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Abstract: Inherited metabolic disorders (IMD) are rare medical conditions caused by genetic defects
that interfere with the body’s metabolism. The clinical phenotype is highly variable and can present at
any age, although it more often manifests in childhood. The number of treatable IMDs has increased
in recent years, making early diagnosis and a better understanding of the natural history of the disease
more important than ever. In this review, we discuss the main challenges faced in applying proteomics
to the study of IMDs, and the key advances achieved in this field using tandem mass spectrometry
(MS/MS). This technology enables the analysis of large numbers of proteins in different body fluids
(serum, plasma, urine, saliva, tears) with a single analysis of each sample, and can even be applied to
dried samples. MS/MS has thus emerged as the tool of choice for proteome characterization and has
provided new insights into many diseases and biological systems. In the last 10 years, sequential
window acquisition of all theoretical fragmentation spectra mass spectrometry (SWATH-MS) has
emerged as an accurate, high-resolution technique for the identification and quantification of proteins
differentially expressed between healthy controls and IMD patients. Proteomics is a particularly
promising approach to help obtain more information on rare genetic diseases, including identification
of biomarkers to aid early diagnosis and better understanding of the underlying pathophysiology
to guide the development of new therapies. Here, we summarize new and emerging proteomic
technologies and discuss current uses and limitations of this approach to identify and quantify
proteins. Moreover, we describe the use of proteomics to identify the mechanisms regulating complex
IMD phenotypes; an area of research essential to better understand these rare disorders and many
other human diseases.

Keywords: biomarkers; enzyme replacement therapy; inborn errors of metabolism; lysosomal
disorders; proteomics

1. Introduction

There are more than 7000 known rare diseases, and more are discovered each year [1].
Although individually rare, their global prevalence is high: they affect approximately
300 million people worldwide and often cause chronic illness, disability, and early death.
Moreover, a large number of rare disease patients remain undiagnosed for many years and
many even die without receiving an accurate diagnosis of their disease.

Over 80% of rare diseases have a genetic origin [1]. In recent years, genetic testing
using next generation sequencing (NGS), that allows whole exome and whole genome
sequencing, has helped to uncover the molecular basis of some rare and undiagnosed
diseases. However, these technologies have enabled diagnosis for only 25–35% of pre-
viously undiagnosed patients [1,2]. Moreover, functional studies cannot always identify
the cellular basis or molecular implications of these mutations, underscoring the need for
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further novel technological approaches. The development of effective treatments for rare
diseases represents another major challenge. To date, treatments are available for only
around 5% of rare diseases.

Inherited metabolic disorders (IMD) are rare genetic conditions; their diagnosis and
treatment is based on biomarker-driven approaches. Genes, proteins, and metabolites are
the most frequently used biomarkers. The IEM base database (http://www.iembase.org
(accessed on 25 September 2022) currently contains about 1450 inborn errors of metabolism
(IEM) [3], accounting for nearly 20% of all rare diseases, and incidence rates are 1 in 800–
2500 live births [4,5]. From a pathophysiological point of view, IMDs can be divided into
three diagnostically useful groups: (i) defects of small molecules; (ii) disorders involving
energy metabolism; and (iii) disorders involving complex molecules [6]. IMDs can present
with very varied symptoms and signs, affecting any organ at any stage of life between the
prenatal period and adulthood. Some present acutely, while others have more indolent
symptoms, affecting a number of organs; the central nervous system is one of the more
commonly affected systems [7,8]. Although 88% of IMDs can be detected through bio-
chemical tests of blood, urine, feces, fibroblasts, or cerebrospinal fluid, appropriate genetic
laboratory tests are essential for accurate diagnoses [9,10].

The genetic bases of IEMs are very heterogeneous, and can involve genomic rearrange-
ments, deletions or insertions, or one or more point mutations, all of which induce loss or
gain of function of mutant proteins (usually enzymes or transporters), with consequent
effects on cellular flux.

IEMs are linked to genetic defects; therefore, the most frequently used approach for
disease characterization is identification of the mutated gene and its products. However, for
a given mutation, genotype does not always correlate with phenotype, making it difficult
to predict the impact of this disruption on the patient. Therefore, it is crucial to integrate all
available scientific skills and methods, including -omics techniques, in order to assess the
altered cellular pathways and potential interactions with other pathways.

Here, we review the most recent tandem mass spectrometry (MS/MS)-based proteomic
strategies used to study IMDs. Omics strategies will undoubtedly play an important role
in the post-genomics era of health care. In fact, they are already being used to search for
biomarkers in body fluid samples for many diseases (e.g., cancer, stroke, diabetes, obesity).
Mass spectrometry (MS), which enables rapid and cost-effective evaluation of a broad
range of metabolites from small samples, including dried blood spots (DBS), is currently
being used to search for diagnostically useful metabolites in body fluids in patients with
rare diseases [2]. The use of MS to analyze proteins will be one of the next steps in the
search for diagnostic techniques and therapies for rare diseases.

2. Proteomic Strategies

The evolution of the “omics” technologies has provided useful methods for in-depth,
unbiased study of biological systems, and has led to the development of more precise
diagnostic tools and therapies. With advancements in proteomics technologies, it is pos-
sible to simultaneously perform protein identification and quantification of expression
profiles for thousands of proteins. Proteomic analysis has become a powerful method for
characterizing the molecular profiles of patients, allowing analysis of both tissues [11] and
biological fluids [12].

It is important to mention that organ-specific proteins released from diseased tissue
are often diluted or degraded once they enter systemic circulation. Furthermore, serum
contains a large proportion of proteins, such as albumin, with a wide dynamic range
of abundance, making it difficult to reliably quantify these organ-specific biomarkers.
Changes in serum protein levels may reflect alterations in inflammation that do not provide
information about the disease process [13]. Therefore, an organ-specific disease sampling of
fluid compartments near the diseased tissue (e.g., synovial fluid, urine, cerebrospinal fluid)
can provide a more reliable source of potential diagnostic and therapeutic biomarkers than
serum [11–13].

http://www.iembase.org
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The emerging concept of personalized medicine relies on global and integrative ap-
proaches (such as proteomic technologies) to provide more precise patient care, and these
technologies can also provide valuable information about the diseases [14,15]. The applica-
tion of proteomic techniques to diseases is known as clinical proteomics. This constitutes a
powerful tool for studying alterations in pathways implicated in diseases, and identifying
novel protein biomarkers of disease. A proteomic biomarker is defined as “a specific pep-
tide or protein that is associated with a specific condition, such as the onset, manifestation,
or progression of a disease or a response to treatment” or a “characteristic that is measured
as an indicator of normal biological processes, pathogenic processes, or a response to an
exposure or intervention” [12].

2.1. Qualitative and Quantitative Proteomics
2.1.1. Qualitative Proteomics

Two main strategies are used to analyze the proteome: “bottom-up” and “top-down”
proteomic strategies [16] (Figure 1).
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ing internal peptides that have adequate properties for LC MS/MS and database searches, including 
length, ionization, and fragmentation parameters. These peptides can be analyzed by shotgun pro-
teomics methods to identify the parent protein based on the endogenous cleavage site, and thereby 
identify the protein itself. By contrast, top-down proteomics permits both strategies: protein cleav-
age with proteases and direct protein identification without cleavage. 

