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Abstract: Deltamethrin (DLT) is a type-II pyrethroid ester insecticide used in agricultural and domes-
tic applications as well as in public health. However, transmembrane ionic channels perturbed by this
compound remain largely unclear, although the agent is thought to alter the gating characteristics
of voltage-gated Na+ (NaV) channel current. In this study, we reappraised whether and how it and
other related compounds can make any further modifications on voltage-gated Na+ current (INa)
in pituitary tumor (GH3) cells. Cell exposure to DLT produced a differential and dose-dependent
stimulation of peak (transient, INa(T)) or sustained (late, INa(L)) INa; consequently, the EC50 value
required for DLT-stimulated INa(T) or INa(L) was determined to be 11.2 or 2.5 µM, respectively. How-
ever, neither the fast nor slow component in the inactivation time constant of INa(T) activated by
short depolarizing pulse was changed with the DLT presence; conversely, tefluthrin (Tef), a type-I
pyrethroid insecticide, can accentuate INa with a slowing in inactivation time course of the current.
The INa(L) augmented by DLT was attenuated by further application of either dapagliflozin (Dapa) or
amiloride, but not by chlorotoxin. During pulse train (PT) stimulation, with the Tef or DLT presence,
the cumulative inhibition of INa(T) became slowed; moreover, following PT stimuli, a large tail current
with a slowly recovering process was observed. Alternatively, during rapid depolarizing pulse, the
amplitude of INa(L) and tail INa (INa(Tail)) for each depolarizing pulse became progressively increased
by adding DLT, not by Tef. The recovery time constant following PT stimulation with continued
presence of Tef or DLT was shortened by further addition of Dapa. The voltage-dependent hysteresis
(Hys(V)) of persistent INa was differentially augmented by Tef or DLT. Taken together, the magnitude,
gating, frequency dependence, as well as Hys(V) behavior of INa exerted by the presence of DLT or
Tef might exert a synergistic impact on varying functional activities of excitable cells in culture or
in vivo.

Keywords: pyrethroids; voltage-gated Na+ current; late Na+ current; transient Na+ current; persistent
Na+ current

1. Introduction

Deltamethrin (DLT, decamethrin) is a cyclopropanecarboxylate ester obtained by for-
mal condensation between 3-(2,2-dibromovinyl)-2,2-dimethylcyclopanecarboxylic acid and
cyano(3-phenoxyphenyl)methanol [1,2]. It is viewed to be the active insecticide of the
proinsecticide tralomethrin [3–5]. Pyrethroids like DLT or tefluthrin (Tef) have been demon-
strated to modify the gating characteristics of voltage-gated Na+ (NaV) channels [6–10].
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Deltamethrin (DLT), a neurotoxic type-II pyrethroid ester insecticide [3–5], has been demon-
strated previously to cause a reversible sequence of motor symptoms in rats involving hind
limb rigidity and choreoathetosis [2,11–13]. Alternatively, DLT was also reported to de-
crease Cl− currents through voltage-dependent Cl− channels and this action probably con-
tributes the most to the features of poisoning with DLT or other type II pyrethroids [14–16].
At relatively high concentrations, pyrethroids can also act on GABA-gated Cl− channels,
which may be responsible for the seizures seen with severe type-II poisoning [2,17].

It has been established that nine isoforms (i.e., NaV1.1–1.9 [or SCN1A–SCN5A and
SCN8A–SCN11A]) of the voltage-gated Na+ (NaV) channels are widely distributed in mam-
malian excitable tissues, which include the central or peripheral nervous system, and the
endocrine or neuroendocrine system [18–20]. The eukaryotic versions of these NaV-channel
proteins are comprised of a single subunit which contains four six-transmembrane pseu-
dodomains [20,21]. Upon rapid depolarization, the NaV channels, by which macroscopic
voltage-gated Na+ currents (INa) are encoded, are characterized by going through rapid
transitions from the closed (resting) state to the open state, and then by swiftly changing
to the inactivated state [20,21]. The inactivation of INa has been also demonstrated to
accumulate before being stimulated during repetitive short depolarizing pulses [22–25].
Consequently, once being evoked, the increased magnitude of INa can quickly depolarize
the cell membrane through positive feedback cycle and, in turn, elicit the upstroke of
the action potentials, thereby intrinsically governing the amplitude, frequency, and/or
pattern of firing action potentials, as well as hormonal secretion, in an array of excitable
cells [20,21,26,27]. On the other hand, the aberrant changes in NaV (i.e., NaV1.2) channel
activity occurring in corticostriatal circuits of adult mice were also reported to elevate
neuronal excitability [28].

