL30-3D).

Table 1. Characteristics of HSV-1 genes used as targets for CRISPR/Cas9 system.

Gene Name Description References

ICP0 RING-type E3 ubiquitin ligase, acts on initial stages of infection, or
during HSV-1 reactivation, helps to evade cellular antiviral response [29]

UL8 DNA helicase/primase complex-associated protein [26,30]

UL19 Major capsid protein, forms an icosahedral capsid with a T = 16
symmetry consisting of 162 capsomers. [36]

UL27

gB, envelope glycoprotein that forms spikes at the surface of virion
envelope, essential for the initial attachment to the host cell receptors,
involved in fusion of viral and cellular membranes, together with gK

induces syncytia formation

[26,33]

UL29 ssDNA-binding protein [26,30,37]

UL30 Large catalytic subunit of DNA-directed DNA polymerase, essential for
HSV-1 genome replication [26,36,37]

UL35 Small capsomere-interacting protein, participates in the assembly of the
infectious particles, forms a layer between the capsid and the tegument [38]

UL52 DNA primase, essential for HSV-1 genome replication [26]

Before the main experiments, we evaluated the efficiency of transfection with several
transfection reagents using GFP-expressing plasmids (Figure 1b). Our data show that
Lipofectamine 3000 is the most effective transfection reagent. All three reagents contain
polycationic lipids that form nanoparticles that bind to plasmid DNA and entrap it. The
reagents differ in additives: EscortIII contains a neutral non-transfection lipid compound,
Verofect contains a polymer, and Lipofectamine 3000 is used in combination with the P3000
enhancer reagent. These additives can affect not only the fusion of nanoparticles with the
cell membrane, but also the subsequent biological processes, provide DNA protection from
lysosomal enzymes, and mediate efficient plasmid transport to the nucleus. Obviously, the
higher the transfection efficiency, the more effective the CRISPR/Cas9-mediated protec-
tion of cells against HSV-1 infection will be. Therefore, Lipofectamine 3000 was used in
subsequent experiments. Next, our data show that all CRISPR/Cas9 plasmids transfect
the Vero cell line with a similar efficiency of 55% and 75% (Figure 1c), but differ greatly
in cellular toxicity (Figure 1d). Because we used the same vector backbone for spacer
cloning, the reason for the cytotoxicity of CRISPR/Cas9 plasmids with spacers UL27, UL35,
and UL19-2D/UL30-2D is due to the off-target effects of Cas9. Therefore, we tested the
anti-HSV-1 activity of those individual or paired spacers that showed the least cytotoxicity.
Two days post infection (2 dpi) of cell cultures transfected with CRISPR/Cas9 plasmids,
anti-HSV-1 activity was tested in two experiments. In the first experiment, we counted the
proportion of gB-positive cells, that is, cells maintaining active HSV-1 replication (Figure 1e).
Panels i and ii of Figure 1f show a typical pattern of intense brown staining of gB-expressing
HSV-1-positive cells at 2 dpi Vero cultures that are not transfected with any CRISPR/Cas9
plasmids or transfected with plasmids that do not target or ineffectively target HSV-1 genes.
Panels iii and iv of Figure 1f show a typical pattern of no gB-positive cells at 2 dpi Vero
cultures transfected with highly efficient CRISPR/Cas9 plasmids. In the second experiment,
we estimated the rate of production of infectious HSV-1 particles (Figure 1g). Unexpectedly,
ICP0 targeting had only a minor effect on HSV-1 replication or HSV-1 infection rate. The
UL30-B, UL52/UL29, and UL19-3D/UL30-3D (containing spacers UL19-3D and UL30-3D)
spacers controlled HSV-1 infection most effectively (Figure 1e,g). The spacers in the UL19-
B/UL30-B pair (containing spacers UL19-B and UL30-B) target the same UL19 and UL30
genes as the UL19-3D/UL30-3D pair, but have different locations. These results clearly
show that the targeting efficiency of viral genes by CRISPR/Cas systems strongly depends
on their location. Our results also show that a single spacer against UL30 can effectively
control HSV-1 infection for at least 2 dpi.
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(a) Position of spacers for the CRISPR/Cas9 system used in this work. (b) Transfection efficiency 