Figure 1. “Bottom-up” and “top-down” Proteomic Strategies in clinical samples. In “bottom-up”
proteomics approaches, proteins are processed with an exogenous protease (e.g., trypsin), producing
internal peptides that have adequate properties for LC MS/MS and database searches, including
length, ionization, and fragmentation parameters. These peptides can be analyzed by shotgun
proteomics methods to identify the parent protein based on the endogenous cleavage site, and
thereby identify the protein itself. By contrast, top-down proteomics permits both strategies: protein
cleavage with proteases and direct protein identification without cleavage.

In the bottom-up approach (shotgun proteomics), the sample is first subjected to
separation (by 2D-PAGE or liquid chromatography) and proteolytic digestion (normally
using trypsin as the digestion enzyme), and then analyzed by MS/MS. Proteins are iden-
tified by matching the masses of proteolytic peptides or their tandem mass spectra with
theoretical “in silico” digestions performed using bioinformatics tools applied to protein
databases (normally using Uniprot: https://www.uniprot.org/ (accessed on 1 October

https://www.uniprot.org/
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2022). Bottom-up proteomics is the most widely used approach for protein identification
and characterization. The enzymatic peptides are usually identified by Matrix-assisted laser
desorption/ionization-time of flight (MALDI-TOF) or nanoflow/micro liquid chromatog-
raphy coupled to tandem mass spectrometry analysis (LC-MS/MS). Normally, MS/MS
analysis is performed in data-dependent acquisition (DDA) (described in the following sec-
tion) mode, which generates a unique pattern of fragment masses following fragmentation
of a single peptide [17]. However, there are several limitations to bottom-up proteomics
approaches. First, the percentage coverage of the protein sequence is low, as only a small
and variable fraction of the total peptide population of a protein can be recovered. Genomic
studies have shown that each open reading frame can give rise to distinct protein isoforms,
owing to alternative splicing products and differences in cell location and post-translational
modification (PTM). Limited sequence coverage means that much information about PTMs
and alternative splice variants is lost.

While proteomics techniques such as 2D-PAGE gels and mass spectrometry by MALDI-
TOF ionization were widely used in the past, their use has waned owing to their inherent
limitations [16,18–20]. As shown in Figure 1, these correspond to bottom-up proteomics
approaches.

MS/MS was developed at the end of the 19th century in order to measure atomic
mass, and was used to demonstrate the existence of isotopes at the beginning of the 20th
century [21]. MS is an analytical approach that can measure the mass-to-charge ratio (m/z)
of chemical compounds and then calculate their exact molecular weight. Different ioniza-
tion techniques are used to analyze chemical structures in biological systems. The most
widely used are laser desorption/ionization (LDI), matrix-assisted laser desorption ion-
ization (MALDI), surface-enhanced laser desorption/ionization (SELDI), and electrospray
ionization (ESI) [22,23]. In the late 1980s, soft ionization (MALDI and ESI) was applied
to protein analysis, heralding a revolution in protein analysis. In MALDI ionization, the
analyte is embedded in a typically acidic matrix that can absorb large quantities of UV light.
This matrix is then excited using a short laser pulse and parts of this matrix are rapidly
heated and vaporized/ionized together with the analyte [23]. In ESI ionization, an electric
field is applied to the analyte solution flowing through a capillary connected to a liquid
chromatographic system. At the end of the fine tip of the capillary is a counter electrode.
The solvent is evaporated, and the droplet size decreases, producing smaller droplets and
finally yielding charged ions that enter the mass spectrometry system. Both techniques
have been widely used in clinical proteomics [14] (Figure 2).

MALDI mass spectrometry has also advanced considerably. In MALDI imaging, the
use of a matrix allows capture of the spatial component of a sample. This technique can also
be combined with complex image analysis software for biomedical science applications.
Indeed, MALDI mass spectrometry has become widely used for rapid and accurate identi-
fication of bacteria, mycobacteria, and certain fungal pathogens in clinical microbiology
laboratories [18].

Electrospray ionization enables continuous ion generation and can easily be combined
with liquid chromatography and various mass analyzers. Recent advances in ESI sources
have greatly improved sensitivity, and this technique is now the most commonly used
in large-scale qualitative and quantitative proteomics. In the present review, we focus
on the most recent proteomics technologies, which combine liquid chromatography and
electrospray ionization tandem MS (LC-ESI MS/MS or LC-MS/MS) and represent the most
effective and commonly used approaches for proteome analysis [8,11,16], as well as current
and future MS-based proteomics strategies for the study of rare genetic and metabolic
disorders.
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Figure 2. MALDI and ESI Ionization. In MALDI ionization, samples are co-crystallized with an
organic matrix on a MALDI plate. A pulsed laser irradiates the co-crystals. This induces rapid heating
and desorption of ions into the gas phase. Ions pass through the mass analyzer, such that the smaller
peptides reach the detector before the larger peptides (time of flight; TOF). The detector registers the
numbers of ions at each individual mass-to-charge (m/z) value, and then the peptide mass fingerprint
is generated. In ESI-MS, sample molecules (peptides) are ionized directly in solution. The peptide
solution passes through a heated capillary device, and droplets of solution are then sprayed into a
vacuum chamber containing a high-strength electric field. The resulting ions pass through a mass
analyzer and reach the detector, generating complex spectra with multiply charged ions.

In top-down approaches, no proteolytic enzymes are used and the protein analysis
is performed on intact proteins. The procedure includes protein separation, mass spec-
trometry detection, and data analysis stages. This method can be used to characterize
intact proteins from complex biological systems. In contrast to bottom-up approaches,
top-down methods provide almost 100% sequence coverage and complete proteoform
characterization. In summary, the main advantages of top-down strategies are the ability
to (i) generate a complete protein sequence; (ii) locate and characterize PTMs; and (iii)
determine protein isoforms. However, certain disadvantages should also be borne in mind,
including the high associated cost and the low dissociation efficiency associated with some
of these techniques (ECT, ETD), requiring long ion accumulation, activation, and detection
times.

2.1.2. Quantitative Proteomics Approach

The presence/absence and overexpression/down-regulation of certain proteins can
provide crucial information to help fully characterize the proteomes of cells or tissues.
The greatest challenge is to understand how and why protein levels differ between one
condition and another, and between healthy versus diseased states.

MS-based quantitative proteomic approaches can be divided into two general cat-
egories: label-based and label-free techniques. Label-based approaches include pro-
tein/peptide chemical or enzymatic labelling (e.g., two-dimensional difference in-gel
electrophoresis [2D-DIGE], isobaric tag for relative and absolute quantitation [iTRAQ],
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tandem mass tags [TMT], and 18O-labeling), and metabolic labelling (e.g., stable isotope la-
belling by amino acids in cell culture [SILAC] and isotope-coded affinity tag [ICAT]) [24,25]
(Figure 3). These methods are based on the incorporation of stable isotope labels within
peptide/proteins. Heavy and light tags can be added to proteins in different samples (with-
out affecting protein and/or peptide properties such as retention time on a chromatography
column) and can be detected by MS to reveal differences in protein expression based on
the abundance of each tag type. However, these methods for proteomic quantification are
usually more costly (labeling kits are expensive), require additional sample preparation
steps, and have limited multiplicity [25].
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cell culture or animal model samples that can be labeled metabolically at the protein level. After cell
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Recent advances in these techniques include the emergence of label-free approaches,
which avoid the inconveniences associated with labelling and enable high-throughput and
large-scale protein analysis. Label-free quantitative approaches are based on the comparison
of different features between independent LC-MS or LC-MS/MS measurements. The most
commonly used label-free methods can be divided into two groups: (i) spectral counting
(SC), which involves counting the number of identified peptides or acquired fragment
spectra; and (ii) methods that compare precursors’ ion intensities, as determined based on
the extracted ion chromatogram (XIC) [25].