Like the action of tefluthrin (Tef) [7,8,16,26,29], deltamethrin (DLT) was used to kill a
wide range of insects [2,6,30]. There is a growing concern over human or animal poisoning
as aberrant use in these esters. However, whether and how deltamethrin (DLT) or other
structurally similar pyrethroids (e.g., Tef) is able to modify the magnitude, gating kinetics,
frequency dependence, and/or voltage-dependent hysteresis (Hys(V)) of INa remains mostly
obscure, although they are recognized to augment the INa magnitude [6–9].

In light of the aforementioned considerations, we wanted to extensively explore the
electrophysiological effects of DLT and other related compounds (e.g., Tef) in pituitary
GH3 sommatolactotrophs with either a single voltage-clamp pulse or pulse train (PT)
stimulation. The tetrodotoxin (TTX)-sensitive INa, which is responsible for the generation
of action potentials, has been identified in pituitary tumor (GH3) cells [18]. The GH3
cell line has been demonstrated previously to express the α-subunits of NaV1.1, NaV1.2,
NaV1.3, and NaV1.6, as well as the β1 and β3-subunits of NaV channel [18,31]. In the
current investigations, we intended to (1) evaluate if DLT has any perturbations on the
peak (transient, INa(T)) and sustained (late, INa(L)) components of INa intrinsically in these
cells; (2) examine if this compound affects either magnitude or time course of INa during as
well as following 1-s pulse train (PT) stimulation; (3) explore whether or not the Hys(V)’s
behavior of persistent INa (INa(P)) could be seriously disturbed by the presence of DLT;
and (4) the molecular docking between the DLT molecule and the hNaV1.5 channel was
also predicted. The present results disclosed that the differential and dose-dependent
stimulation of INa(T) and INa(L) by DLT as well as its perturbations either on INa occurring
during or following PT stimulation, or on Hys(V) properties of INa(P) may potentially
converge to engage in a great impact on electrical behaviors of mammalian excitable cells
(e.g., GH3 cells).

2. Results
2.1. Modification by Deltamethrin (DLT) or Tefluthrin (Tef) on Voltage-Gated Na+ Current (INa)
Measured from Pituitary GH3 Cells