Figure 1. Testing the anti-HSV1 activity of CRISPR/Cas9 plasmids targeting important viral genes.
(a) Position of spacers for the CRISPR/Cas9 system used in this work. (b) Transfection efficiency
using different transfection reagents. Data are mean ± SD (n = 3). Statistical significance: NS is non-
significant; * 0.01 < p < 0.05, according to Student’s t test. (c) Transfection efficiency of CRISPR/Cas9
plasmids. Data are mean ± SD (n = 3). Statistical significance: NS is nonsignificant; * 0.01 < p < 0.05,
according to Student’s t test. (d) Cell toxicity of CRISPR/Cas9 plasmids was measured using the
MTT test. Data are mean ± SD (n = 3). Statistical significance: NS is nonsignificant *** p < 0.001,
according to Student’s t test. (e) Anti-HSV-1 activity of CRISPR/Cas9 plasmids was assessed by gB
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staining with mAbs at 2 dpi. Data are given as mean ± SD (n = 3). Statistical significance: NS
is nonsignificant ** 0.001 < p < 0.01; *** p < 0.001, according to Student’s t test. (f) Characteristic
photographs of cell cultures infected with HSV-1 at 2 dpi: (i) untransfected culture, (ii) cells transfected
with empty vector PX458, (iii) cells transfected with CRISPR/Cas9 plasmid with UL19/UL30-B
double spacers, (iv) cells transfected with CRISPR/Cas9 plasmid with UL19/UL30-3D double spacers.
Magnification 100×. (g) Evaluation of HSV-1 inhibition rate in Vero cell cultures transfected with
CRISPR/Cas9 plasmids. Data are mean ± SD (n = 3). Statistical significance: ** 0.001 < p < 0.01;
*** p < 0.001, according to Student’s t test. (h) ICP0 staining of Vero cells: (i) native, uninfected
Vero cells; (ii) untransfected Vero cells infected with HSV-1; (iii) infected Vero cells transfected with
CRISPR/Cas9 plasmid targeting ICP0. ICP0 protein was determined by immunofluorescence using
anti-ICP0 antibodies conjugated with FITC (green staining) followed by staining of cells with Evans
blue dye (red staining). Magnification 400×. (i) Estimation of the proportion of ICP0-producing cells
at the initial stages of HSV-1 infection in the presence of CRISPR/Cas9 plasmid targeted ICP0. Data
are mean ± SD (n = 3). Statistical significance: NS is nonsignificant, according to Student’s t test.

Since the CRISPR/Cas plasmid targeting the ICP0 gene has little effect on the infectivity
of HSV-1, we tested the presence of the ICP0 protein. Specific ICP0 staining revealed no
significant differences in the number of cells producing ICP0 at either the late (24 h) or
earlier (4 h) stages of HSV1 infection (Figure 1(hi)). These data suggest that the virus
surviving the action of the CRISPR/Cas9 system produces the ICP0 protein. It is known
that viruses can escape the action of CRISPR/Cas9 using NHEJ mutagenic repair [39,40].
Because ICP0 is critical to the HSV-1 lytic infection process [41] surviving clones can bear
indels in the CRISPR/Cas9 target site that do not disrupt the ICP0 mRNA reading frame.
Therefore, we harvested the virus from cells transfected with the CRISPR/Cas9 system
targeting ICP0 and checked the sequence of the ICP0 target region by PCR followed by
sequencing. It turned out that the sequence of the ICP0 target region did not change. This
contradicts previous reports of effective targeting of the ICP0 gene [29]. HSV-1 has two
ICP0 genes, and these results can be explained by highly active homologous recombination,
which immediately repairs Cas9-induced damage in both copies of the ICP0 gene. We
cannot rule out the possibility that such efficient ICP0 repair may be a specific feature of
our strain. However, a simple explanation is that the spacer used is ineffective, possibly
due to the dense arrangement of nucleosomes in the target region. The inhibitory effect of
chromatin structure on CRISPR/Cas9 system activity has been well described [42,43].

2.3. CRISPR/Cas9 System against UL30 Provides Long-Term Protection against HSV-1 Infection

CRISPR/Cas9 plasmids that effectively control HSV-1 infection at 2 dpi were evaluated
for the duration of the antiviral effect. For this purpose, Vero cells were infected with HSV-
1 at concentrations of 0.01 PFU/mL and 0.1 PFU/mL and the production of infectious
HSV-1 particles was assessed on days 3, 6, and 9 of cell culture. The results (Figure 2)
show that all CRISPR/Cas9 plasmids were relatively effective in inhibiting HSV-1 infection
on day 3 (Figure 2a,b). We observed the most significant differences on days 6 and 9.
The CRISPR/Cas9 plasmid targeting UL30 with the UL30-B spacer appeared to be the
most effective. This construct completely inhibits HSV-1 replication in Vero culture for at
least 6 days, and on day 9 it inhibits HSV-1 infection by 60–95%, depending on the initial
HSV-1 concentration.