One emerging label-free strategy is sequential window acquisition of all theoretical
mass spectra (SWATH-MS), which was first described by Gillet et al. in 2012 [26]. In this
method, non-labeled protein samples are digested using trypsin, and the resulting peptides
are analyzed by liquid chromatography coupled with a tandem mass spectrometer (LC-
MS/MS) running in an untargeted data-independent acquisition (DIA) mode (Figure 4).
In this mode, all ionized peptides that fall within a specified mass range are fragmented
in a systematic and unbiased manner using over 100 consecutive, slightly overlapping
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precursor isolation windows, with a width of 25 m/z each [27]. These overlapping isolation
windows are derived from previously generated spectral libraries. These libraries are
usually generated using pools and DDA (data-dependent acquisition) of samples from
the different groups, although it is now also possible to download regenerated libraries
(http://www.swathatlas.org/ (accessed on 2 October 2022)).
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Figure 4. DDA and DIA mode in proteomic analysis. In DDA mode, extracted proteins are digested
and directly analyzed by single-shot DDA. The acquired data is searched against a database of known
protein sequences and further processed using diverse software tools. In DIA mode, two distinct
forms of proteomic analysis can be performed: SWATH-MS (untargeted DIA) and SRM/MRM
(targeted DIA). In SWATH-MS extracted proteins are digested and directly analyzed by single-shot
analysis in order to generate the spectral library. Once the library is generated, a multi-window
running method is applied to individual samples; wide isolation windows span the entire MS1 m/z
range and all precursor ions in the library that are found in each isolation window are fragmented
in MS2. All proteins found in the library are quantified (untargeted) and all samples are processed
using data analysis software to obtain the quantitative data. In MRM and SRM, the precursor ions to
be analyzed are fixed (targeted) by the user, and only these are fragmented in MS2.

2.1.3. Targeted Proteomics

Protein mass spectrometry generally is classified into untargeted (“discovery”) pro-
teomics and targeted proteomics. The aim of untargeted proteomics (the form discussed
so far in this paper) is the identification and/or quantification of all proteins (protein dis-
covery). This entails certain limits in terms of precision and accuracy. Thus, it is necessary
to carefully standardize MS-based proteomics workflows so that they can be used for the
same type of analysis in different laboratories in order to facilitate the discovery of protein
biomarkers.

http://www.swathatlas.org/
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Targeted proteomics is better suited to biomarker candidate verification and clinical
applications (protein validation). This approach allows for multiple/selected reaction
monitoring mass spectrometry (MRM/SRM)-MS assays to be performed with short run
times, has extensive multiplexing capabilities, and offers significantly greater quantitative
precision for biomarker validation (Figure 4). This technique also has a high level of
reproducibility, which is necessary for use in clinical and preclinical research [28,29].

It should be noted that methods such as MRM/SRM/PRM-MS allow for quantification
of absolute protein levels. Other previously described methods such as label-based (e.g.,
ITRAQ, SILAC) and non-label-based methods (e.g., SWATH) are semi-quantitative methods
that only indicate the fold change in protein levels between two conditions.

Targeted MS/MS allows absolute quantification of targeted proteins using isotopically
labelled peptide standards (AQUA) [30–32] or protein standard absolute quantification
(PSAQ) [31,33,34]. Using isotope standards simplifies sample preparation and minimizes
variation between mass spectrometry devices, thereby increasing the reliability and accu-
racy of results.

2.1.4. Affinity-Based (Probes and Antibodies) Proteomics Approaches [35–38]

Affinity-based proteomics is a relatively new field of proteomics that seeks to character-
ize protein activity and protein–protein interactions. This method also allows monitoring of
the functional regulation of enzymes in complex proteomes. This technology utilizes small
molecule activity-based probes (APBs) or protein antibodies. The probe molecules cova-
lently modify the enzyme active site and allow detection and affinity purification of a target
enzyme population. Affinity-based antibodies are mainly generated using microarrays or
directly by antibody immunoprecipitation of the whole sample. After affinity purification
(pulldown based on probes or antibodies), substrates and their exact cleavage sites are
identified by mass spectrometry. Moreover, cleavage sites can be quantitatively evaluated
by incorporation of quantitative proteomic techniques such as iTRAQ and SILAC [39].
Thus, this technology is highly selective and can be used for analysis of complex samples
such as biological fluids, cell lysates, intact cells, and even whole organisms, and can
therefore be applied to the study of IMDs.

All activity-based probes share a similar structure [35,39]. They have elements required
for targeting, modification, and detection of labeled proteins. Structurally, these elements
can be divided into the reactive group, linker, and tag. The reactive functional group
provides a covalent attachment to the catalytic residue of the enzyme active site. The
linker function separates the reactive functional group from the tag. Finally, the tag enables
visualization and/or purification of labeled proteins.

For the antibody microarray, the data set correlates directly with the number of
antibodies included in the array and the range of their specificities [37].

Technologies that reveal the most abundant proteins found in certain sample types
(e.g., serum) are crucial for the development of biomarkers that can be used as measurable
indicators of disease severity and progression, patient stratification, and drug development.
Proximity Extension Assay (PEA) is a novel approach based on the interaction between
protein antibodies and DNA [38] that has been commercially developed for the analysis of
secreted proteins in serum and blood plasma. This technology can translate protein infor-
mation into actionable knowledge by linking protein-specific antibodies to DNA-encoded
tags. It offers high specificity and sensitivity (sub-pg/mL), enabling high multiplex assays
with coverage across a broad dynamic range (~9 log), while consuming minimal quantities
of sample. In PEA, matched pairs of oligonucleotide-labeled antibodies bind to their target
antigens in a pairwise manner. Upon antibody binding, the matched oligonucleotides are
brought into proximity and, using a DNA polymerase, a PCR target sequence is created,
amplified, detected, and quantified. This downstream process analysis is usually carried
out by qPCR or by techniques such as next-generation sequencing (NGS).
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The above are all recent technologies, and the coming years will likely see continued
growth in the development and application of affinity-based proteomic approaches. The
use of probes that target diverse enzyme families has led to a range of applications for
activity-based proteomics, in the same way that linking proteins to proteins has provided
information about the interactome, and protein-DNA interactions have provided further
knowledge about cell processes. Therefore, as in other proteomics approaches, comparison
of enzyme activity profiles and protein–protein or protein–DNA interactions (based on
antibody precipitation) in healthy versus diseased samples can aid the identification of
novel biomarkers and drug targets. The results obtained to date show that affinity-based
proteomics offer great promise as imaging tools for disease diagnosis and preclinical and
clinical testing of therapeutic agents in vivo.

3. Proteomics for the Study of IMD

A key challenge in molecular biology is understanding how changes in the genotype
give rise to a given phenotype. Proteins are the final product of genes and the principal
effect of molecules in the cell. However, the result of genetic perturbations on the proteome
remains poorly studied and understood. Until recently, analysis of the complete proteome
was impossible, and therefore studies focused on specific organelles or functions, such
as mitochondrial function [40], kinase activity [41], or central carbon metabolism [42].
These studies demonstrated the importance and utility of systematic proteomic analysis to
understand both gene function and gene networks. Proteomics can reveal impairment at
the level of protein synthesis, stability, degradation, and signaling, all of which can play
crucial roles in disease states.