In the first stage of whole-cell current recordings, we measured the effects of DLT
or Tef on the magnitude and inactivation time course of INa activated in response to
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abrupt depolarizing pulse. We placed cells in Ca2+-free, Tyrode’s solution containing
10 mM tetraethylammonium chloride (TEA), and the pipette used was filled up with a Cs+-
containing solution. As demonstrated in Figure 1A, two minutes after cells were continually
exposed to DLT or Tef at a concentration of 10 µM, the amplitude in the transient (INa(T)) or
late (INa(L)) component of INa activated by 20-ms depolarizing pulse from −80 to −10 mV
was progressive raised. For example, as the rectangular voltage step from −80 to −10 mV
with a duration of 20 ms was given (indicated in the uppermost part of Figure 1A) to
activate INa, the addition of 10 µM DLT was found to result in a striking increase in either
INa(T) or INa(L) amplitude to 512 ± 17 pA (n = 9, p < 0.05) or 128 ± 9 pA (n = 9, p < 0.05) from
control values of 401 ± 15 or 22 ± 5 pA (n = 9), respectively. After washout of DLT, INa(T)
or INa(L) was returned to 409 ± 17 or 28 ± 7 pA (n = 9). Likewise, the presence of 10 µM Tef
also measurably increased INa(T) or INa(L) amplitude from 409 ± 14 pA (n = 9) or 32 ± 6 pA
(n = 9) to 499 ± 16 pA (n = 9, p < 0.05) or 162 ± 11 pA (n = 9, p < 0.05), respectively. However,
with cell exposure to 10 µM DLT, neither fast nor slow time constant of INa(T) inactivation
in response to rapid membrane depolarization was evidently changed. Alternatively, with
the presence of 10 µM Tef, the slow component in the time constant of INa(T) inactivation
was strikingly raised to 19 ± 2 msec (n = 9, p < 0.05) from a control value of 0.9 ± 0.2 msec
(n = 9). The time course of effects of DLT (10 µM) on the amplitude of INa(Tot), INa(L) or
INa(T) is illustrated in Figure 1B. Of note, during exposure to 10 mM DLT, the amplitude
of INa(Tot), INa(L), or INa(T) was increased to 177 ± 21 % (n = 8), 1752 ± 105 % (i.e., around
1.7-fold) (n = 8), or 24 ± 6% (n = 8), respectively.
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Figure 1. Effect of deltamethrin (DLT) or tefluthrin (Tef) on voltage-gated Na+ current (INa) measured 
from pituitary GH3 lactotrophs. This set of experiments was made in cells placed in Ca2+-free, 
Tyrode’s solution containing 10 mM tetraethylammonium chloride (TEA), and the measuring elec-
trode was filled with an internal solution enriched with Cs+. (A) Exemplar current traces obtained 
in (a, blue color) the control conditions (i.e., neither DLT nor Tef was present) and during cell expo-
sure to either 10 μM DLT (b, upper, red color) or 10 μM Tef (b, lower, red color). The voltage-clamp 
protocol is illustrated atop recorded current traces. The graph shown in the right side of (A) denotes 
the expanded record from the observed current trace (red color) in the presence of 10 μM DLT and 
the definition of transient Na+ current (INa(T)), late Na+ current (INa(L)), total Na+ current (INa(Tot)), or tail 
Na+ current (INa(Tail)) is marked (indicated with blue double arrows). (B) Time course of effects of 10 
μM DLT on the amplitude of INa(Tot) (upper), INa(L) (middle), and INa(T) (lower). Each point was taken 
at a rate of 0.1 Hz. The horizontal bar shown above indicated the application of DLT. (C) Concen-
tration-dependent relationship of DLT on INa(T) (purple open circles) or INa(L) (blue solid circles) acti-
vated by short depolarizing step. Each data point in this graph represents mean ± SEM of 9 cells. 
According to the averaged data, the smooth line represents the best fit to the Hill equation as de-
scribed in Materials and Methods. 

2.2. Comparison among Effects of Tef, DLT, Tef plus Chlorotoxin (ChloroTx), DLT plus 
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ChloroTx, Dapa, or amiloride on INa(L) amplitude. ChloroTx was reported to suppress Cl- 
current, Dapa was an inhibitor of INa(L) [32,33], and amiloride can attenuate the pyre-
throids-stimulated sodium transport [16]. As summarized in Figure 2, with continued 
presence of Tef or DLT, the further exposure to ChloroTx (1 μM) failed to modify their 
stimulation of INa(L). Dapa (10 mM) or amiloride (10 mM) alone decrease the INa(L) ampti-
tude to 31 ± 2 pA (n = 8, p < 0.05) or 28 ± 2 pA (n = 8, p < 0.05) from control value of 50.3 ± 
3 pA (n = 8). Moreover, the subsequent presence of either Dapa (10 μM) or amiloride (10 
μM) was able to attenuate Tef- or DLT-mediated increase of INa(L) effectively. The results 
prompted us to suggest that either Dapa or amiloride could directly cause an inhibitory 
effect on the amplitude of INa(L) observed in GH3 cells [32,33]. 