In contrast, the CRISPR/Cas9 plasmid UL19-B/UL30-B encoding dual sgRNAs, which
contains the same UL30-B spacer, cannot suppress HSV-1 infection at 6 and 9 days. However,
we noticed that the UL19-B spacer of this pair is not so effective (Figure 2a,b). Thus, we
hypothesized that the ineffective UL19-B spacer titrates the Cas9 protein, thereby reducing
the number of highly efficient Cas9/UL30-B sgRNA complexes, and hence the level of cell
protection against HSV-1 is reduced.
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it is a large protein, which makes it difficult to efficiently deliver in viral vectors such as 
adenovirus-associated vectors. In addition, its relatively high rate of off-targeting among 
other editors raises safety concerns. Therefore, we decided to test the anti-HSV-1 activity 
of CasX (Cas12e) from Deltaproteobacteria (DpbCasX) [44], which is one of the smallest and 
most accurate genome editors to date [45]. We designed three spacers S1, S2, and S3 tar-
geting UL30 in the region where the most effective UL30-B spacer target is located (Figure 
3a). All plasmids showed no significant cytotoxicity. Spacer S3 showed the greatest anti-

Figure 2. The CRISPR/Cas9 system with a single UL30 spacer completely inhibited HSV-1 infection
for at least 6 days. (a) Rate of HSV-1 inhibition by CRISPR/Cas9 plasmids in Vero cultures infected
with HSV-1 at a concentration of 0.01 PFU/mL. Data are mean ± SD (n = 3). Statistical significance:
NS–nonsignificant; *** p < 0.001, according to Student’s t test. (b) Rate of inhibition of HSV-1 by
CRISPR/Cas9 plasmids in Vero cultures infected with HSV-1 at a concentration of 0.1 PFU/mL. Data
are mean ± SD (n = 3). Statistical significance: NS–nonsignificant; *** p < 0.001, according to Student’s
t test. (c) Typical images of Vero cell cultures at 2 dpi infected with supernatants from HSV-1 infected
cells at day 6 that were not previously transfected (i), transfected with empty vector (ii), transfected
with plasmid CRISPR/Cas9 targeting UL30 (iii), or uninfected cells (iv). Arrows indicate areas of
infected cells (plaques).

2.4. CRISPR/CasX System against UL30 Efficiently Protects Cells from HSV-1 Infection

The Cas9 editor is well characterized and highly active in genome editing. However,
it is a large protein, which makes it difficult to efficiently deliver in viral vectors such as
adenovirus-associated vectors. In addition, its relatively high rate of off-targeting among
other editors raises safety concerns. Therefore, we decided to test the anti-HSV-1 activity
of CasX (Cas12e) from Deltaproteobacteria (DpbCasX) [44], which is one of the smallest
and most accurate genome editors to date [45]. We designed three spacers S1, S2, and
S3 targeting UL30 in the region where the most effective UL30-B spacer target is located
(Figure 3a). All plasmids showed no significant cytotoxicity. Spacer S3 showed the greatest
anti-HSV-1 activity (Figure 3b,c) and was relatively effective in controlling HSV-1 infection
for 3 days (at 90%, Figure 3d). To our knowledge, we were the first to report effective
inhibition of HSV-1 infection with CasX nuclease. These data suggest that CasX is a
promising genome editor that could be used to develop novel therapeutic approaches for
controlling HSV-1 and possibly other herpesvirus infections.
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Figure 3. UL30-targeted CRISPR/CasX system effectively controls HSV-1 infection in the Vero cell line.
(a) Matching the positions of the targets of different genomic editors with the UL30 domains. Information
about the structure of UL30 was taken from [46]. Targets highlighted in red are considered efficient,
targets highlighted in black are considered inefficient. Corresponding genomic editors and spacer names
are indicated for effective targets as well as for the CRISPR/CasX system. (b) Anti-HSV-1 activity of
CRISPR/CasX plasmids was assessed by gB staining at 2 dpi. Data are given as mean ± SD (n = 3).
(c) Evaluation of HSV-1 inhibition rate in Vero cell cultures transfected with CRISPR/CasX plasmids. Data
are given as mean± SD (n = 3). (d) Long-term inhibition of HSV-1 by CRISPR/CasX plasmids in Vero
cultures. Cells were infected with HSV-1 at a concentration of 0.1 PFU/mL. Data are mean± SD (n = 3).
Statistical significance: NS–nonsignificant; * 0.01 < p < 0.05; *** p < 0.001, according to Student’s t test.