Two main techniques are used to study the proteome: (i) mass spectrometry-based and
(ii) antibody-based (e.g., ELISA, Western blot) techniques. The latter offer lower throughput
than the former; consequently, MS-based techniques are the first choice for the analysis of
complete complex proteomes. In 2019, Grabowski et al. [43] demonstrated that MS-based
proteome analysis can be used to guide targeted genetic diagnostics and to uncover the
underlying genomic mutations in patients.

Proteomics is therefore a powerful approach for identification of proteins implicated
in metabolic diseases. In general, proteomics can be divided into three distinct categories:
expression proteomics; structural proteomics; and functional proteomics (Figure 5) [44].
Expression proteomics provides information on qualitative and quantitative changes in the
proteins present in the proteome. Structural proteomics is used to characterize the protein
structure or the protein complexes present in a cell type or organelle. Finally, functional
proteomics enables characterization of the biological function and cellular mechanisms of
proteins [45]. Combined knowledge of protein function, activity, and post-translational
modifications, as well as protein–protein interactions, provides valuable information about
cell stage and therefore about the disease. In the study of rare diseases, this information
can facilitate the development of more diagnostically useful tools and identification of
therapeutic targets, ultimately providing more information about the pathophysiology of
the disease [45].

Integration of data acquired using different -omics approaches are essential to fully
realize the concept of personalized medicine. Several articles have described the integration
of the Exome/Genome Sequence into transcriptomics [46,47], metabolomics [48,49], and
proteomics [50] approaches. A variety of tools [51–55] allow the combination and analysis
of data derived from different -omics methods. Therefore, including data from several
-omics approaches in a systems biology analysis can help improve the diagnostic yield and
advance our understanding of the molecular mechanisms underlying the disease.
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Figure 5. Proteomics methods used for the characterization of inherited metabolic disorders. A
combination of expression proteomics (quantitative analysis of protein expression across different
samples) and functional proteomics (analysis of the properties of molecular networks in a living
cell) can be very useful in the search for diagnostic biomarkers and therapeutic targets in IMDs.
Moreover, the information acquired using these two approaches can help to better understand the
pathophysiology of the disease.

Plasma samples are typically used for proteomic or other -omics analysis, as plasma
can be readily and noninvasively obtained, although disadvantages associated with plasma
samples include the presence of abundant proteins (e.g., albumins, immunoglobulins),
many of which are glycosylated [56]. Analysis of samples obtained before and after disease
onset and during treatment can help identify molecular markers of disease pathogenesis
and characterize the effects of treatment. Detection of alterations in proteins obtained from
mitochondrial [57], peroxisomal [58], or lysosomal [59] preparations can provide even more
valuable information. However, the use of serum samples (which contain many major
proteins) can mask differences in mitochondrial, peroxisomal, or liposomal proteins. In
diseases in which the kidney is primarily affected, urine samples can be more useful that
serum samples in the search for biomarkers.

In recent years, LC-MS/MS techniques and other affinity-based proteomics approaches
have been more widely used to obtain more information about rare diseases (Table 1). Here,
we summarize some of the most important results obtained using proteomics approaches.
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Table 1. Overview of recent proteomics analyses of rare genetic metabolic disorders.

Disease Disease Type Altered Protein or
Gene Sample Type Technique Reference

Methyl malonic
aciduria (MMA) Methylmalonicacidemia

Methylmalonyl-CoA
mutase (MUT)

enzyme

HEK 293 cells mutated
using CRISPR/Cas9

technique
Label-free LC-MS/MS [60]

Fabry disease [61–63] Lysosomal storage
disease

α-galactosidase A

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[64]

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[65]

Human plasma samples iTRAQ labelling (discovery)
SRM (validation) [66]

Human urine samples MRM [67]

Gaucher disease Lysosomal storage
disease Glucocerebrosidase Human blood iTRAQ labelling [68]

Mucopolysaccharidosis
MPS I

Lysosomal storage
disease α-L-iduronidase

Mouse brain Label-free LC-MS/MS [69]

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[70]

Dried blood spots (DBS) OLINK Proseek Multiplex
Inflammation [71]

Mucopolysaccharidosis
MPS II

Lysosomal storage
disease Iduronatesulfatase

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[70]

Dried blood spots (DBS)
and buccal swabs

Immunocapture and
LC-MS/MS

(Immuno-SRM)
[72]

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[70]

Mucopolysaccharidosis
MPS IIIB

Lysosomal storage
disease

α-N-
Acetylglucosaminidase Mouse brain LC-MS/MS [73]

Mucopolysaccharidosis
MPIV A

Lysosomal storage
disease

N-
acetylgalactosamine-

6-sulfate sulfatase
(GALN)

Human urine samples
Label-free LC-MS/MS

(discovery)
SRM (validation)

[70]

Primary fibroblast culture Label-free LC-MS/MS
SWATH-MS [74]

Human leukocytes Label-free LC-MS/MS
SWATH-MS [75]

Human plasma Label-free LC-MS/MS
SWATH-MS [76]

Adrenoleukodystrophy
(X-ALD) Peroxisomal disorder

Long-chain fatty acid
accumulation in

plasma and tissues

CSF samples iTRAQ labelling [77]
Serum samples Multi-omic approach [78]

CSF samples OLINK Proximity
Extension Assay [79]

Phenylketonuria
(PKU)

Amino acid
metabolism

Phenylalanine
hydroxylase Mouse liver samples Label-free LC-MS/MS

spectral count [80]

Cystinuria [81] Inborn errors of
metabolism

Variants in genes
SLC3A1 (type I)

SLC7A9 (type II and
type III)

Human urine samples LC-MS/MS
TMT labelling [82]

Human exosomes urine
samples Label-free LC-MS/MS [83]

Human urine samples Label-free LC-MS/MS
spectral count [84]

Human urine samples LC-MS/MS
TMT labelling [85]

Niemann-Pick type C
disease Cholesterol metabolism HE1 Mouse corpus callosum Label-free LC-MS/MS [86]
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Table 1. Cont.

Disease Disease Type Altered Protein or
Gene Sample Type Technique Reference

Lesch-Nyhandisease Purine metabolism

Hypoxanthine-
guanine

phosphoribosyl
transferase

Induced pluripotent stem
cell (iPSC) lines from

fibroblast
Label-free LC-MS/MS [87]

VLCAD deficiency
disease

Fatty acid oxidation
disorder Variants in VLCAD

Human primary cell lines
with

VLCAD and TFP
mutations

Label-free LC-MS/MS [88]

SCAD deficiency
disease

Fatty acid oxidation
disorder Variants in SCAD Primary fibroblasts

culture Label-free LC-MS/MS [89]

Duchenne muscular
dystrophy (DMD) Dystrophinopathies Dystrophin Human blood samples

(plasma and serum)
Antibody suspension bead

arrays [36]

Proteomic changes in methyl malonicaciduria (MMA, OMIM251000) disease have
been studied for many years, making this one of the rare diseases that is best studied using
proteomic techniques. It is known that methylmalonic acid accumulates toxic metabo-
lites from propionyl-CoA and other compounds upstream of the blockade in the enzyme
pathway. Patients develop life-threatening acidosis, respiratory distress, brain disturbance,
hyperammonemia, and ketosis. In 2020, Caterino et al. [60] performed a shotgun label-free
quantitative proteomics and bioinformatics analysis of HEK 293 cells mutated using the
CRISPR/Cas9 technique. Their findings revealed alterations in the cellular architecture and
morphology and ROS overproduction in mutated cells. Moreover, they observed alteration
of proteins involved in the cytoskeleton and organization of cell adhesion, cell trafficking,
mitochondrial, and oxidative processes. The authors generated a cell model of MUT rescue
in order to control the specificity of MUT knockout. Proteomics analysis of both models
revealed increased susceptibility to propionate- and H2O2-induced stress through impair-
ment of mitochondrial functionality and imbalances in the oxidation–reduction processes
in MUT-KO cells.

