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Abstract: DGCR8 emerged recently as miRNAs biogenesis pathway protein with a highlighted role
in thyroid disease. This study aimed to characterize this miRNA biogenesis component, in particular
the p.(E518K) mutation and DGCR8 expression in a series of thyroid lesions. The series of thyroid
lesions was genotyped for the c.1552G>A p.(E518K) mutation. When frozen tissue was available,
DGCR8 mRNA expression was analysed by qPCR. Formalin-fixed paraffin-embedded tissues were
studied for DGCR8 immunoexpression. We present for the first time the p.(E518K) mutation in a
case of poorly differentiated thyroid carcinoma and present the deregulation of DGCR8 expression at
mRNA level in follicular-patterned tumours. The obtained data solidify DGCR8 as another important
player of miRNA-related gene mutations in thyroid tumorigenesis, particularly in follicular-patterned
thyroid tumours.

Keywords: miRNA; thyroid cancer; microprocessor complex; DGCR8

1. Introduction

Canonical miRNAs are a class of small (22 nucleotides (nt)), non-coding single stranded
RNAs essential for normal development [1,2]. miRNA genes are transcribed by RNA
polymerase II (RNA pol II) into long, poly-adenylated, and capped primary miRNAs
(pri-miRNAs) in the nucleus [3–5]. These structured RNAs are processed by the micropro-
cessor complex—a trimeric nuclear complex composed by two DiGeorge Critical Region
8 (DGCR8) proteins bound to one Drosha Ribonuclease III (DROSHA)—and converted
in the precursor miRNAs (pre-miRNAs) [3,5]. The pre-miRNAs are then exported to the
cytoplasm by the nuclear transport receptor exportin-5 (XPO5), where the Dicer ribonu-
clease III (DICER) cleaves the base of the loop to generate about 21 to 24 nt double-strand
miRNA duplex [3]. The duplex is unwound, and one strand is preferentially selected
to bind to one of the Argonaute (AGO2) proteins to generate the final and mature form
of miRNA [5,6]. This mature miRNA is incorporated into a ribonucleoprotein complex,
known as the RISC (RNA-Induced Silencing Complex) [1,3,5]. The miRNAs regulate gene
expression post-transcriptionally, acting as a negative regulator of gene expression, by
guiding the RISC to their cognate sites of target mRNAs [7,8]. The targeted mRNA will be
initially subjected either to cleavage or translation repression by inhibiting ribosomal access,
depending on whether the miRNA: mRNA pairing is perfect or not, respectively [1,3,8,9].

The miRNAs biogenesis pathway holds a key role in the proper development of the
thyroid gland, being miRNAs necessary for accurately establishing thyroid follicles and
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hormone synthesis [7,10,11]. The miRNAs may affect the initiation, development, and
progression of cancer through alteration of the expression levels of their target genes [12].
The normal thyroid gland highly expresses miRNAs that are commonly downregulated in
thyroid carcinomas (TC), suggesting a role for specific miRNAs as key factors in the devel-
opment and progression of TC as they are acting as important tumour-suppressors [2,10,13].
The activation of oncogenes is a known cause of miRNAs global deregulation in thyroid
cells, with a marked reduction in suppressive miRNAs and activation of oncogenic miR-
NAs [10]. Altered miRNA expression in cancer is quite often related to the malfunction
of DICER and miRNA-machinery associated proteins [10]. Alongside the alterations in
expression, mutations in the genes involved in the processing of miRNAs are reported
both at the somatic and germline levels [14]. The discovery of DICER1 germline mutations
identified the first cancer predisposition syndrome that was caused by impaired miRNA
biogenesis. As a component of DICER1 syndrome, a series of thyroid disorders were
identified, reinforcing the relevance of miRNA in human thyroid function [8,10,15]. So-
matic DICER1 mutations are reported mostly in follicular-patterned lesions of thyroid [14].
Other somatic mutations in genes (DROSHA, DGCR8, TARBP2, XPO5) encoding miRNA
biogenesis proteins are reported [2,7].