We also compared the positions of known targets in UL30 (Figure 3a). To our knowl-
edge, all genomic editors have targeted regions of this gene encoding the pre- and N-
terminal domains of DNA polymerase [26,36,37]. The target of the highly efficient UL30-B
spacer overlaps with the meganuclease m8 target, indicating that this site is highly sus-
ceptible to targeting. However, the inefficient CasX S1 spacer also overlaps with this site,
suggesting that the CRISPR/CasX system (in addition to different PAMs) has different re-



Int. J. Mol. Sci. 2022, 23, 14847 8 of 16

quirements for the context of the genome for effective targeting. Taken together, these data
show that although UL30 is an important HSV-1 gene, it has a set of CRISPR/Cas-resistant
regions and a set of CRISPR/Cas-sensitive regions. Certainly, the regions of the gene that
are highly sensitive to CRISPR/Cas activity are critical for DNA polymerase function, and
thus for HSV-1 replication.

2.5. Cas9 without sgRNA Attenuates HSV-1 Infections

In our previous work [32], we observed that the CRISPR/Cas9 plasmid without
spacers against HSV-1 has some protective effect for cells against HSV-1 infection. It
has previously been shown that components of the CRISPR/Cas9 system can trigger
an intracellular antiviral response [47]. Therefore, we hypothesize that sgRNA and/or
Cas9 themselves have some protective properties against HSV-1. To test this assumption,
we infect HSV-1 in Vero cell lines transfected with plasmids lacking the sgRNA gene
(PX458(-)sgRNA), or CMV promoter to disrupt Cas9 expression (PX458(-)Cas9), or both
the sgRNA gene and CMV promoter (PX458(-)sgRNA/(-)Cas9). According to the results
obtained, mutation of CRISPR/Cas9 components had no significant effect on transfection
efficiency (Figure 4a) or cytotoxicity of mutant plasmids (Figure 4b). At the same time, the
number of gB-positive cells at 2 dpi was significantly increased in the presence of plasmids
PX458(-)Cas9 or PX458(-)sgRNA/(-)Cas9 (Figure 4c). Deletion of the only sgRNA backbone
also increases the number of gB-positive cells, but the differences are not statistically
significant. These results suggest that Cas9 without sgRNA makes a major contribution to
the attenuation of HSV-1 infection.
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Figure 4. CRISPR/Cas9 components contribute to attenuation of HSV-1 infection. (a) Efficiency
of transfection of plasmids with disrupted CRISPR components; (b) Proportion of surviving cells
after transfection with mutant CRISPR plasmids; (c) Proportion of gB-positive cells in cultures
transfected with CRISPR plasmids at 2 dpi. Data are mean ± SD (n = 3). Statistical significance:
NS–nonsignificant; *** p < 0.001, according to Student’s t test.
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3. Discussion

We found highly efficient targets for the CRISPR/Cas9 and CRISPR/CasX systems
in the UL30 HSV-1 gene. A plasmid expressing CRISPR/Cas9 with the UL30-B spacer
completely suppresses HSV-1 replication for at least 6 days. To date, this is the longest
duration of CRISPR-mediated cell protection against herpesvirus infection.

Earlier studies using CRISPR/Cas9 systems expressed from lentiviral constructs show
that at least two spacers are required to effectively control HSV-1 infection, providing
deletion of a fragment of the HSV-1 genome [26,29,30]. Single spacers lead to viral escape
and CRISPR/Cas resistance due to NHEJ-mediated target modification [48].

Recently, it has been shown that there may be individual Cas12a spacers capable of
completely eradicating HIV [40,49]. The superior efficacy of the antiviral activity of Cas12a
may be due to its mechanism of action. Cas12a cuts the target in the region distal to the
PAM that is well tolerated by mismatches, so the enzyme can attack the mutated target
again after NHEJ repair and thus act in repetitive cycles. This mode of action of Cas12a is
supported by the observation that Cas12a usually produces longer deletions than Cas9 [40].