Fabry disease (OMIM 301500) is a rare X-linked lysosomal storage disease (LSD)
caused by a deficiency in α-galactosidase A. This deficiency leads to the progressive ac-
cumulation of glycosphingolipids, mainly globotriaosyl ceramide (Gb3), globotriaosyl
sphingosine (lyso-Gb3), and galabiosyl ceramide, and their isoforms/analogues in the
vascular endothelium, nerves, cardiomyocytes, renal glomerular podocytes, and biological
fluids. Most patients with this disease show no symptoms in the first years of life, and
survive into adulthood, but experience permanent and intense pain. These patients can
develop early subclinical organ dysfunction from childhood without phenotypic manifesta-
tions, resulting in major delays in diagnosis and initiation of enzyme replacement therapy
(ERT). One of the main manifestations of this disease is nephropathy; therefore, total uri-
nary protein and albumin excretion is considered one of the most important indicators of
this nephropathy.

Some proteomics studies of urine and plasma samples have sought to identify early
protein biomarkers and markers of therapeutic response, and while many potential biomark-
ers have been described, none have yet been used in clinical practice. In 2015, Matafora
et al. [64] performed a label-free LC-MS/MS analysis of urine samples in order to assess
differences in protein expression between ERT and healthy control (HC) patients. The
authors identified several dysregulated proteins, including uromodulin, prostaglandin
H2 D-isomerase, and prosaposin. These proteins are implicated in the processes that
may contribute to the pathophysiology of Fabry disease, including inflammation and
glycosphingolipid metabolism. Furthermore, this study enabled discrimination of female
patients from healthy patients; demonstrating the regulation/normalization of some pro-
teins after therapy in these female patients [64]. Using the same proteomics technique,
an earlier study of 10 pediatric Fabry patients reported decreased urine levels of pros-
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aposin and GM2 activator protein after 12 months of ERT treatment [65]. Both studies
thus confirmed upregulation of prostaglandin H2 D-isomerase and prosaposin expression
in urine from Fabry disease patients, and subsequent decreases in these levels after ERT
treatment. These findings point to the potential utility of these markers for monitoring the
response to ERT. More recently, Doykov et al. [67] performed a similar analysis of urine
samples, comparing samples from early-stage/asymptomatic Fabry disease patients with
those from healthy controls. The results revealed increased levels of six urinary proteins
in the early-stage/asymptomatic Fabry disease group (specifically, albumin, uromodulin,
α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C, and
intracellular adhesion molecule 1). The authors concluded that an increase in urine albumin
levels may indicate presymptomatic disease. Glycogen phosphorylase brain form was the
only protein that was upregulated in early-stage/asymptomatic patients and was further
upregulated as multi-organ involvement progressed. Other proteins, such as podoca-
lyxin, fibroblast growth factor 23, cubulin, and alpha-1-microglobulin/bikun in precursor
(AMBP), were upregulated only in disease groups, and were specifically associated with
kidney disease. Moreover, prosaposin was upregulated in all symptomatic groups, and
was associated with disease severity with a high level of specificity [67].

Hollander et al. [66] searched for plasma biomarkers of Anderson–Fabry disease
(AFD) using a mass spectrometry iTRAQ proteomic approach (discovery phase) and SRM
(validation phase). SRM identified an 8-protein biomarker panel (22 kDa protein, afamin,
α-1 antichymotrypsin, apolipoprotein E, β-Ala His dipeptidase, hemoglobinα-2, isoform 1
of sex hormone-binding globulin, and peroxiredoxin 2) that was specific and sensitive to
male AFD patients. In female patients, a 9-protein biomarker panel was identified. Only
three proteins (apolipoprotein E, hemoglobin α-2, and peroxiredoxin 2) were common to
both sexes, again suggesting the existence of a sex-specific alteration in plasma biomarkers
in AFD patients [66]. In fact, females develop clinically significant disease.

Gaucher disease (GD, OMIM 230800) is another LSD caused by mutations in the glu-
cocerebrosidase (GBA) gene. This is the most common genetic risk factor for Parkinson’s
disease. We have found only one study of GD using a modern proteomics technique (quanti-
tative I-TRAQ assay), that of Pawliński et al. (2020) [68]. This observational, cross-sectional
analysis included twelve adults: six GD patients and six healthy controls. Over 400 proteins
were analyzed in fasting venous blood samples. The authors sought to determine whether
significant differences in protein concentrations between patients and controls were cor-
related with corresponding changes in gene expression. They identified 31 proteins that
differed significantly between the patients and controls. The majority were implicated in
regulation of inflammation and hemostasis. Expression of proteins involved in inflamma-
tion, including alpha-1-acid glycoprotein 2, S100-A8/A9, adenylcyclase-associated protein
1, haptoglobin, and translationally controlled tumor protein (TCTP) related to inflammation
process, was significantly increased in patients versus controls, whereas other proteins
implicated in the humoral response (IGHM and IGHG4, and complement C3/C4 complex)
were significantly decreased in patients versus controls [68].

Mucopolysaccharidosis (OMIM 252940, 253000, 253010, 253200, 253220) is perhaps
one of the most studied of all LSDs. Mucopolysaccharidosis is caused by a deficiency in
enzymes required for the stepwise breakdown of glycosaminoglycans. In the preceding
decades, the enzyme deficiencies associated with each disease have been identified, leading
to the characterization of sevem distinct forms of mucopolysaccharidosis. Several of these
are described below, as well as some of the most interesting proteomic analyses of this
group of LSDs.

Based on symptom severity, mucopolysaccharidosis type I can be divided into three
clinical categories: Hurler and Scheie syndromes, which correspond to phenotypes at either
extreme of the clinical spectrum; and Hurler–Scheie syndrome, which corresponds to an
intermediate-severity phenotype. All are caused by a deficiency of inalpha-L-iduronidase,
which leads to multisystemic accumulation of the glycosaminoglycans (GAGs) heparan
and dermatan sulphate. Distinction between the different forms of this disease is based
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only on clinical criteria, including the rate of symptom progression. Patients with the severe
form (Hurler syndrome) develop mental retardation and cognitive decline from the first
years of life. Patients with the attenuated forms (Hurler–Scheie and Scheie syndromes)
show no brain abnormalities but experience mild-to-moderate impairment in cognitive
function. In their 2015 proteomic analysis, Baldo et al. [69] compared the proteome of
normal and MPS I mouse hippocampus in order to identify proteins implicated in the
brain dysfunction characteristics of this mouse model. Shotgun proteomics analysis by
LC-MS/MS identified 297 proteins, of which 32 were differentially expressed. Cathepsins
B and D and glial fibrillary acid protein (GFAP) were markedly upregulated in MPS I
mouse hippocampus. Using immunohistochemistry techniques, the authors identified
the neuroinflammatory process that could be responsible for neuronal dysfunction. No
differences in the expression of ubiquitin or other proteins related to protein folding were
observed, suggesting no dysfunction of the ubiquitin system. The authors also observed
alterations in several proteins involved in synaptic plasticity, including overexpression
of post synaptic density-95 (PSD95) protein and decreased expression of microtubule-
associated proteins 1A and 1B. These findings suggest that the cognitive impairment in
MPS I mice is not due to massive cell death, but rather to neuronal dysfunction caused by
neuroinflammation and alterations in synaptic plasticity [69].