Figure 1. Effect of deltamethrin (DLT) or tefluthrin (Tef) on voltage-gated Na+ current (INa) measured
from pituitary GH3 lactotrophs. This set of experiments was made in cells placed in Ca2+-free, Ty-
rode’s solution containing 10 mM tetraethylammonium chloride (TEA), and the measuring electrode
was filled with an internal solution enriched with Cs+. (A) Exemplar current traces obtained in (a,
blue color) the control conditions (i.e., neither DLT nor Tef was present) and during cell exposure to
either 10 µM DLT (b, upper, red color) or 10 µM Tef (b, lower, red color). The voltage-clamp protocol
is illustrated atop recorded current traces. The graph shown in the right side of (A) denotes the
expanded record from the observed current trace (red color) in the presence of 10 µM DLT and the
definition of transient Na+ current (INa(T)), late Na+ current (INa(L)), total Na+ current (INa(Tot)), or
tail Na+ current (INa(Tail)) is marked (indicated with blue double arrows). (B) Time course of effects
of 10 µM DLT on the amplitude of INa(Tot) (upper), INa(L) (middle), and INa(T) (lower). Each point
was taken at a rate of 0.1 Hz. The horizontal bar shown above indicated the application of DLT.
(C) Concentration-dependent relationship of DLT on INa(T) (purple open circles) or INa(L) (blue solid
circles) activated by short depolarizing step. Each data point in this graph represents mean ± SEM of
9 cells. According to the averaged data, the smooth line represents the best fit to the Hill equation as
described in Materials and Methods.

Figure 1C demonstrates that the addition of DLT to the bath can concentration-
dependently increase the amplitude of INa(T) or INa(L) activated by short depolarizing
step. According to the Hill equation stated under Materials and Methods, the EC50 value
needed for DLT-stimulated INa(T) or INa(L) observed in GH3 cells was calculated as 11.2 or
2.5 µM, respectively. Consistent with previous studies [6,8], the experimental observations,
therefore, enable us to reflect that the DLT presence exerts a stimulatory action on the
magnitude of INa(T) and INa(L) natively expressed in GH3 cells, and that this compound
tends to be selective for INa(L) over INa(T) during rectangular depolarizing pulse.

2.2. Comparison among Effects of Tef, DLT, Tef plus Chlorotoxin (ChloroTx), DLT plus ChloroTx,
Tef plus Dapaglifozin (Dapa), DLT plus Dapa, and DLT plus Amiloride on INa(L) Amplitude
Measured from GH3 Cells

Exposure to pyrethroids (e.g., DLT) has been previously demonstrated to activate Cl−

currents [14–16]. We further compared the effects of Tef, DLT or their combinations with
ChloroTx, Dapa, or amiloride on INa(L) amplitude. ChloroTx was reported to suppress Cl−

current, Dapa was an inhibitor of INa(L) [32,33], and amiloride can attenuate the pyrethroids-
stimulated sodium transport [16]. As summarized in Figure 2, with continued presence of
Tef or DLT, the further exposure to ChloroTx (1 µM) failed to modify their stimulation of
INa(L). Dapa (10 mM) or amiloride (10 mM) alone decrease the INa(L) amptitude to 31 ± 2 pA
(n = 8, p < 0.05) or 28 ± 2 pA (n = 8, p < 0.05) from control value of 50.3 ± 3 pA (n = 8).
Moreover, the subsequent presence of either Dapa (10 µM) or amiloride (10 µM) was able
to attenuate Tef- or DLT-mediated increase of INa(L) effectively. The results prompted us
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to suggest that either Dapa or amiloride could directly cause an inhibitory effect on the
amplitude of INa(L) observed in GH3 cells [32,33].
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Figure 2. Comparison among effects of Tef, DLT, Tef plus chlorotoxin (ChloroTx), DLT plus ChloroTx,
Tef plus dapagliflozin (Dapa), DLT plus Dapa, and DLT plus amiloride on the amplitude of INa(L)

measured from GH3 cells. The INa was elicited by 20 ms depolarizing voltage command from −80 to
−10 mV for a duration of 20 ms at a rate of 0.2 Hz. The INa(L) amplitudes during exposure to different
tested compounds were measured at the end of each depolarizing step. Each bar represents the mean
± SEM (n = 8). * Significantly different from control (p < 0.05), ** significantly different from Tef
(10 µM) alone group (p < 0.05), and + significant different from DLT (10 µM) alone group (p < 0.05).