However, we found a site in the essential HSVI-1 gene UL30 encoding a viral DNA
polymerase, which targeting with Cas9 and the UL30-B spacer provides the longest-lasting
protection for Vero cell culture. Earlier studies show that the efficacy of suppressing HSV-1
infection with UL30 targeting varies greatly. Some studies show its ineffectiveness [26],
while others suggest that it is a good target for inhibition of HSV-1 infection [36,37]. We
hypothesize that there may be sites within the UL30 gene that can be mutated by NHEJ after
Cas9 cleavage, leading to a more or less functional enzyme, but there may also be sites criti-
cal to enzyme function, so that any NHEJ mutation would lead to substantial or complete
inactivation of the enzyme. Thus, the CRISPR/Cas9 system can be used to map critical
sites, such as UL30-B, to select good targets for future CRISPR/Cas-mediated therapies
for HSV-1 infection. Moreover, given the relatively high off-target activity of CRISPR/Cas
systems, it is safer to use one spacer instead of two or more in therapeutic approaches.

The highly variable efficacy of CRISPR/Cas spacers leads us to speculate that the
context of the genome may critically influence the efficiency of HSV-1 targeting. In the case
of SaCas9 from Staphylococcus aureus, it has been shown that even in vitro some sgRNAs
are ineffective [37], suggesting that viral DNA sequences may be resistant to Cas9 cleavage.
The HSV-1 genome is known to be enriched in G-quadruplex (G4) clusters [50]. Recently,
G4s have been shown to significantly reduce the cleavage activity of Cas9 [51]. At present,
G4s have been described in HSV-1 regulatory regions, and it is unknown whether the
coding regions can also form G-quadruplexes or other alternative DNA structures that can
interfere with the action of CRISPR/Cas systems. Nevertheless, the property of GC-rich
DNA to form Cas-resistant structures makes it difficult to find highly efficient spacers
for herpesviruses.

In our previous and present studies, we observed complete suppression of HSV-1 infec-
tion in Vero cell cultures, despite the fact that about 75% of cells received the CRISPR/Cas
plasmid and about 25% of cells did not. Earlier results show that sgRNA can induce a
type I interferon response in cultured human cells [47]. In turn, interferons control HSV-1
infection [52]. These data suggest that the CRISPR/Cas system can nonspecifically activate
immune responses in transfected cells, which in turn produce output signals that cause
neighboring untransfected cells to be ready to resist HSV-1 invasion. However, our results
show that sgRNA scaffold plays only a minor role in protecting cells from HSV-1 invasion.
Cas9 is known to be toxic to prokaryotes with GC-rich genomes even in its dead nuclease
form (dCas9) [53,54]. Since Cas9 has a GC-rich PAM, its toxicity may be due to nonspe-
cific binding to PAM-like sequences. Indeed, a nontoxic version of dCas9 was created by
eliminating its PAM-binding activity [55]. Therefore, we hypothesize that Cas9 can non-
specifically attenuate HSV-1 replication by binding to PAMs throughout the HSV-1 genome.
However, the nonspecific action of the CRISPR/Cas system can only slightly attenuate
HSV-1 infection, indicating a more effective way(s) to protect untransfected cells from
HSV-1. It is well known that various mammalian cells are capable of forming extracellular
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vesicles [56]. Earlier results show that Cas9/sgRNA complexes efficiently load into these
vesicles even without any additional modifications, indicating some intrinsic affinity of the
Cas9/sgRNA complex for extracellular vesicles [57]. Using these data, we hypothesized
that cells successfully transfected with the CRISPR plasmid produce extracellular vesicles
loaded with Cas9/sgRNA complexes, and these vesicles deliver Cas9/sgRNA complexes
to untransfected cells, making them resistant to HSV-1.

The limitations of the study are as follows. The Cas9 genomic editor provides excellent
efficacy in suppressing HSV-1 infection, but it has high off-target activity and large size. The
CasX genomic editor is the most specific and smallest of the known genomic editors, but it
is less active than Cas9. Both systems are effective in in vitro systems with the Vero cell line
culture, and further work is needed to optimize the delivery of CRISPR/Cas systems and
test their activity in an in vivo model.

In conclusion, CRISPR/Cas9 and CRISPR/CasX systems targeting critical regions of
the UL30 gene can provide effective long-term suppression of HSV-1 infection in vitro. The
CRISPR/CasX system promises to be a relatively effective and safe therapeutic approach
for herpesvirus infections.