DGCR8 is the microprocessor component that directly interacts with pri-miRNAs [6,16].
Knock-down of DGCR8 results in, as observed upon DROSHA deplete on, a pronounced
decrease in mature miRNA level affecting the expression of cancer-related genes [3]. The
conditional knock-out of DGCR8 at early stages of thyroid development leads to severe
hypothyroidism with almost undetectable free thyroxine, thyroid tissue disorganization
and few follicular structures [10,11]. Bartram et al. [11] observed in DGCR8 knock-out
mice severe hypothyroidism which can explain the lethality of loss of Dgcr8 in the thy-
roid gland. Impaired miRNA processing caused by the aberrant expression of miRNA
biosynthesis genes DGCR8 and DROSHA can noticeably promote tumorigenesis, being
correlated with pathophysiology of cancers [17,18]. DGCR8 gene localizes to chromosome
22 (22q11.2) [7]. The 22q11.2 microdeletion leads to upregulation of several pri-miRNAs
accompanied by downregulation of a subset of mature miRNAs, being of major interest
when dealing with thyroid defects as is commonly found to be lost in these lesions leading
to loss of heterozygosity (LOH) [19]. This 22q deletion is also identified to lead to DGCR8
haploinsufficiency, resulting in a decrease in microprocessor efficiency and deregulation of
miRNA expression [20]. Previous studies identified the mutation c.1552 G>A in exon 6 of
DGCR8 that codes a glutamic acid to lysine substitution in position 518, p.(E518K). This
mutation is a somatic hotspot in Wilms’ tumours, it has been identified in two papillary
thyroid carcinomas (PTC) and in the germline of three-generation family with euthyroid
multinodular goitre (MNG) and schwannomatosis; and, more recently in 2 widely invasive
follicular thyroid carcinomas (FTC) [7,21,22]. A biallelic alteration of DGCR8 was described
in all cases: p.(E518K) mutation plus somatic loss of the whole chromosome 22 [7]. This
combination suggests a critical role for p.(E518K) in predisposing to tumour development.
Somatic loss of chromosome 22, containing the wild-type (WT) allele, appears to be re-
quired for tumorigenesis, indicating that DGCR8 acts as a tumour suppressor gene [7,23].
This mutation disrupts global miRNA production and DGCR8-mutated tumours display a
specific miRNA profile different from DGCR8-WT tumours [7,23]. The globally reduced
levels of miRNA could be due to reduced catalytic efficiency or changes in specificity [23].
Vardapour et al. [23] described that subsequent to altered miRNA levels, the expression of
mRNA targets was likewise changed. In silico modelling by multiple algorithms predict
that p.(E518K) mutation is pathogenic, with a reduction in the affinity of RNA binding to
DGCR8 [7]. The p.(E518K) is also predicted to be expressed at the RNA level, does not affect
splicing, and is not subject to nonsense-mediated decay [7]. Previous studies described that
DGCR8 p.(E518K) cells display partial proliferation and differentiation defect [23].

The important role of DGCR8 in miRNA processing and its previous association in
thyroid gland alterations points him as a very attractive target. In this study, our aim was
to characterize DGCR8 microprocessor subunit in a series of thyroid lesions by genotyping
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DGCR8 recurrent mutation p.(E518K), to evaluate DGCR8 mRNA and protein expression
by real-time PCR (qPCR) and immunohistochemistry (IHC), respectively.

2. Results
2.1. c.1552G>A p.(E518K) in a Poorly Differentiated Thyroid Carcinoma

A total of 226 samples from 209 patients were genotyped. The samples included 5 nor-
mal thyroid tissues (NT), 15 multinodular goiters (MNG), 86 follicular thyroid adenomas
(FTA) (2 cases with normal tissue adjacent to tumour (NTAT), 22 follicular thyroid carcino-
mas (FTC) (6 cases with NTAT), 80 papillary thyroid carcinomas PTC (2 cases with NTAT),
5 poorly differentiated thyroid carcinomas (PDTC) (1 case with NTAT) and 2 anaplastic
thyroid carcinomas (ATC). The total of 80 PTC cases included classical variants of PTC
(n = 44; cPTC), follicular variants of PTC (n = 22; FV-PTC) and other variants of PTC (n = 14;
OV-PTC: 3 tall cell PTC, 4 oncocytic PTC, 5 diffuse sclerosing PTC and 2 solid trabecular
PTC). In Table 1 are represented the clinicopathological and molecular parameters collected
regarding the studied cohort. We also evaluated germline DNA (blood) of 12 probands from
MNG with familial association. A part of the samples used in this series was previously
characterized for mutations in TERT, BRAF, and NRAS genes and for RET/PTC and PAX8/
PPARg rearrangements [24].

Table 1. Clinicopathological and molecular characterization of the series.