2.3. Effect of DLT on Mean Current Versus Voltage (I-V) Relationship of INa(T) and INa(L)

We next explored any perturbations of this compound on the amplitude of INa(T) or
INa(L) measured from the different level of membrane potentials. As demonstrated in
Figure 3A,B, a steady-state I-V relationship of INa(T) and INa(L) acquired with or without the
DLT (10 µM) presence was established in these cells. The appearance of 10 µM DLT resulted
in a striking increase in the INa(T) or INa(L) amplitude elicited by abrupt depolarizing steps.
For example, when the tested cells were rapidly depolarized from −80 to −10 mV, the
addition of 10 µM DLT raised either INa(T) or INa(L) magnitude from 729 ± 54 to 952 ± 76 pA
(n = 8, p < 0.05), or from 26 ± 34 to 265 ± 48 pA (n = 8, p < 0.05), respectively. However,
the steady-state I-V relationship of INa(T) or INa(L) remained unaffected during exposure to
10 µM DLT, despite a marked increase in INa(T) or INa(L) magnitude. The relationship (i.e.,
G-V relationship) for the conductance of INa(T) or INa(L)) with or without the application
of 10 µM DLT was also established and depicted in Figure 3C. The V1/2 value for G-V
relationship of INa(T) or INa(L) between the absence and presence of 10 mM DLT did not
differ significantly {(−19.9 ± 1.8 mV [control] versus −20.5 ± 1.7 mV [in the presence
of DLT]; n = 8, p > 0.05, for the results of INa(T)), or (−18.4 ± 1.6 mV [control] versus
−18.5 ± 1.6 mV [in the presence of DLT]; n = 8, p > 0.05, for the results of INa(L))}.
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INa(L). (A) Exemplar current traces obtained either in the control condition (upper) or with the pres-
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I-V relationship of INa(T) (black symbols) or INa(L) (red symbols) in control (upper, solid symbols) and 
during exposure to 10 μM DLT (lower, open symbols) (mean ± SEM; n = 8 for each point). Either 
INa(T) or INa(L) was measured at the beginning or end of each depolarizing pulse. (C) Conductance 
versus voltage relationship of INa(T) (black symbols) or INa(L) (red symbols) in the control period (left 
side) and during cell exposure to 10 μM DLT (right side) (mean ± SEM; n = 8 for each point). 
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of repetitive depolarization of −10 mV (20 ms in each pulse with a rate of 40 Hz for 1 s), 
was applied to the tested cells which were voltage-clamped at −80 mV. In accordance with 
earlier reports [22–25,36], as demonstrated in Figures 4 and 5, during the control period 
(i.e., neither Tef nor DLT was present), the exponential time course of INa(T) inactivation 

Figure 3. Effect of DLT on the steady-state current versus voltage (I-V) relationship of INa(T) and
INa(L) identified from GH3 cells. In this set of experiments, we held each cell at −80 mV, and varying
depolarizing command voltages from −80 to +10 mV in 10-mV steps were delivered to evoke INa(T)

and INa(L). (A) Exemplar current traces obtained either in the control condition (upper) or with the
presence of 10 µM DLT (lower). The uppermost part is the voltage-clamp protocol given. (B) The
mean I-V relationship of INa(T) (black symbols) or INa(L) (red symbols) in control (upper, solid symbols)
and during exposure to 10 µM DLT (lower, open symbols) (mean ± SEM; n = 8 for each point). Either
INa(T) or INa(L) was measured at the beginning or end of each depolarizing pulse. (C) Conductance
versus voltage relationship of INa(T) (black symbols) or INa(L) (red symbols) in the control period (left
side) and during cell exposure to 10 µM DLT (right side) (mean ± SEM; n = 8 for each point).

