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Abstract: Up to 60% of colorectal cancer (CRC) patients develop cachexia. The presence of CRC
related cachexia is associated with more adverse events during systemic therapy, leading to a high
mortality rate. The main manifestation in CRC related cachexia is the loss of skeletal muscle mass,
resulting from an imbalance between skeletal muscle protein synthesis and protein degradation.
In CRC related cachexia, systemic inflammation, oxidative stress, and proteolytic systems lead to
mitochondrial dysfunction, resulting in an imbalanced skeletal muscle metabolism. Mitochondria
fulfill an important function in muscle maintenance. Thus, preservation of the skeletal muscle
mitochondrial homeostasis may contribute to prevent the loss of muscle mass. However, it remains
elusive whether mitochondria play a benign or malignant role in the development of cancer cachexia.
This review summarizes current (mostly preclinical) evidence about the role of skeletal muscle
mitochondria in the development of CRC related cachexia. Future human research is necessary to
determine the physiological role of skeletal muscle mitochondria in the development of human CRC
related cachexia.
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1. Introduction

Cancer is associated with high morbidity and mortality, and it is an important public
health problem [1]. Colorectal cancer (CRC) is the second leading cause of cancer related
death in developed countries, the second most common cancer in women, and the third
most common cancer in men [2,3]. Together, CRC comprises 11% of all cancer diagnoses
and 5.8% of all cancer deaths. Usually, CRC emerges from the glandular, epithelial cells of
the large intestine. Driving factors behind the development of CRC are obesity, sedentary
lifestyle, red meat consumption, alcohol, and tobacco use [4]. The presence of cachexia is
one of the underlying factors related to the high mortality rate of CRC, and is identified
as a risk factor for adverse events during systemic therapies, thereby limiting treatment
outcomes [5,6]. Cancer cachexia is a multifactorial syndrome characterized by involuntary
weight and skeletal muscle mass loss, with or without loss of fat mass [7]. Depending
on the type of cancer, the prevalence of cachexia goes up to 80%, with gastrointestinal
and pulmonary cancers having the highest rates [8]. In advanced CRC, up to 60% of
the patients develop cachexia. It is often diagnosed at a late stage when it coexists with
excess body weight [9]. Cancer cachexia is strongly associated with chemotherapy induced
toxicity, poor prognosis, and worse clinically relevant outcomes, such as fatigue, quality
of life, and physical status [10–13]. Over the last years, overall survival of cachectic CRC
patients has improved due to improvements in systemic therapy treatment. However,
underlying mechanisms involved in the development of cancer related cachexia remain
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largely elusive. Therefore, fundamental research is necessary for further optimization of
therapy and clinical care for cancer patients [10–13].

Skeletal muscle is one of the most abundant and most plastic tissues in the human
body. It is the main protein reservoir in the body, accounting for approximately 40% of total
body weight. Muscle mass depends on a balance between protein synthesis and protein
degradation. Of interest, skeletal muscle wasting is the main manifestation of cancer
cachexia [7]. It has been suggested that this results from an imbalance between skeletal
muscle protein synthesis and degradation, with a net more protein degradation [14,15].
However, it is still unclear whether an increase in catabolic (protein degradation) or a
decrease in anabolic (protein synthesis) processes (mutually) dominate in the development
of cancer cachexia. Furthermore, this imbalance may depend on the duration of the
disease [7]. An important aspect in gaining or preserving skeletal muscle mass and in
improving muscle function in cancer patients is physical exercise [16–18].

Interestingly, mitochondria fulfill an established role in muscle atrophy. Due to their
role in energy production, apoptotic processes, production of reactive oxygen species (ROS),
and oxidation of muscle contractile proteins, these organelles are important regulators of
skeletal muscle mass [19–21]. Evidence shows that systemic inflammation, oxidative stress,
and proteolytic systems contribute to mitochondrial dysfunction in cancer cachexia, which
(jointly) contribute to an imbalanced metabolism of skeletal muscle proteins [19,20,22].
Preclinical and in vivo mouse models for CRC related cachexia (C26 and APCMin/+) demon-
strate a lower mitochondrial content, reductions in mitochondrial enzymatic activities
involved in oxidative phosphorylation, and altered mitochondrial morphology and dy-
namics [19–21,23–27].The C26 mouse model is a well-characterized and extensively used
mouse model for cancer cachexia. These mice bear the colon-26 tumor, also referred to
as adenocarcinoma. This results in a 10% tumor weight versus total body weight and a
reduction of 20–25% in skeletal muscle weight [28]. Another mouse model for CRC is
the APCmin/+ model. These mice develop multiple colon adenomas and adenocarcinomas,
and carry a heterologous mutation in the Apc gene, which is a tumor-suppressor gene
in the Wnt signaling pathway [29]. They develop progressive cachexia between 12 and
20 weeks of age, with a decrease of 20–25% in body weight [30]. However, only a few
studies investigated the role of skeletal muscle mitochondria in the development of CRC
cachexia. The aim of this review is to summarize the existing literature about the role of
skeletal muscle mitochondria in the development and progression of CRC related cachexia.