Histological Subtypes

Clinicopathological Variables * FTA
(n = 86)

MNG
(n = 15)

FTC
(n = 22)

cPTC
(n = 44)

FV-PTC
(n = 22)

OV-PTC
(n = 14)

PDTC
(n = 5)

ATC
(n = 2)

Age (mean, y/o) 43.2 45.3 47.8 40.2 42.3 45 65.6 N.D.

Gender (female), n (%) 69
(80.2)

15
(100.0)

16
(72.7)

34
(77.3)

22
(100.0)

10
(71.4)

4
(66.7) N.D.

Tumour size (mean, mm) 35 23 40 25 33 38 51 N.D.

Lymphocytic infiltrate, n (%) 20/67
(29.9) N.D. 3/14

(21.4)
17/37
(45.9)

7/17
(41.2)

4/13
(30.8)

0/5
(0.0) N.D.

Vascular invasion, n (%) 0/70
(0.0) N.D. 8/17

(47.1)
19/37
(51.4)

5/18
(27.7)

6/13
(46.2)

2/3
(66.7) N.D.

Lymph node metastasis, n (%) 0/1
(0.0) N.D. 0/7

(0.0)
14/22
(63.6)

5/6
(83.3)

4/4
(100.0)

2/3
(66.7) N.D.

Minimal extrathyroidal
extension, n (%)

0/32
(0.0) N.D. 1/14

(7.14)
15/37
(40.5)

5/18
(27.7)

7/12
(58.3)

2/5
(40.0)

1/1
(100.0)

Molecular characterization † FTA MNG FTC cPTC FV-PTC OV-PTC PDTC ATC

BRAF, nm/nt (%) 0/23
(0.0)

0/2
(0.0)

0/18
(0.0)

18/42
(42.9)

4/20
(20.0)

4/13
(30.8)

0/4
(0.0)

0/1
(0.0)

NRAS, nm/nt (%) 4/86
(4.7)

0/2
(0.0)

4/21
(19.0)

2/42
(4.8)

3/21
(14.3)

2/12
(16.7)

0/4
(0.0)

0/1
(0.0)

RET/PTC, nm/nt (%) 0/74
(0.0)

0/2
(0.0)

1/13
(7.7)

5/36
(13.9)

0/20
(0.0)

2/14
(14.3)

0/4
(0.0) N.D.

PAX8/PPARg, nm/nt (%) 3/76
(3.9)

0/2
(0.0)

3/16
(18.8)

0/41
(0.0)

1/21
(4.8)

0/14
(0.0)

0/4
(0.0) N.D.

TERTp, nm/nt (%) 0/84
(0.0)

0/2
(0.0)

0/17
(0.0)

0/41
(0.0)

0/20
(0.0)

2/14
(14.3)

1/4
(25.0)

0/1
(0.0)

DGCR8, nm/nt (%) 0/86
(0.0)

0/15
(0.0)

0/22
(0.0)

0/44
(0.0)

0/22
(0.0)

0/14
(0.0)

1/5
(20.0)

0/2
(0.0)

Notes: * Not all samples had clinicopathological data available; † Not all samples were genotyped. nm: number
of mutated samples; nt: number of total samples genotyped; N.D.: not determined.

We identified a DGCR8 mutation—c.1552G>A, p.(E518K)—in an insular variant of a
PDTC, Table 1; to our knowledge the first report of this alteration in this subtype. This so-
matic mutation was not detected in the corresponding NTAT, excluding it to be a germline
alteration. Regarding other genetic events, no rearrangements RET/PTC and PAX8/ PPARg,
TERT, NRAS and BRAF mutations were detected in the same case. This mutation occurred
in an older patient (82 years-old) with a 10 cm tumour presenting poor prognosis character-
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istics, such as invasion of capsule and extra-thyroidal invasion. No further mutations were
detected, including the 12 probands from MNG with familial association.