4. Materials and Methods
4.1. Cells and Viral Strain

Green monkey kidney cells (Vero) were obtained from the collection of cell cultures of
the Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of
Health of the Russian Federation. Cells were cultivated in the Eagle MEM medium with
the addition of 10% fetal bovine serum (FBS), 2 mM L-glutamine, 50 µg/mL gentamicin (all
reagents were purchased from PanEco LLC, Moscow, Russia). Cells were cultured at 37 ◦C
in an atmosphere of 5% CO2. Molecular cloning was performed using chemocompetent
cells of E. coli strain XL1Blue (Eurogen, Moscow, Russia). HSV-1 strain “US” was obtained
from the State virus collection of the Gamaleya National Research Center for Epidemiology
and Microbiology of the Ministry of Health of the Russian Federation. The virus was
multiplied in Vero cells using standard culturing methods. Viral titers were determined by
plaque assay on confluent Vero cell cultures. Foci of infected cells (plaques) were detected
and counted using an inverted microscope Primovert (Zeiss, Oberkochen, Germany). The
virus titer was determined according to the formula: A = ab/v, where A is the number of
plaque-forming units per cell (PFU/cell); a is the average number of plaques per well; b is
the dilution of the virus; v is the volume of virus-containing material added. The infectious
titer of the virus used in the experiments was 6 × 107 PFU/mL.

4.2. Purification of HSV-1

HSV-1 was purified according to the protocol described in [58] with some modifi-
cations. Briefly, Vero cells were incubated in 175 cm2 culture flasks. After reaching a
monolayer, the cells were infected with HSV-1 at a dilution of 1/1000. After maximum
virus-specific cytopathic effect was manifested, 1 freeze–thaw cycle was performed. The
virus-containing fluid was centrifuged at 13,000× g (rotor SW32.1, Beckman Coulter, Brea,
CA, USA) for 20 min to remove residual cells. The supernatant was then ultracentrifuged
at 123,000× g for 1 h to precipitate the virus. The precipitate was resuspended in 1 mL
of 10 mM Tris-HCl, pH 7.4, and left overnight at room temperature. In a centrifuge tube,
2 mL of 60% sucrose, followed by 10 mL of 15% sucrose and the virus suspension were
placed. Ultracentrifugation was then performed for 1 h at 123,000× g. Then, virus particles
concentrated in the 60% sucrose layer were collected and inactivated by heating at 56 ◦C
for 30 min.

4.3. DNA Purification from HSV-1 Preparations

HSV-1 genomic DNA was isolated according to the protocol described in [59], with
minor modifications. Briefly, 300 µL of HSV-1 particle concentrate was mixed with 300 µL
of extraction buffer (10 mM Tris-HCl (pH 8), 10 mM EDTA, 100 mM NaCl, 1% SDS) and
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20 µL of proteinase K (20 mg/mL). The mixture was incubated overnight at 37 ◦C. Then,
620 µL of a buffered (pH 8.0) phenol/chloroform/isoamyl alcohol solution (25:24:1) was
added and mixed by pipetting. The phases were separated by centrifugation at 21,000× g
for 10 min at room temperature. The aqueous phase was transferred to a new tube and
mixed with 3 volumes of 95% ethanol and 1/10 volume of 3 M sodium acetate (pH 5.2)
and incubated at −20◦C overnight. Nucleic acids were precipitated by centrifugation at
21,000× g for 10 min at room temperature. The precipitate was treated with RNase A to
remove RNA. The DNA was precipitated again with ethanol and sodium acetate.

4.4. Sequencing of the HSV-1 Genome

Genomic DNA (0.1 µg) purified from HSV-1 preparations was used to prepare se-
quencing library with the Nextera DNA Flex Library Preparation Kit (Illumina, San Diego,
CA, USA) according to the manufacturer’s protocol. Size of the genomic library was ana-
lyzed on an Agilent 2100 Bioanalyzer (Thermo Fisher Scientific, Waltham, MA, USA) was
about 600 bp. The library was sequenced on an Illumina MiSeq System using the MiSeq
Reagent Micro Kit v2 (300 cycles). Primary analysis of the raw reads was performed using
the Illumina software (https://basespace.illumina.com/dashboard, accessed on 31 August
2021). A draft HSV-1 genome was de novo assembled using the Velvet software with default
parameters (https://basespace.illumina.com/apps/8556549/Velvet-de-novo-Assembly?
preferredversion, accessed on 31 August 2021).