2. Underlying Mechanisms of Mitochondrial Dysfunction

In CRC related cachexia, systemic inflammation, oxidative stress and proteolytic
systems contribute to the development of mitochondrial dysfunction, leading to skeletal
muscle wasting [19,20,22]. Maintenance of the skeletal muscle mitochondrial homeostasis
may be crucial to prevent skeletal muscle mass loss in cancer related cachexia [31].

2.1. The impact of Systemic Inflammation on Skeletal Muscle Mitochondria in CRC Cachexia

Systemic inflammation is a key driver in the development of cancer related cachexia
by disrupting the balance between protein synthesis and protein degradation [32]. Pro-
inflammatory factors that are released by cells during inflammation increase the production
of ROS causing oxidative stress. This can either increase skeletal muscle protein degradation
or decrease protein synthesis, and induce skeletal muscle mitochondrial dysfunction in CRC
related cachexia [10,33–36]. Furthermore, these pro-inflammatory factors target several
signaling pathways playing a possible role in the development of cancer related cachexia
by causing mitochondrial dysfunction leading to muscle loss [37,38]. The contribution of
inflammatory pathways in the development of CRC related cachexia has been studied in
pre-clinical research using the C26 colon cancer and the APCmin/+ mouse model [19,21].
Pro-inflammatory mediators, such as IL-6, can activate these signaling pathways by bind-
ing specific receptors (IL-6 receptor-alfa) [39]. The most important and most investigated
pathway within CRC cachexia and mitochondrial dysfunction is the Janus Kinase/signal



Int. J. Mol. Sci. 2022, 23, 14833 3 of 10

transducers and activators of transcription 3(JAK/STAT3) pathway. Binding of IL-6 will
lead to the activation of the JAK/STAT3 pathway [40,41]. Phosphorylation and activation
of STAT3 will cause dimerization, nuclear translocation, DNA binding, and target gene
regulation [40]. Eventually this will lead to tumor growth, dysregulation of mitochondrial
respiration, biogenesis, fusion and fission, and muscle wasting [19,37,42]. Furthermore,
mutations in components of the mitogen activated protein kinase/extracellular signal
regulated kinase (MAPK/ERK) pathway will result in cells with malignant properties [43].
It has been shown that ERK inhibition prevents muscle wasting in C26 mice [44]. Addition-
ally, activation of the phosphatidylinositol 3-kinase (PI3k)/Akt pathway by insulin growth
factor 1 is downregulated in animal models of skeletal muscle atrophy [45–47]. This is
caused by alterations in the PI3k/Akt effector molecules Foxo1/3, which are responsible
for the expression of ubiquitin-ligases MAFbx and MuRF1. As such, the suppression of
the PI3k/Akt pathway is linked to the activation of the ubiquitin-dependent proteolytic
machinery, which is a hallmark of skeletal muscle wasting [46].

In cancer cachexia, the pro-inflammatory mediator IL-6 is associated with the dysregu-
lation of skeletal muscle mitochondria [19,37,42]. In APCmin/+ mice, it was shown that there
is no development of cachexia when they lack IL-6, while overexpression of IL-6 promoted
cancer cachexia [19], the latter being associated with increased levels of phosphorylated
STAT3 in skeletal muscle tissue [37]. The IL-6-STAT3 pathway plays a pivotal role in driving
skeletal muscle wasting by driving skeletal muscle mitochondrial dysfunction. Skeletal
muscle oxidative capacity is reduced in both oxidative and glycolytic skeletal muscles from
APCmin/+ mice [19]. These effects on mitochondrial respiration in cachexia are important
because oxidative phosphorylation (OXPHOS), coupling the electron transfer system to
ADP (adenosine diphosphate) phosphorylation, can affect the redox status, oxidative stress
levels, and thus mitochondrial dynamics and function. Eventually, this dysregulation of mi-
tochondrial respiration could lead to protein degradation and skeletal muscle atrophy [48].
Evidence shows that there is cachexia-associated loss of muscle mitochondrial respiratory
capacity in C26 mice [21,42,48,49]. Proteins involved in mitochondrial OXPHOS, including
complex I (nicotinamide adenine dinucleotide hydrogen; NADH), complex II (succinate
dehydrogenase; SDH), complex III (ubiquinol-cytochrome c reductase), complex IV (cy-
tochrome c oxidase; COX), and complex V (ATP (adenosine triphosphate) synthase), are
downregulated in skeletal muscle tissue from cachectic C26 mice [42,48]. These findings
coincide with dysregulated nicotinamide adenine dinucleotide (NAD)+ metabolism and
decreased muscle protein synthesis, occurring through the STAT3 pathway [42]. Further-
more, current results described in the literature suggest that the STAT3 pathway at least
partly drives skeletal muscle wasting in a CRC mouse model (HCT116) since the expression
of key proteins (AKT, ERK, P38) involved in other important signaling pathways were
unaltered in this model [37].