2.2. Deregulation of DGCR8 mRNA Expression in Follicular-Patterned Tumours

The mRNA expression levels quantification of DGCR8 were performed in 170 samples
by qPCR. The expression of DGCR8 was significantly different when comparing NTAT and
benign tumours (Kruskal–Wallis test, p < 0.01) and between benign and malignant thyroid
tumours (Kruskal–Wallis test, p < 0.01), Figure 1A. No differences were observed between
NTAT and malignant tumours. For cPTC, FV-PTC, OV-PTC and PDTC no major differences
were detected, Figure 1B. In contrast, for the remaining follicular cell-derived tumours,
FTAs and FTC, significant alterations were identified. The DGCR8 gene quantification in
FTA cases revealed that this histotype presented a higher expression than all subgroups and
were significantly higher than in NTAT (Kruskal–Wallis test, p < 0.01) and in malignant FTC
cases (Kruskal–Wallis test, p < 0.05), Figure 1B. For optimal visualization of the changes
between the different histotypes, a normalization was conducted with NTAT expression
that was considered as basal expression and normalized to 1. Following normalization,
the highest fold-changes were attributed to FTAs (1.75-fold change (fc)), followed by cPTC
(1.35-fc), OV-PTC (1.42-fc) and PDTC (1.16-fc), Figure 1C. Contrarily to the latter, the
follicular-patterned carcinomas FTC and FV-PTC, presented a reduction 0.84-fc and 0.92-fc,
respectively, Figure 1C.
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the cPTC cases, the main finding was overexpression of DGCR8 in the tumours, with a 
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other hand, in FV-PTC cases and contrarily to the previous, underexpression was the most 
represented in 83.3% (5 out of 6), with statistically significant differences in expression 
(paired t-test, p < 0.05), Figure 2B. 

The strong association of DGCR8 downregulation in follicular-patterned carcinomas 
is also present in FTC, where underexpression is again present in most of the cases, 66.7% 
(4 out 6) and with significant differences (paired t-test, p < 0.05), Figure 2C. An interesting 
case in this series, was a multifocal PTC in a patient with two subtypes, a cPTC and a FV-
PTC with Q61R NRAS mutation that in accordance with the previous findings, presented 
DGCR8 overexpression and underexpression, respectively, in the different components. 
In the PDTC case with p.(E518K) mutation, the expression in tumour tissue was slightly 
lower than in NTAT, presenting similar patterns of expression with NTAT. 

Figure 1. Expression of DGCR8 mRNA in thyroid: (A) Comparison between NTAT and benign
tumours (p = 0.005), and between benign and malignant tumours (p = 0.004); (B) Comparison of
the expression according to the histotype, with overexpression of FTA significantly different from
FTC (p = 0.01) and NTAT (p = 0.004)–DGCR8 mutated case and the correspondent NTAT are in black;
(C) Fold-change of DGCR8 mRNA expression using NTAT as a normalizer (=1) reveals that FV-PTC
and FTC are the lesions that present the higher ratios for underexpression, in contrast with the
other subtypes, being cPTC and FTA the lesions with a higher gain. * Kruskal–Wallis test statistical
significance p < 0.05; ** Kruskal–Wallis test statistical significance p < 0.01.
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In 28 cases, the DGCR8 gene expression between the tumour and its respective NTAT
was available. The pairwise tumour/NTAT analyses revealed that in 87.5% (7 out of 8)
of the cPTC cases, the main finding was overexpression of DGCR8 in the tumours, with
a statistically significant difference in expression (paired t-test, p < 0.05), Figure 2A. On
the other hand, in FV-PTC cases and contrarily to the previous, underexpression was the
most represented in 83.3% (5 out of 6), with statistically significant differences in expression
(paired t-test, p < 0.05), Figure 2B.
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Figure 2. DGCR8 mRNA pairwise-matched tumour/NTAT analysis in cPTC(n = (8), FV-PTC (n = 6)
and FTC (n = 6): (A) cPTC is characterized by overexpression and with significant difference in
DGCR8 expression (p = 0.02); (B) In contrast to cPTC, in FV-PTC underexpression is more frequent
and DGCR8 loss of expression is significant between tumours/NTAT (p = 0.04); (C) DGCR8 mRNA
pairwise-matched tumour/NTAT expression in FTC cases. Four out of six cases presented a significant
reduction in DGCR8 expression (p = 0.02). * Paired t-test statistical significance p < 0.05.

The strong association of DGCR8 downregulation in follicular-patterned carcinomas
is also present in FTC, where underexpression is again present in most of the cases, 66.7%
(4 out 6) and with significant differences (paired t-test, p < 0.05), Figure 2C. An interesting
case in this series, was a multifocal PTC in a patient with two subtypes, a cPTC and a FV-
PTC with Q61R NRAS mutation that in accordance with the previous findings, presented
DGCR8 overexpression and underexpression, respectively, in the different components. In
the PDTC case with p.(E518K) mutation, the expression in tumour tissue was slightly lower
than in NTAT, presenting similar patterns of expression with NTAT.