In 2020, van den Broek et al. [71] investigated systemic inflammation in untreated MPS
I patients and evaluated the effect of HCT (hematopoietic cell transplantation) on systemic
inflammation. The authors used dried blood spot samples from patients with HCT-treated
MPS using a OLINK Proseek Multiplex inflammation platform. In total, 92 markers of the
OLINK inflammation panel were measured in MPS patients compared with those of age-
matched control subjects. The authors observed normal leukocyte enzyme activity levels
in 93% of patients post-HCT. Moreover, pretransplant samples showed clear differences
between patients and controls. The protein markers that distinguished control subjects
from patients pre-HCT were mainly pro-inflammatory (50%) or related to bone homeostasis
and extracellular matrix degradation (33%). After 10 years of follow-up, only 5 markers
(receptor activator of nuclear factor kappa-B ligand, osteoprotegerin, axis inhibition protein
1 [AXIN1], stem cell factor, and Fms-related tyrosine kinase 3 ligand) remained significantly
increased, with a large fold-change difference between MPS I patients and control subjects.

To search for markers of MPS disease severity and to monitor effects of existing and
emerging treatments, Heywood et al. [70] analyzed urine samples from a small cohort
of MPS-I, -II, and -VI patients (n = 12) using label-free quantitative proteomics for the
biomarker discovery and MRM for biomarker validation. They identified 53 differentially
expressed proteins, including some associated with extracellular matrix organization. In
a larger validation cohort of patient samples, targeted multiplexed peptide MRM LC-
MS/MS revealed that none of the markers were significantly altered in patients with
mild disease relative to the healthy controls. β-galactosidase, a lysosomal protein, was
upregulated in all disease groups. Collagen type Iα, fatty-acid-binding-protein 5, nidogen-1,
cartilage oligomeric matrix protein, and insulin-like growth factor binding protein 7 were
upregulated in severe MPS I and II groups. Moreover, the authors showed that the cartilage
oligomeric matrix protein, insulin-like growth factor binding protein 7, and β-galactosidase
could be used to distinguish the severe neurological form of MPS-II from the milder non-
neurological form. Interestingly, Heg1 was the only protein with significantly increased
expression in MPS-VI. In 2022, Zang et al. [72] used a combination of immunocapture
and MS-based proteomics (Immuno-SRM) in order to quantify GAA and IDUA proteins
in dried blood spot (DBS) and buccal swab samples. Absence of these two proteins is
associated with infantile onset Pompe disease (IOPD) and severe MPS I, respectively. To
validate the technique, the authors assessed the sensitivity, linearity, and reproducibility of
protein concentration measurements in healthy control samples. Subsequent analysis in
patients allowed quantification of GAA and IDUA with high reproducibility and sensitivity.

Mucopolysaccharidosis IIIB (MPS IIIB) is a metabolic disease caused by a deficiency
in the α-N-acetyl glucosaminidase (NAGLU) enzyme, which in turn results in the accumu-
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lation of undegraded heparan sulfate. The main clinical manifestations of the disease are
profound intellectual disability and neurodegeneration. De Pasquale et al. (2020) [73] used
a label-free quantitative proteomics approach to assess differences in the proteome profile
in brains of MPS IIIB versus control mice. They identified 130 significantly deregulated
proteins, 74 of which were upregulated in MPS IIIB versus wild type (WT) brains. These
proteins were mainly involved in cytoskeletal regulation, synaptic vesicle trafficking, and
energy metabolism. The findings constitute an important starting point for future studies
seeking to identify novel therapeutic targets for MPS IIIB.

Recently, we demonstrated that using a combination of shotgun proteomics with
SWATH-MS [74–76] can provide useful information about mucopolysaccharidosis type
IVA (MPS IVA). Moreover, this technique can be scaled to accommodate thousands of
samples without compromising measurement precision. We are also using proteomics
analyses to identify new delivery systems to improve conventional ERT treatment by
using nanoparticles to facilitate access of the enzyme to affected organs, such as the brain
or bones.

MPS IVA (OMIM 253000) is an LSD caused by mutations in the N-acetylgalactosamine-
6-sulfatase (GALNS) gene that promotes the accumulation of large quantities of keratin
sulphate (KS). Some of the most characteristic symptoms are systemic skeletal dysplasia
due to disruption of cartilage and its extracellular matrix, leading to growth imbalance.
ERT with alpha elosulfase, a recombinant human GALNS, constitutes the only systemic
treatment. However, no correlation has been described between therapeutic efficacy and
urine levels of KS, which accumulates in MPS IVA patients. Moreover, this therapy has
a limited impact on skeletal dysplasia, as the infused enzyme cannot penetrate cartilage
or bone. Therefore, a key unmet need is the development of an alternative therapeutic
approach that ensures cartilage penetration. We have developed a new drug delivery
system based on a nanostructure lipid carrier with the capacity to immobilize enzymes used
for ERT and to target the lysosome [74]. In our first proteomic study using SWATH-MS, we
assessed the effect of the encapsulated enzyme using this new delivery system in fibroblasts
from anterior forearm tissue. Our improved ERT technology, using nanoparticles, allows
us to achieve greater enzyme internalization inside the cells. SWATH-MS confirmed the
improvement of cellular protein routes previously impaired by the disease, compared with
cells treated using conventional ERT. In 2020, we applied SWATH-MS analysis to leukocyte
samples from HCs (n = 6) and both untreated (n = 5) and ERT-treated (n = 8, sampled before
and after treatment) MPS IVA patients in order to identify potential disease biomarkers [75].
We identified 690 proteins, from which we selected those that were dysregulated in ERT-
treated MPS IVA patients, and identified four potential protein biomarkers, all of which are
implicated in bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-
glucosidase AB, and vitronectin. In 2021, we performed another SWATH-MS [76] study to
assess the validity of potential serum biomarkers proposed by other authors and to identify
new biomarkers. We used plasma samples from healthy controls (n = 6) and untreated
(n = 8) and ERT-treated (n = 5, sampled before and after treatment) MPS IVA patients.
We detected 215 proteins with altered expression in ERT-treated MPS-IVA patients versus
controls, and identified four potential protein biomarkers involved in bone and cartilage
metabolism: fetuin-A, vitronectin, alpha-1antitrypsin, and clusterin. The fact that several
proteins were identified as candidate biomarkers in both studies strongly supports their
use for this purpose, although more studies focusing on cartilage and bone samples from
MPS IVA patients will be required in order to verify/validate their utility as biomarkers of
MPS IVA.

Cerebral adrenoleukodystrophy (CALD, OMIM 300100) is an inflammatory neurode-
generative disease associated with a mutation in the ABCD1 gene that causes the buildup
of very long chain fatty acids (VLCFAs) in the brain. VLCFA accumulation can destroy
the protective myelin sheath around nerve cells. The lifetime prevalence of developing
progressive white matter lesions is about 60%. Early identification of CALD is critical, as
legions can be prevented using an allogeneic hematopoietic stem cell therapy, but only at
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early disease stages. In the last 5 years, two proteomic studies of cerebral spinal fluid (CSF)
and plasma samples have been performed to identify protein molecular markers that may
be related to cerebral demyelination and disease progression.