2.2. Mitochondrial Biogenesis, Fusion and Fission in CRC Cachexia

An important regulator of mitochondrial biogenesis is peroxisome proliferator-activated
receptor-gamma coactivator (PGC)-1α. This transcriptional coactivator is downregulated
in cachectic skeletal muscle tissue, which was associated with a reduced oxidative capacity,
further leading to muscle wasting [19,37,42]. NAD+ and sirtuin 1 (SIRT1), which both regulate
mitochondrial oxidative metabolism, have PGC-1α as a downstream target. The levels of
NAD+ and SIRT1 are significantly lower in untreated cachectic C26 mice. Treatment with
soluble activin receptor (sACVR) replenishes NAD+ levels and normalizes SIRT1 expression
similar to the predicted activities of PGC-1α [42]. Furthermore, antioxidant protection by
restoring glutathione levels in skeletal muscle tissue of tumor-bearing mice is offered by
sACVR treatment [50]. This possibly points out that sACVR can enhance cellular processes
and mitochondrial function, indicating that PGC-1α and thus mitochondrial biogenesis is a
key player in maintaining mitochondrial and skeletal muscle function [42]. Of interest, Ballaro
et al., described that overexpression of PGC-1α in skeletal muscle of C26 mice was unable to
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prevent cancer or chemotherapy induced muscle mass loss, regardless of its ability to maintain
mitochondrial oxidative capacity [27].

In order to adapt to different environmental and developmental contexts, mitochon-
dria change their shape through fusion and fission. This is important for maintaining a
physiologically healthy pool of mitochondria [51]. Mitochondrial fusion causes multiple
mitochondria to fuse together, resulting in elongated mitochondria. On the other hand,
mitochondrial fission will result in smaller mitochondria by splitting single mitochon-
dria. Besides mitochondrial biogenesis, alterations in mitochondrial fusion and fission,
caused by augmented STAT3 signaling also contribute to the development of CRC related
cachexia [19,37,42]. Important regulators of mitochondrial fusion are Mfn1 and Mfn2.
Knock out of these fusion regulators will result in muscle atrophy. Reductions in Mfn1 and
Mfn2 expression are observed in APCmin/+ mice [19,37] and C26 mice [31]. Furthermore, in
cachectic skeletal muscle tissue, the mitochondrial protein OPA1, which is also involved
in mitochondrial fusion, is downregulated [37]. The loss of fusion proteins causes mito-
chondrial fragmentation, making them predisposed to apoptosis [19]. Additionally, Fis1, a
regulator in mitochondrial fission, is upregulated in skeletal muscle tissue from cachectic
APCmin/+ mice, leading to apoptosis and muscle mass loss [19]. Dynamin-related protein
1 (DRP1) is another pivotal factor of mitochondrial dynamics as inhibition of DRP1 has a
negative effect on mitochondrial fission, with an appearance of elongated mitochondria.
Overall, the loss of mitochondrial homeostasis caused by reduced mitochondrial biogenesis
and fusion and more mitochondrial fission results in an increased ROS production. This
will cause a reduction in muscle oxidative capacity and aggravated skeletal muscle atrophy
in CRC related cachexia by promoting protein catabolic functions (Figure 1) [19,24,52].
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Figure 1. Schematic overview of the underlying mechanisms leading to skeletal muscle mitochondrial
dysfunction in colorectal cancer related cachexia. Fis1, mitochondrial fission protein 1; Mfn1, mito-
fusin 1; Mfn2, mitofusin 2; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator
1α; CRC, colorectal cancer. Created with Biorender.com (accessed on 26 November 2022).