2.3. DGCR8 Immunoexpression in Thyroid Cancer

The expression of DGCR8 protein was performed in 99 FFPE samples and evaluated
to create a score reflecting the staining intensity and extension, Table 2. Twenty-two cases
(22.2%) were evaluated with a score of 0, however, only 4 cases lacked absolute expression
for the DGCR8; the remaining 18 cases had less than 25% of extension. Regarding the other
77.8%, they were distributed throughout the additional score values as presented in Table 2.

Table 2. Score values of DGCR8 immunoexpression in the different histotypes.

Score

0 1 2 3 4 6 9

Histotype n, (%)

FTA n = 30 6
(20.0)

5
(16.7)

4
(13.3)

2
(6.7)

2
(6.7)

6
(20.0)

5
(16.7)

FTC n = 15 3
(20.0)

0
(0)

2
(13.3)

1
(6.7)

2
(13.3)

5
(33.3)

2
(13.3)

PTC n = 50 13
(26.0)

3
(6.0)

7
(14.0)

2
(4.0)

4
(8.0)

14
(28.0)

7
(14.0)

PDTC n = 4 0
(0)

1
(25.0)

2
(50.0)

0
(0)

0
(0)

0
(0)

1
(25.0)
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As presented in Figure 3, the immunoexpression of DGCR8 was mainly found in the
nucleus, as expected, and with an overall higher expression in lesion areas in comparison
with NTAT. Stratification by histotype of the DGCR8 scores revealed that tendentially,
higher median score patterns were associated with the PTC (with no statistical significance)
(Table 2). The highest score of expression (9) was commonly detected in PTC (six cPTC and
one FV-PTC) (7 out 15 cases with a score of 9, 46.7%) and followed by FTA (5 out 15 cases
with score of 9, 33.3%). The PDTC were the most underrepresented histotype group (n = 4),
and with three-quarters of the cases presenting low expression scores. Only one PDTC
presented strong staining (score = 9) and it corresponded to the insular variant of PDTC
case with DGCR8 p.(E518K) mutation, Figure 3A; this case presented the highest DGCR8
expression of all the evaluated samples. In some extensive areas of the mutated PDTC, it
was noticeable that some nuclei presented loss of DGCR8 protein, Figure 3B (black arrows).
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Figure 3. DGCR8 expression in the PDTC case with p.(E518K) mutation: (A) Overexpression of
DGCR8 protein, with the highest expression in the series; (B) Some areas presented extensive loss
of expression in some nuclei (black arrows) that putatively could be attributed due to LOH (as
previously described in cases with p.(E518K) mutation).

2.4. DGCR8 Expression, and Clinicopathological Associations

DGCR8 mRNA/protein expression was highly discordant and, overall, tendentially,
presented a contrarywise behaviour, i.e., higher levels of DGCR8 mRNA expression asso-
ciated with lower protein scores. DGCR8 mRNA expression was additionally compared
to clinicopathological data but no significant associations were detected. The association
of the mutation presence with clinicopathological data was not performed since the low
number of events (only one DGCR8 mutated case) precluded this analysis.

3. Discussion

The 22q region has been for a long time of major interest in thyroid lesions [22].
With the recent description of a DGCR8 mutation (also located in 22q) in familial-MNG
forms and sporadic thyroid carcinomas [2,7], we set to evaluate DGCR8 as candidate gene
in thyroid lesions. To date, the recurrent mutation DGCR8 p.(E518K) [2,7] is the only
mutation present in databases (TCGA) for thyroid lesions, and this was the major reason
why we choose to perform only the characterization of DGCR8 p.(E518K). We initiated by
evaluating familial-associated MNG patients due to the previous reports- but we did not
detect this alteration; the study comprised germline DNA evaluation of 12 index-cases, one
for each family available. The next target were samples from sporadic cases, where only
one case was found mutated. It corresponded to a PDTC with dominant insular pattern
and with the recurrent missense mutation: c.1552G>A p.(E518K). Overall, for the PDTC
histotype, the mutation frequency was 20.0%, a consequence of the reduced number of
cases in the series, whereas, in the carcinomas, it was a rare event, 0.9% (1 out 109). It
has been reported by Paulsson et al. [21] that mutations in DGCR8 are recurrent in FTC,
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but in our series, we did not find any case mutated. In the previously reported (FV-PTC
and FTC with p.(E518K)-mutation) it was also detected NRAS mutations concomitantly;
this is in accordance with follicular-patterned tumours where NRAS is frequently found
mutated [25]. It was advanced the DGCR8 p.(E518K) mutation could influence the tumour
progression or invasive behaviour without driving the tumour per se, since the tumours
with this mutation are always described to bear additional genetic events [21]. In this case,
no other molecular alterations were detected (TERTp, BRAF and NRAS hotspot mutations
and RET/PTC and PAX8/PPARg rearrangements). This points that additional oncogenic
events might be present or it may exist an exclusivity to non-classical events as previously
presented by Chong et al. in DICER1-mutated thyroid carcinomas [26]. Possibly, TP53
alterations that were already associated with miRNA biogenesis proteins in thyroid gland,
are frequent in this histotype but were not evaluated; overall, this is the first report, so far,
of a DGCR8-mutated PDTC.