4.5. Cloning of Spacers into Plasmids of the CRISPR/Cas System

Spacers against target HSV-1 genes were designed using CRISPOR software (http:
//crispor.tefor.net/, accessed on 27 September 2021) with default parameters. To produce
plasmids of CRISPR/Cas9 system, spacers in the form of oligonucleotides or PCR prod-
ucts obtained oligonucleotide pairs UL19-Best-F/UL30-Best-F, UL19-2nd-F/UL30-2nd-F,
and UL19-3d-F/UL30-3d-F (Table 2) using AIO-mCherry (Addgene (www.addgene.org,
accessed on 27 September 2021), cat.no 74120) as a template were cloned into pSpCas9(BB)-
2A-GFP (PX458) or pSpCas9(BB)-2A-Puro (PX459) vectors (Addgene, cat. no. 48138
and 48139, respectively) cut at BbsI sites. To produce plasmids of CRISPR/CasX system,
fragments of pBLO 62.4 plasmid was amplified with pairs of oligonucleotides U6-PciI-
F/CasX-S1-sgRNA-R, U6-PciI-F/CasX-S2-sgRNA-R, and U6-PciI-F/CasX-S3-sgRNA-R and
cloned into pBLO 62.4 vector cut at PciI and KpnI sites. The correctness of the cloned guide
RNA spacers was confirmed by sequencing with the U6-ch-F oligonucleotide. All plasmids
were purified from E. coli using the PureLink™ HiPure Plasmid Midiprep Kit (Thermo
Fisher Scientific, Waltham, MA, USA) to obtain endotoxin-free preparations for the Vero
cell line transfection.

4.6. Vero Cells Line Transfection

Vero cells were transfected using Lipofectamine 3000 Reagent (Thermo Fisher Scientific,
Waltham, MA, USA) or VeroFect (OZ Biosciences, San Diego, CA, USA), or EscortIII (Sigma,
St. Louis, MO, USA) according to the manufacturers’ recommendations. Cells were
incubated in a 96-well plate at a concentration of 2 × 105 cell/mL in DMEM growth
medium without antibiotics. After 24 h, a mixture of test plasmids and transfecting agents
was added to the cells in a 1:2 ratio. The efficiency of transfection was assessed by GFP
fluorescence after 48 h using an AxioScopeA1 inverted fluorescent microscope (Zeiss,
Oberkochen, Germany). The ratio of the number of fluorescent cells expressing GFP to the
total number of cells in the population was calculated and expressed as a percentage.

https://basespace.illumina.com/dashboard
https://basespace.illumina.com/apps/8556549/Velvet-de-novo-Assembly?preferredversion
https://basespace.illumina.com/apps/8556549/Velvet-de-novo-Assembly?preferredversion
http://crispor.tefor.net/
http://crispor.tefor.net/
www.addgene.org
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Table 2. Oligonucleotides used in the work.

Name of the Oligonucleotide Sequence (5′→3′) Purpose

ISP0_F CACCTCCCTGCGACCGAGACCTGC

Cloning spacers for
CRISPR/Cas9 system

ISP0_R AAACGCAGGTCTCGGTCGCAGGGA
ICP0_ch_F AACTCGTGGGCGCTGATTGA
ICP0_ch_R TCGTCGCTCCCCCCGTCCTCT

UL27_F CACCGGTGCCGGTGGTTCGTCGTA
UL27_R AAACTACGACGAACCACCGGCACC
UL35_F CACCGTGAAATTGCGGGACGGCCAT
UL35_R AAACATGGCCGTCCCGCAATTTCAC

UL35_ch_F AAGGACGCACCGCCGCCCTA
UL35_ch_R CGGCCCCTTGGGTGCCCTGG
UL27_ch_F GGAGCCGCCGACGCCACCAGG
UL27_ch_R CGTACGACTCCGACTGTCCGCT

U6-ch-F CGATACAAGGCTGTTAGAGAGA

UL19-B-F ATATAGAAGACCTCACCGTAGTTGACGTCGGTCGACACGTTTTAG
AGCTAGAAATAGCAAG

UL19-2D-F ATATAGAAGACCTCACCGGACCGCGTTCCGCAGGTACAGTTTTAGAGCT
AGAAATAGCAAG

UL19-3D-F ATATAGAAGACCTCACCGTAAACTCACACACGGCATCCGTTTTAGA
GCTAGAAATAGCAAG

UL30-B-R TAGAGGAAGACCCAAACCTTCGGACGTAGACGCGGTACGGTGTTT
CGTCCTTTCCAC

UL30-2D-R TAGAGGAAGACCCAAACCGTGCCGTAAACGTGAACGGCG
GTGTTTCGTCCTTTCCAC

UL30-3D-R TAGAGGAAGACCCAAACGGCGCGTCGTTCCGCGGCATCGGTGT
TTCGTCCTTTCCAC

UL30-BsgRNA-F CACCGTACCGCGTCTACGTCCGAAG
UL30-BsgRNA-R AAACCTTCGGACGTAGACGCGGTAC
UL19-B-sgRNA-F CACCGTAGTTGACGTCGGTCGACAC
UL19-B-sgRNA-R AAACGTGTCGACCGACGTCAACTAC