Furthermore, reduced expression of MEF2C, which plays an important role in skeletal
muscle development, is associated with changes in muscle structural integrity and mi-
tochondrial function. Specifically, reduced MEF2C will lead to dysregulation of oxygen
transport and ATP regeneration in skeletal muscle of C26 mice. Morphological changes in
the mitochondria of cachectic skeletal muscle include loss of cristae and swollen mitochon-
dria, suggesting defective oxidative phosphorylation [26].

Biorender.com
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2.3. The role of Proteolytic Systems in Skeletal Muscle Mitochondrial Dysfunction in
CRC Cachexia

In skeletal muscle tissue, four main proteolytic systems orchestrate protein degrada-
tion (proteolysis) and mitochondrial dysfunction: 1) the macroautophagy system, (2) the
ubiquitin-proteasome-dependent pathway (UPS), (3) the calpain system, and (4) the caspase
pathway [53–55]. The macroautophagy system has an important function in the onset of
skeletal muscle depletion in cancer cachexia by targeting skeletal muscle mitochondria. It
is known that excessive autophagy has a negative effect on skeletal muscle function and
impairs muscle mass. In C26 mice, autophagic bodies are observed within skeletal muscle
mitochondria, suggesting mitochondrial loss by autophagy (mitophagy) and dysfunction
of muscle energy homeostasis [26]. However, partial blockade of autophagy does not ame-
liorate tissue wasting in C26 mice, which might indicate that autophagy is only partially
responsible for skeletal muscle wasting in CRC related cachexia, being accompanied by
other proteolytic systems, such as calpains and the proteasome [22].

Of interest, survival of C26 mice is not negatively affected when autophagy is induced.
However, muscle protein wasting is exacerbated when excessive autophagy together
with increased UPS activity cause degradation of structural or functional (mitochondrial)
proteins [22].

Zeng et al. showed that activation of mitochondrial calpain induces mitochondrial
injury and cell damage. Coculture of myoblasts with colon carcinoma cells activates calpains
in myotube mitochondria causing non-selective pore opening on the inner membrane of
mitochondria (MPTP) and mitochondrial membrane potential (∆ψm) alterations, together
resulting in mitochondrial injury. Furthermore, mitochondrial respiration becomes altered
by an impaired OXPHOS complex I activity in myotube mitochondria [56]. Additionally,
they showed that inhibition of calpain improves the function of OXPHOS complex I and thus
mitochondrial respiration [56]. This could implicate that there is upregulated activation of the
calpain system in CRC related cachexia mouse models, contributing to muscle atrophy.

3. Skeletal Muscle Mitochondrial Disruption Leads to Apoptosis in CRC Cachexia

The most common mechanism of myocyte apoptosis is a mitochondrial-centered
control pathway. Here, changes in ∆ψm serve as a marker for mitochondrial function.
Apoptotic signals converge at mitochondrial membranes causing the loss of ∆ψm, leading
to the release of toxic proteins into the cytosol [57]. These toxic proteins form apoptosomes,
which will trigger the caspase pathway, leading to the activation of the downstream
pathway involved in apoptotic cellular dismantling and clearance [57]. Coculture of
C2C12 myoblasts with CT26 colon carcinoma cells increases the Bax/Bcl-2 ratio, leading to
activation of the caspase pathway in mitochondria, and eventually apoptosis and muscle
atrophy (Figure 2) [57–59]. Zeng et al. showed that adding either acylated ghrelin (AG)
or unacylated ghrelin (UnAG) to the cocultures prevented the loss of ∆ψm. Ghrelin is a
multifunctional circulating hormone that exists in two different forms (AG and UnAG). The
receptors of ghrelin are widely expressed in skeletal muscle tissue and play important roles
in immune function and muscle oxidative metabolism in both humans and animals [60,61].
Specifically, both AG and UnAG inhibited the activation of caspase-3 and thereby protects
myoblasts from apoptosis by inhibiting mitochondrial dysfunction induced by CT26 colon
carcinoma cells. AG and UnAG activate Akt (increased p-Akt/Akt ratio) and ameliorate the
decreased levels of Bcl-2 in mitochondria. Thereby, both AG and UnAG suppress myoblast
apoptosis [57]. These findings suggest that both AG and UnAG can be possibly used in the
treatment of cancer cachexia. Furthermore, Miao et al. showed that exosomes secreted by
the C26 mouse cells decreased the diameter of C2C12 myotubes together with a decrease
in muscle strength. Results showed that inhibition of exosome secretion ameliorated
muscle wasting in C26 mice. Certain miRNAs (miR-195a-5p and miR-125b-1-3p) were
richer in C26 mice exosomes compared to non-cachectic derived exosomes. It was shown
that these miRNAs activated the apoptotic signaling, also by downregulating Bcl-2, and
thereby triggering the caspase pathway in skeletal muscle mitochondria [58]. Additionally,
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Zhang et al. recently showed that cachectic C26 mice derived exosomes are rich in growth
differentiation factor 15, which induces muscle atrophy of cultured C2C12 myotubes by
regulating the Bcl-2/caspase-3 pathway [59].
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Figure 2. Disrupted Bax-to-Bcl-2 ratio in mitochondria of C2C12 myoblasts coculture with CT26
colon carcinoma cells. Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein. Created with
Biorender.com (accessed on 11 October 2022).