The expression of DGCR8 in benign tumours was significantly different from NTAT
and malignant tumours. Although malignant tumours and NTAT are not significantly
different, this may lay on the fact that the adjacent tissue of the tumour may already present
altered expression. In the findings by Paulsson et al. [21], a downregulation of DGCR8 gene
expression in FTC in comparison to FTAs was reported; still, there were no data regarding
the normal (or NTAT). We obtained similar results; however, we report that FTC change in
expression is only significant when compared to FTAs but not NTAT. Aberrant expression
of miRNA biosynthesis genes DGCR8 and DROSHA are described to promote tumorigene-
sis as it results in aberrant miRNA expressional pattern that could be at play even at the
level of tumour initiation, by downregulating tumour suppressor genes or overexpressing
oncogenes [21,27]. These results suggest that overexpression of DGCR8, especially in FTA
(the highest DGCR8 expression), could be at play to force maintenance of “normal” thyroid
differentiation, in particular, of the follicular differentiation and structure. On the other
hand, follicular-patterned carcinomas of the thyroid (FTC and FV-PTC) displayed lower
gene expression than NTAT, suggesting that not only mutations but also deregulation
in expression takes part in tumorigenesis of thyroid follicular-patterned carcinomas as
loss of differentiation occurs. Kim et al. [18] reported that the mRNA expression levels
of DGCR8 were found to be significantly lower in carcinomatous tissues as compared
to the nonneoplastic tissues in a series of PTC; however, there are no data regard the
variants present in this series. This is in accordance with our findings in human thyroid
cell lines where papillary and anaplastic cell lines- TPC-1, T241 and 8505C, presented
mRNA DGCR8 expression lower than in human normal thyroid cell line- Nthy-ori-3-1.
However, in our series only follicular-pattern carcinomas displayed lower mRNA DGCR8
expression which can be justified by the genetic background of cell lines and its impact
in DGCR8 expression. When tumoral and NTAT matched-paired study was conducted,
the follicular-patterned carcinomas (FTC and FV-PTC) presented more frequently a down-
regulation of DGCR8 in comparison to their normal (NTAT) counterparts. The dichotomy
cPTC/high DGCR8 expression versus FV-PTC/low DGCR8 expression was also present in
the case of a patient with multifocal PTC and with two subtypes, a cPTC and a FV-PTC that
presented overexpression and underexpression, respectively; this case illustrates the role
of the deregulation of DGCR8 mRNA in follicular-patterned carcinomas. A dependence
of DGCR8 in follicular-patterned carcinomas, already described by Paulsson et al. [21], is
reported in this study with a statistical significative DGCR8 mRNA underexpression in
follicular-patterned carcinomas (FTC and FV-PTC) when compared to the normal coun-
terpart. Beyond DGCR8, somatic DICER1 mutations are reported in follicular-patterned
lesions of thyroid (benign and malignant) which underlines the importance of the miRNA
processing genes in follicular-patterned lesions [27–29].

In the PDTC with p.(E518K) mutation, the mRNA expression in tumour tissue was
slightly lower than in NTAT with comparable expression to normal tissues but with a high
protein expression as evaluated by IHC, in the tumour. Contrarily to what was observed,
it was described that the p.(E518K) mutation could elevate DGCR8 mRNA expression
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level, probably through interrupting miRNA binding [17,30] but we detected an expression
comparable to the basal level.