In 2019, Orchard et al. [77] published a proteomic analysis of CSF samples from
young males with active CALD, and described alterations in several proteins, including
APOE4, that could constitute candidate markers of inflammation. Moreover, this group
assessed APOE4 in 83 young males with CALD prior to hematopoietic cell transplant;
therefore, the association of this protein with cerebral disease was identified. Their results
showed that compared with non-carriers, APOE4 carriers had a greater burden of cerebral
disease, higher gadolinium intensity, inferior neurologic function, and elevated CSF MMP2
levels. These data constitute the first evidence linking APOE4 with increased cerebral
disease severity in CALD and suggest that this protein may represent a valid therapeutic
target. In 2020, Richmond et al. used blood samples from six well-characterized brother
pairs affected by ALD and discordant for the presence of CALD [78] to perform multi-
omic profiling, including genome, epigenome, transcriptome, metabolome/lipidome, and
proteome analysis. The results revealed discordant genomic alleles in all families, and
differentially abundant molecular features across the -omics technologies.

In 2022, Wang et al. [79] used the OLINK Proximity Extension Assay to analyze the
cerebral spinal fluid (CSF) of young males with CALD and performed a comparative
analysis using plasma samples. Using the Target 96 Neuro Exploratory panel, they found
that levels of five proteins were significantly increased in CSF. Only for neurofilament
light chain (NfL) was a significant correlation observed between CSF and plasma samples.
Young males with CALD showed a 11.3-fold increase in plasma NfL compared with controls.
Moreover, nine of eleven young males with CALD who underwent HCT showed a decrease
in plasma NfL levels after 1 year of treatment compared with pre-HCT levels. The authors
concluded that plasma NfL could constitute a useful determinant of outcomes in CALD.

Phenylketonuria (PKU, OMIM 261600) is a rare genetic disease caused by a deficiency
in phenylalanine hydroxylase (PAH) in the liver. This defect induces increases in blood
phenylalanine (Phe) and neurotoxicity. Therapies for this disease are mainly based on the
restriction of Phe intake, which largely requires modification of the diet. A new therapy
based on pegylated phenylalanine ammonia lyase (PEG-PAL) was approved in 2019 by
EMA and acts to metabolize Phe into cinnamic acid. Another potential therapy (currently
in clinical trials Phase 1/2) consists of a single delivery of a rAAV carrying the PAH gene
directly into liver to convert Phe into tyrosine, mimicking the normal process of Phe
metabolism. In 2021, Manek et al. [80] performed transcriptomic and proteomic analyses
in order to compare these two Phe-lowering strategies. They found that both approaches
lower brain Phe and increase neurotransmitter levels, thereby correcting animal behavior.
In a more concrete way, these groups investigated the effect of high levels of Phe and how
these levels can be lowered in liver functions in PKU mice. The authors observed increased
levels of Cyp4a10/14 proteins, which are involved in lipid metabolism, and upregulation
of genes involved in cholesterol biosynthesis.

Cystinuria (OMIM 220100) is a rare genetic disease that is mainly characterized by
impaired transport of cystine and dibasic amino acids in the proximal renal tubule. About
half of all cases are due to a mutation in SLC3A1 that is inherited in an autosomal recessive
manner. The SLC3A1 gene encodes rBAT, one of the two most important proteins that are
in charge of neutral and basic amino acid transport. The other 50% of cases are caused by
autosomal dominant SLC7A9 mutations with incomplete penetrance; SLC7A9 encodes a
protein that is also involved in transport of amino acids. Cystinuria patients often have
kidney stones due to the low solubility of cystine in urine. In these patients (cystinuria
patients), even though cystine stones were low, morbidity is high due to a high rate of
recurrence, the need for multiple surgeries, and the risk of developing chronic kidney
disease. Renal function in patients with cystine kidney stones is reduced compared to those
with non-cystine stones, but the cause of impaired kidney function is unclear, since gene
mutations cannot fully explain kidney stone formation. Therefore, there are likely other
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factors that underlie this decrease in kidney function, for example proteins that serve as
promoters or inhibitors of cystine precipitation, aggregation or epithelial adherence. Further
proteomics studies will be necessary to identify these mechanisms. Assinos et al. (2019) [82]
conducted proteomic analyses of urine samples to assess differences in the concentration
and function of urinary proteins between cystinuria and renal stones in (CYS)patients and
healthy controls (HC). They concluded that CYS patients show alterations in urine proteins
involved in cellular processes including stress, inflammation, and the immune response.

An earlier study by Bourderiox et al. (2015) studied cystinuria through proteomic
analysis of urinary extracellular vesicles in cystinuria patients versus controls [83], identify-
ing 165 dysregulated proteins, 38 of which were upregulated in patients versus controls.
The majority of these proteins were markers of kidney injury, circulating proteins, and
neutrophil-derived proteins. The authors observed a correlation between specific clus-
ters of urinary proteins and the severity of renal disease, suggesting a possible role of
inflammation in kidney disease progression.

Kovacevic et al. (2015) [84] compared urinary proteomes of two pediatric CYS patients
with two age- and sex-matched controls, using label-free proteomic analysis. The CYS
patients showed altered urinary excretion of proteins associated with oxidative stress and
inflammation, leading to fibrosis. However, this study suffered from certain limitations,
including a limited number of patients. In 2019, the same group [85] published a proteomics
analysis in a long patient cohort to assess differences in the concentration and function
of urinary proteins between patients with cystine stones (CYS) and healthy controls. The
results again demonstrate proteomic differences between patients and controls. This study
identified a large number of proteins (2097), of which 398 were dysregulated between
the CYS and HC groups. Of these, 191 were involved in transport processes and 61 in
inflammatory responses. A large proportion was vesicle-mediated transport proteins. Of
the downregulated proteins, twelve were involved in endosomal transport and nine in
transmembrane transport. The more interesting proteins were myosin-2 and 2actin-related
proteins that were significantly upregulated in the vesicle-mediated transport group. Taken
together, these proteomic findings provide evidence of impaired endocytosis, dysregulation
of actin and myosin cytoskeleton, and inflammation in CYS.

Niemann–Pick type C disease (NPC, OMIM607625) is a rare neurodegenerative dis-
order caused by mutations in the NPC intracellular cholesterol transporter 1 or 2 (Npc1
or Npc2) and is characterized by hypomyelination in the central nervous system (CNS).
While Npc1 has key roles in both neurons and oligodendrocytes during myelination, the
link between altered cholesterol transport and inhibited myelination is unclear. To better
understand this disease, Yang et al. (2019) [86] performed a quantitative mass spectrometry
(MS)-based proteomics analysis to compare the protein composition of corpus callosum
in WT versus NPC mice. They identified a total of 3009 proteins, including myelin struc-
tural proteins, neuronal proteins, and astrocyte-specific proteins. Moreover, they observed
downregulation of myelin structural and indispensable proteins in Npc1 mutant mice. The
observed reduction in ceramide synthase 2 (Cers2), UDP glycosyltransferase 8 (Ugt8), and
glycolipid transfer protein (Gltp) expression, suggesting a potentially altered sphingolipid
metabolism in NPC, and possible involvement of Gltp in myelination.