2.4. Tef- or DLT-Mediated Slowing in Cumulative Inhibition of INa(T) during Rapid
Depolarizing Stimuli

It has been demonstrated that, prior to being activated during repetitive short pulses,
the inactivation of INa(T) is able to accumulate [22,23,25,34–36]. For this reason, we next
explored if Tef or DLT could modify the extent of INa(T) activated either during or following
the PT depolarizing stimuli. In this set of measurement, the stimulus protocol, consisting
of repetitive depolarization of −10 mV (20 ms in each pulse with a rate of 40 Hz for 1 s),
was applied to the tested cells which were voltage-clamped at −80 mV. In accordance with
earlier reports [22–25,36], as demonstrated in Figures 4 and 5, during the control period
(i.e., neither Tef nor DLT was present), the exponential time course of INa(T) inactivation
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observed in GH3 cells was observed during a 1-s repetitive depolarization from −80 to
−10 mV, and an evolving decaying time constant of 22.1 ± 2.8 ms (n = 8) was then yielded.
In other words, there appeared to be a progressive current decay (indicated with the dashed
arrows in Figure 4A) with a single-exponential process. It also needs to be noted that with
cell exposure to DLT (10 µM), the time constant of INa(T) decaying activated during the
same train of depolarizing pulses was increased to 56.4 ± 3.9 ms (n = 8), apart from a
progressive increase in INa(L) or INa(Tail) (i.e., appearance of tail current following 1-s PT
stimulation) magnitude. Of additional notice, a significant increase in tail INa (INa(Tail)) (blue
open triangles in Figure 5) with a rising time constant of 87.4 ± 4.6 ms (n = 8) was found in
the presence of 10 µM DLT (Figure 4B,C and Figure 5); however, cell exposure to 10 µM Tef
resulted in a gradual decay in INa(L) with a decaying time constant of 26.3 ± 2.7 ms (n = 8).
Alternatively, with continued exposure to 10 mM DLT, further addition of Dapa (10 mM)
or Ami (10 mM) significantly decreased the time constant of INa(L) during PT stimulation.
Table 1 summarizes the results showing effects of DLT, DLT plus dapagliflozin (Dapa), DLT
plus amiloride (Ami) on either the decaying time constant of INa(T) during PT stimulation
or the rising time constant of INa(L) during the same PT stimulation, as well as the time
constant of INa(Tail) recovery evoked following PT stimulation.
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separated 5 ms intervals at −80 mV for a total duration of 1 sec. In (A) or (B), exemplar current traces 
acquired in the control period (i.e., neither Tef nor DLT was present, upper part, blue color) and 
during cell exposure to 10 μM Tef (lower part, red color) or 10 μM DLT (lower part, red color) are 
illustrated, respectively. The voltage-clamp protocol (black color) atop current traces in (A–C) is 
illustrated. The black dashed arrows in (A) or (B), respectively, indicate the direction of current 
changes (i.e., either decay or rise) over time in an exponential fashion, while the asterisk shows a 
large inward deflection following PT stimulation with cell exposure to 10 μM Tef (upper) or 10 μM 
DLT (lower). (C) Expanded records (i.e., potential or current traces) from the broken box in (B). 

 
Figure 5. Relationship of INa(T) or INa(Tail) versus the pulse train (PT) duration in the absence (blue 
filled circles) and presence (orange open circles or blue open triangles) of 10 μM DLT (mean ± SEM, 
n = 8 for each point). The observed INa(T) or INa(L) was measured as indicated in the right side of Figure 
1. The continuous smooth lines, over which the experimental data points are overlaid, were 