DGCR8 immunoprofiling was performed by IHC and as expected, was mainly found
in the nucleus. A tendency to more intense patterns were associated with PTC followed
by FTA and FTC. PDTC cases presented low expression scores, except for PDTC case with
DGCR8 p.(E518K) mutation that presented strong staining (score of 9), the highest DGCR8
expression of all the evaluated samples. In areas of the mutated PDTC, it was noticeable
that some nuclei presented loss of DGCR8 protein, possibly due to LOH, as reported in all
DGCR8 p.(E518K)-mutated cases so far. It would be interesting to determine if loss of the
locus 22q is a second event in these cells that are losing the nuclear expression. Contrarily
to DICER, where a positive correlation between expression at protein and RNA level is
described [31], DGCR8 mRNA/protein expression was highly discordant and, in general,
it behaved contrariwise; a perfect example was the PDTC with the mutation that had a
high protein staining and low mRNA expression. This could be explained by the described
autoregulatory feedback loop that when DROSHA and DGCR8 levels are elevated in the
cell, the microprocessor cleaves and destabilizes the DGCR8 mRNA to reduce DGCR8
levels [32]. It is described that the knockdown of DROSHA leads to upregulation of DGCR8
expression at mRNA and protein levels, suggesting that not only alterations in DGCR8
but also alterations in other genes involved in miRNA biogenesis could alter the DGCR8
protein expression in thyroid lesions [18,33]. As this is the first study evaluating protein
expression, further studies will help to clarify the mRNA and protein expression of DGCR8
in thyroid carcinomas.

The findings from this study strengthen the association between abnormal miRNA
processing and the development and/or progression of thyroid cancer. As miRNAs are
important to stabilize thyroid follicles and hormone production, it is perceivable that
alterations in genes involved in miRNA biogenesis may have repercussions at follicular
level, having a role in tumorigenesis of follicular-patterned tumours. In this study, these
observations were particular evident in follicular-patterned carcinomas, suggesting that not
only mutations but also alterations in DGCR8 mRNA/protein expression may be important
in thyroid tumorigenesis. Succeeding DICER1 alterations in the susceptibility of thyroid
disease, we reaffirm DGCR8 as another important player of the miRNA microprocessor
complex team. It will now be an exciting endeavour to extend our series and clarify if
E518K mutation drives alterations in miRNA and mRNA profiling.

4. Materials and Methods
4.1. Samples

The samples used in this study were collected at Centro Hospitalar e Universitário
de São João (CHUSJ) and retrieved from the Department of Pathology of CHUSJ. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethical Committee of the CHUSJ (CES284-13), being an anonymized retro-
spective study, it was exempted from informed consent from patients in accordance with
national ethical guidelines. All clinicopathological data were obtained from the anatomic
pathology reports provided by the Department of Pathology from the CHUSJ. For the cases
with available formalin-fixed paraffin-embedded (FFPE), tissues were re-evaluated, and
histological diagnoses were reported according to the strict histomorphological criteria
for current World Health Organization guidelines [34]. The following clinicopathological
parameters were collected from the pathology reports: diagnosis, age at diagnosis, gender,
tumour size, presence of tumour capsule, presence of capsular invasion, associated lesions,
vascular invasion, lymph node metastasis, extrathyroidal invasion, presence of lymphocytic
infiltrate, and other histological observations. According to the availability of adequate
tissue, pathological report and/or clinical information, 226 samples from 209 patients
were selected for the subsequent study; this included benign lesions, malignant lesions,
and normal adjacent tissue samples. The included samples corresponded to: Normal
tissue (NT) (n = 5); MNG (n = 15); follicular thyroid adenomas (FTA) (n = 86, 2 cases with
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non-tumoral adjacent tissue (NTAT) available); FTC (n = 22, 6 with NTAT); PTC (n = 80,
2 cases with NTAT); poorly differentiated thyroid carcinomas (PDTC) (n = 5, 1 case with
NTAT available); and 2 cases of anaplastic thyroid carcinoma (ATC). Regarding the MNG,
12 cases were composed of germline DNA (blood) of probands from MNG with familial
association. Part of this series was present in a biobank and was previously characterized
for BRAF, RAS, and TERT promoter hotspot mutations, and RET/PTC and PAX8-PPARg
rearrangements [24].