Lesch–Nyhan disease (LND, OMIM 300322.) is an inherited disorder caused by
pathogenic variants in the HPRT1 gene. This gene encodes the purine recycling enzyme
hypoxanthine–guanine phosphoribosyltransferase (HGprt). Sutcliffe et al. (2021) [87] per-
formed proteomic and genomic analyses in pluripotent stem cell (iPSC) lines generated
from fibroblasts from LND patients and controls. First, the authors fully characterized this
iPSC line by immunostaining to detect pluripotency markers. While a gene expression
profile generated using RNAseq revealed heterogeneity among LND cells lines, several ab-
normalities were detected in all LND lines, including reduced mRNA expression ofHPRT1
and FAR2P1 and increased mRNA expression of RNF39. Shotgun proteomics revealed
expected abnormalities in the LND lines, including the absence of the HGPRT protein.
However, this approach also revealed unexpected abnormalities in LND lines, including
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increased and decreased expression of GNAO1 and NSE4A, respectively. Using the data
obtained from both -omics techniques, the authors demonstrated a good (albeit partial)
correlation between the abnormalities detected using RNAseq and proteomics methods.

Mutations in nuclear genes that encode mitochondrial proteins such as very long-chain
acyl-CoA dehydrogenase (VLCAD) and trifunctional protein (TFP) cause rare autosomal
recessive disorders. VLCAD (OMIM 201475) and TFP (OMIM 609015) deficiency can induce
hypoglycemia, cardiomyopathy, intermittent muscle breakdown (rhabdomyolysis), and
liver failure. Clinical management of these diseases includes a reduction in the dietary
intake of long-chain fatty acids (LCFA), fasting avoidance, and a high carbohydrate diet
supplemented with medium-chain triglycerides and in some cases carnitine. Despite some
advances in detection and clinical management of this condition, affected patients still
experience life-long symptoms due to difficulties performing molecular and biochemical
characterization of disease phenotypes. In 2021, Ramiro et al. [88] published the results of
their quantitative label-free proteomic analysis in fibroblasts derived from patients with
three different VLCAD deficiency mutations and three distinct TFP deficiency mutations.
They observed decreased expression of the VLCAD- and TFP-associated proteins in cells
carrying the VLCAD and TFP mutations, respectively. Moreover, they described decreased
mitochondrial respiratory capacity in cells with VLCAD and TFP mutations after glucose
removal, and reduced glycogen levels in cells with TFP mutations. Despite these energetic
deficiencies, they observed no changes in mitochondrial morphology, distribution, fusion,
or fission, as evaluated using confocal or transmission electron microscopy and corrobo-
rated by proteomic and antibody-based protein analysis. The proteomic findings revealed
upregulation of both mitochondrial respiratory chain proteins and proteins that facilitate
the assembly of respiratory complexes in fibroblasts harboring VLCAD mutations and, to a
lesser extent, those carrying TFP mutations. In this model, authors found that expression
levels of 45 proteins corresponding to the major intracellular antioxidant networks were
similar in cells carrying VLCAD or TFP mutations and non-diseased controls, while levels
of catalase and glutathione S-transferase theta-1 were downregulated. Taken together, these
data suggest that despite metabolic deficits, cells carrying VLCAD or TFP mutations have
the necessary cellular and mitochondrial proteomic integrity required to preserve their
architecture, support energy production, and protect against oxidative stress.

Short-chain acyl-CoA dehydrogenase deficiency (SCADD, OMIM 606885) is another
rare inherited autosomal recessive disorder, the pathophysiology of which is poorly under-
stood. This disease is caused by genetic variation in ACADS, which encodes the enzyme
SCAD, a component of the mitochondrial fatty acid oxidation (FAO) system. This enzyme
is necessary for the dehydrogenation of butyryl-CoA, the first step in the breakdown of
short-chain fatty acids through β-oxidation. Symptomatic SCADD patients exhibit hypoto-
nia, hypoglycemia, lethargy, dysmorphic features, developmental delay, and epilepsy. A
2014 proteomic analysis using quantitative label-free LC-MS/MS [89] characterized the mi-
tochondrial proteome profile of symptomatic patients homozygous for missense variations
in ACADS in order to link protein alterations to the disease. The analysis identified and
quantified some 300 mitochondrial proteins. In patients carrying the c.319C > T variant
in ACADS, significant alterations with respect to controls were observed for 13 proteins,
all with roles in the antioxidant system and amino acid metabolism. In patients carrying
the c.1138C > T variant, 22 proteins were significantly altered relative to controls. These
proteins were involved in fatty acid β-oxidation, amino acid metabolism, and protein
quality control. Finally, expression of three proteins was significantly altered in both patient
groups compared with controls: adenylate kinase 4 (AK4), nucleoside diphosphate kinase
A (NME1), and aldehyde dehydrogenase family 4 member A1 (ALDH4A1). Two of these
are particularly interesting (AK4 and NME1), given their roles in energy reprogramming
and cell survival and proliferation, all of which are important pathways in SCADD and
related metabolic diseases.

Duchenne muscular dystrophy (DMD; OMIM310200) is a rare X-linked genetic disease
with an incidence rate of 1:5000. DMD is caused by frame-disrupting mutations in the gene
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encoding dystrophin, resulting in loss of dystrophin [90]. Affected boys typically present
clinical signs in the first few years of life, with features suggestive of muscle weakness
and often with global developmental delay. Progressive muscle weakness leads to loss
of ambulation by the age of 10, and if untreated, to fatal cardiorespiratory insufficiency
by late adolescence. Establishing a correct diagnosis in dystrophinopathies requires a
multidisciplinary approach involving pediatricians, geneticists, and neurologists to define
the severity of the clinical phenotype by means of genetic, enzymatic, and immunohis-
tochemical tests [90]. The application of proteomics to the study of dystrophinopathies
could facilitate both diagnosis and treatment. In 2014, Ayoglu et al. [36] explored the
possibility of identifying circulating candidate protein markers in rare diseases by applying
an affinity-based proteomics approach to generate a proteomic profile in blood samples
from muscular dystrophy patients versus controls. The authors used an antibody bead
array platform with 384 antibodies. Based on the results obtained from analysis of both
serum and plasma, they identified eleven proteins associated with muscular dystrophy,
of which four were upregulated in blood from muscular dystrophy patients: carbonic
anhydrase III (CA3), myosin light chain 3 (MYL3), mitochondrial malate dehydrogenase 2
(MDH2), and electron transfer flavoprotein A (ETFA). These interesting data could aid the
development of new clinical tools for management of dystrophinopathies.

4. Conclusions

The findings discussed here leave no doubt that proteomics techniques have greatly
benefitted the study of rare diseases and have important implications for clinical practice,
facilitating the development of more effective diagnostic and prognostic methods, the
identification of new therapeutic targets, and the tailoring of individualized patient therapy.
While the utility of proteomics for biomarker discovery has been demonstrated, further
research is required to enhance performance and reproducibility between laboratories;
issues such as pre-analytical variables, analytical variability, and biological sample varia-
tion must be addressed before proteomics tools can be incorporated into routine clinical
laboratory practice. Moreover, current proteomic techniques require specialist operators
and expensive equipment, further limiting their use in clinical laboratories. Nonetheless,
in the near future, proteomics will likely be the method of choice for the identification of
biological markers of specific diseases and will in turn facilitate the development of new,
more precise biochemical and immunological tests.
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