U6-PciI-F TTTTGCTCACATGTGAGGGCCTATTTCC

Cloning spacers for
CRISPR/CasX system

CasX-S1-sgRNA-R TATGTAACGGGTACCAAAAAAAATGTTTTACCGCGTCTACGTCCTTTGAT
GCGTTTTACTTATCGGTTTC

CasX-S2-sgRNA-R TATGTAACGGGTACCAAAAAAAACAACTTCTGCCCGGCCATCACTTTGAT
GCGTTTTACTTATCGGTTTC

CasX-S3-sgRNA-R TATGTAACGGGTACCAAAAAAAAGCGCTCCACCACCTCCGCCTCTTTGAT
GCGTTTTACTTATCGGTTTC

4.7. Evaluation of the Cytotoxicity of CRISPR/Cas Constructs

The cytotoxicity of CRISPR/Cas plasmids was assessed by MTT-test. Vero cells were
transfected, after 24 h the cells were washed and the growth medium was added. After
72 h, cells were treated with 50 µL MTT solution (5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium in Eagle’s MEM) for 3 h at 37 ◦C. After 3 h, the medium was removed
and replaced with 100 µL of MTT solvent (0.1N HCl in isopropanol), and the cells were
placed on a shaker for 10 min. MTT activity was measured using a Multiskan microtiter
plate reader (TECAN, Mannedorf, Switzerland) at 570 nm and a reference wavelength of
690 nm.

4.8. Detection of HSV-1

HSV-1 infected cells were detected by immunocytochemical staining. Cells were fixed
with chilled methanol, subsequently incubated with the murine monoclonal antibodies
(mAbs) against the late structural protein gB of HSV-1 (ab6506; Abcam, Cambridge, United
Kingdom) for 1 h and the horseradish peroxidase-conjugated anti-mouse secondary anti-
body (PO260; Dako, Glostrup, Denmark) for 1 h. Then, a solution of 3,3′-diaminobenzidine
at a concentration of 1 mg/mL in 0.05 M Tris-HCl buffer (pH 7.4) with 3% hydrogen per-
oxide was added. The reaction was stopped after 10 min by adding distilled water to the
wells. The results were evaluated using an AxioVertA1 inverted microscope. The number
of stained cells containing gB HSV-1 protein was counted and presented as a percentage of
the total number of cells in the population.

To assess the number of newly formed viral particles in cells transfected with CRISPR/Cas
plasmids, culture fluid was taken and added in to uninfected Vero cells monolayer. The presence
of gB-positive cells was determined immunocytochemically as described above.
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4.9. Estimation of HSV-1 Inhibition Rate

Culture fluids from infected cells pre-transfected with CRISPR/Cas9 plasmids were taken
and added to Vero cells monolayer. After 1, 3, 6, or 9 days the number of plaques was analyzed
using an AxioVert A1 inverted microscope (Zeiss Oberkochen, Germany). The HSV-1 inhibition
rate was calculated using the following formula: HSV-1 inhibition (%) = 100− [(TC/CC)× 100],
where TC and CC denote the number of plaques in culture medium from transfected cells and
control cells infected with HSV-1, respectively.

4.10. ICP0 Protein Detection

Vero cells transfected with CRISPR/Cas9 plasmid targeted ICP0 gene, infected with
HSV-1 at 0.1 PFU/cell after 3 days. At 4 h and 24 h after infection, cells were fixed with
methanol for 20 min at −20◦C, washed with PBS, layered with mAbs to the ICP0 protein
of HSV-1 (Anti-HSV-1 ICP0 antibody Abcam, ab6513, Cambridge, UK), and incubated for
1 h at 37 ◦C. After wash with PBS, FITC-labeled anti-mouse antibody (Rabbit Anti-Mouse
IgG H&L (FITC) Abcam, ab6724, Cambridge, UK) was added, and incubated for 30 min at
37 ◦C. Infected and uninfected Vero cells were used as controls. The results were recorded
using an AxioScop fluorescence microscope (Zeiss, Oberkochen, Germany).

4.11. Statistical Analysis

Statistical processing of the results was performed using GraphPadPrism 5.01. Statistical
significance of differences between the mean values was determined using a two-way unpaired
t-test (Student’s t-test). Differences were considered statistically significant at p < 0.05.
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