4.2. DGCR8 Amplification and Genotyping

DGCR8 exon 6 was screened for mutations in DNA previously extracted from tumour
tissues of all the samples described using PCR and Sanger sequencing [24]. The protocol
used for PCR amplification was adapted from Rivera et al. [7] and the primers produced
by IDT (IDT, Clinton, IA, USA). The following cycler conditions were used for PCR in
MyCyclerTM Thermal Cycler (Bio-Rad, Hercules, CA, USA): 2 min at 95 ◦C, 35 cycles of: 20 s
at 95 ◦C, 20 s at 62 ◦C and 20 s at 72 ◦C; and a final extension at 72 ◦C for 1 min. Following
amplification, each amplicon was sequenced independently by using the corresponding
forward and reverse primer at the following cycling conditions: 2 min at 95 ◦C, 40 cycles of:
15 s at 94 ◦C, 15 s at 55 ◦C, and 3 min at 60 ◦C; and a final extension at 60 ◦C for 10 min.
The fragments were run in an ABI3130 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA).

4.3. Quantitative PCR Analysis

Quantitative real-time PCR (qPCR) was performed when RNA of the frozen tissues
was available and converted to cDNA using SuperScript™ IV cDNA Synthesis Kit according
to the manufacturer’s instructions (Thermo Scientific, Waltham, MA, USA). For some of
the samples, NTAT of the cases was included and analysed to create a pool of non-tumoral
tissue. The qPCR evaluation was carried out in 170 samples, of which 5 were from NT,
28 corresponded to NTAT samples, 62 were FTA, 11 FTC, 61 PTC, and 3 PDTC. DGCR8
mRNA expression was analysed using TaqMan PCR MasterMix (Applied Biosystems)
and the amplification level was detected in a QuantStudio™ 5 Real-Time PCR System
(Applied Biosystems), that was programmed to an initial step of 10 min at 95 ◦C, followed
by 50 cycles of: 95 ◦C for 15 s and 60 ◦C for 1 min. Probes used for this analysis were:
PrimeTime® std qPCR Assay DGCR8 (Hs.PT.58.1414870 IDT) and the human TATA-binding
protein (huTBP) gene (no. Hs.PT.39a.22214825, IDT) as endogenous control. Relative
quantification of target genes was determined using the ∆∆ CT method, where similar
amplification efficiencies between DGCR8 mRNA and huTBP were obtained, by Livak’s
linear regression method [35].

4.4. Immunohistochemistry

Immunohistochemistry (IHC) was performed when FFPE tissues were available and
it included 99 tumour sections, being: 30 FTA, 15 FTC, 50 PTC, and 4 PDTC. IHC was
performed using Ultravision Quanto Detection System HRP (Thermo Scientific), according
to the manufacturer’s instructions. Briefly, deparaffinized and rehydrated sections were
subjected to heat-induced antigen retrieval for 45 min at 90 ◦C in 10 mM sodium citrate
buffer (pH 6.0) (Thermo Scientific). Sections were incubated overnight at 4 ◦C in a humified
chamber with anti-DGCR8 polyclonal antibody (PA5-40122, Invitrogen) at the optimized
dilution of 1:250. The detection was performed with Polymer method detection system,
HRP Polymer Quanto (Thermo Scientific) followed by 3,3′-diaminobenzidine (DAB) reac-
tion and counterstained with Mayer’s hematoxylin. A normal thyroid sample was used
as a positive control and the negative control consisted in the omission of the primary
antibody. Slides were evaluated by an Endocrine Pathologist (S.C.) and an IHC score was
established, which corresponded to the product of the intensity of expression (0 = nega-
tive; 1 = weak; 2 = intermediate; 3 = strong) with the tumour extent of protein expression
(0: 0–25%; 1: 25–50%; 2: 50–75%; 3: 75–100%), 9 being the maximum score.
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Slides were digitalized using a ZEISS axioscan 7 microscope slide scanner and pictures
were treated in ZEISS 3.4. blue edition software (ZEISS, Oberkochen, Germany).

4.5. Statistical Methods

The statistical analysis was performed using GraphPad Prism version 9.0 (GraphPad
Software, Prism, San Diego, CA, USA) and IBM SPSS version 25 (IBM, Armonk, NY,
USA). Data were evaluated and tested for outliers’ determination and for normal gaussian
distributions. Populations were compared with ANOVA; if failed gaussian distributions,
with Kruskal–Wallis test. Comparison of tumours and NTAT was evaluated by paired t-test.
For clinicopathological analysis association with the relative gene expression: gender, age,
tumour size, diagnosis, histological characteristics, molecular status and DGCR8 expression
were analysed using t-test and Mann–Whitney test. Results were considered statistically
significant if p < 0.05.
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