4. The Effect of Exercise on Skeletal Muscle Mitochondrial Function in CRC Cachexia

In healthy persons [62] and cancer patients [63,64], physical exercise is associated with
better health outcomes and health related quality of life. In mice, physical exercise increases
total mitochondrial protein content within skeletal muscle fibers and thereby activates AMPK,
the upstream regulator of PGC-1α [65,66]. However, the effects of exercise on skeletal muscle
mass loss has been limitedly investigated in C26 mice. Here, different types of exercise
(resistance, endurance, low intensity, high intensity) have been studied [31,67,68].

In C26 mice performing endurance training only (voluntary wheel running), OXPHOS
subunit proteins and mitochondrial PGC-1α become upregulated. Moreover, exercise
normalizes markers of oxidative stress and prevents abnormal mitochondrial morphology
in skeletal muscle tissue of C26 mice. Interestingly, endurance trained C26 mice showed
an increased food intake, a better grip strength, and showed a negative effect on tumor
growth [31]. The combination of endurance and resistance training showed similar results
as endurance training only [31,67]. The combined exercise training showed a trend towards
more PGC-1α, cytochrome C, and SDH expression in skeletal muscle tissue of C26 mice.
Hence, both endurance as well as combined training positively affects muscle mass and
function by improving mitochondrial function [67].

Exercise, by using motorized wheel running, increased skeletal muscle mass and strength
in C26 mice [27,68]. It caused a reduction of ROS levels, thereby decreasing oxidative stress
and restoration of redox homeostasis in the skeletal muscles of exercised C26 mice [68]. Fur-
thermore, motorized wheel running led to increased mitochondrial biogenesis and function
(PGC-1α, cytochrome C, and SDH), and was able to partially reduce the expression of mi-
tophagy markers (BNIP3) [27,68]. Additionally, exercised C26 mice show increased levels of
Mfn2 mRNA, but no differences in the expression of Mfn1 [27], suggesting that exercise had a
positive effect on mitochondrial fusion in these mice.

Exercise can also be combined with erythropoietin (EPO) to investigate the effects
on muscle alterations in cancer cachexia. The receptor from EPO is located in the skeletal
muscle and promotes myoblast differentiation and survival by the activation of MAPK and
Akt [69]. The combination of EPO administration and exercise in C26 mice prevents partially
cross-sectional area (CSA) reduction and prevents a shift from oxidative to glycolytic

Biorender.com
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fiber type. Furthermore, acute exercise for two weeks combined with EPO has an anti-
inflammatory effect, by reducing circulating levels of the pro-inflammatory cytokine IL-6.
However, on a long term, this effect was lost, which could be explained by the fact that
prolonged exercise also releases IL-6. The combination of exercise and EPO rescues skeletal
muscle mitochondrial function and structure in C26 mice, suggesting that EPO has a
fundamental role in mitochondrial function. However, the administration of EPO alone in
C26 mice is unable to prevent accumulation of dysfunctional mitochondria, indicating that
exercise plays an important role [70].

5. Conclusions and Future Perspectives

This review describes current knowledge about the role of skeletal muscle mitochon-
dria in CRC related cachexia. However, skeletal muscle mitochondrial dysfunction can also
be observed in other cancer types besides CRC [24,71,72]. Based on the existing literature,
it is undeniable that deterioration of skeletal muscle mitochondria plays a pivotal role in
the development of CRC related cachexia. Several preclinical studies showed altered mito-
chondrial oxidative capacity, biogenesis, and fusion and fission, in CRC related cachexia.
Therefore, preserving and/or restoring mitochondrial quality could be a promising future
therapeutic strategy to maintain or improve muscle function and muscle mass in CRC
patients. However, further research in human studies is absolutely necessary to unravel the
role of skeletal muscle mitochondria in human CRC related cachexia. Of particular interest,
(preventive) exercise could be a promising intervention to improve mitochondrial function,
ultimately aiming to prevent or improve CRC related cachexia.
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