Figure 4. Effects of Tef (A) or DLT (B,C) on INa evoked by a train of depolarizing pulses (i.e., pulse
train [PT] stimulation) in GH3 cells. The train given consists of 40–20 ms pulses (stepped to −10 mV)
separated 5 ms intervals at −80 mV for a total duration of 1 sec. In (A) or (B), exemplar current
traces acquired in the control period (i.e., neither Tef nor DLT was present, upper part, blue color)
and during cell exposure to 10 µM Tef (lower part, red color) or 10 µM DLT (lower part, red color)
are illustrated, respectively. The voltage-clamp protocol (black color) atop current traces in (A–C)
is illustrated. The black dashed arrows in (A) or (B), respectively, indicate the direction of current
changes (i.e., either decay or rise) over time in an exponential fashion, while the asterisk shows a
large inward deflection following PT stimulation with cell exposure to 10 µM Tef (upper) or 10 µM
DLT (lower). (C) Expanded records (i.e., potential or current traces) from the broken box in (B).
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Figure 5. Relationship of INa(T) or INa(Tail) versus the pulse train (PT) duration in the absence (blue
filled circles) and presence (orange open circles or blue open triangles) of 10 µM DLT (mean ± SEM,
n = 8 for each point). The observed INa(T) or INa(L) was measured as indicated in the right side of
Figure 1. The continuous smooth lines, over which the experimental data points are overlaid, were
optimally fitted by a single exponential (i.e., exponential decrease or increase). Notably, during
PT stimulation, cell exposure to DLT can increase the decaying time constant of INa(T) inactivation;
however, it led to a progressive increase (i.e., staircase increase) in the amplitude of INa(Tail).
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Table 1. Effects of DLT, DLT plus dapagliflozin (Dapa, 10 mM), and DLT plus amiloride (Ami, 10 mM)
on either the decaying time constant of INa(T) during pulse train (PT) stimulation (i.e., cumulative
inhibition of INa(T) during rapid depolarizing stimuli) or the rising time constant of INa(L) during the
same PT stimulation, as well as the time constant of INa(Tail) recovery evoked following PT stimulation.
All values are mean ± SEM.

Control DLT (10 mM) DLT (10 mM) Plus
Dapa (10 mM)

DLT (10 mM) Plus
Ami (10 mM) Cell Number (n)

Decaying time
constant of INa(T)

22.1 ± 2.8 ms 56.4 ± 3.9 * ms 29.6 ± 6.1 * ms 30.9 ± 6.5 * ms 8

Rising time
constant of INa(L)

(-) 87.4 ± 4.6 ms 19.1 ± 6.1 ** ms 21.1 ± 6.5 ** ms 8

Recovery time
constant of INa(Tail)

25 ± 3 ms 1.23 ± 0.19 + s 0.56 ± 0.04 ** s 0.58 ± 0.05 ** s 8

* Significantly different from controls (p < 0.05), ** significantly different from DLT (10 mM) alone groups (p < 0.05),
and + significantly different from controls (p < 0.01). (-) shown in Table 1 indicates that the time constant of INa(L)
during PT stimulation decayed in an exponential manner.

Moreover, with the DLT presence, an exponential increase in INa(L) during PT stimuli
occurring over time was also observed (Figure 4B,C). Following 1-s PT stimulation, as
cells were continually exposed to 10 µM DLT, there appeared to be a large inward current
(i.e., INa(Tail)) accompanied by a gradual recovery (indicated with asterisk in Figure 4B) in
the second timescale with a recovery time constant of 1.23 ± 0.19 s (n = 8) (Figure 4B,C).
The appearance of INa(Tail) could reflect changes in the magnitude of INa(P), and the INa(L)
and INa(P) evoked during an extended period of time were thought to share the same NaV
channels [22,26]. Likewise, with the presence of 10 µM Tef, the recovery time constant
of INa(Tail)) (or INa(P)) acquired following PT stimuli was estimated to be 123 ± 25 ms
(n = 8), a value which is different from DLT-induced change in the recovery time constant
of INa(Tail) following PT stimuli. In contrast, during the control period (i.e., neither Tef nor
DLT was present), the recovery time constant of the current following PT stimulation was
rather small (i.e., 25 ± 3 ms [n = 8]) (Figure 6B). Moreover, with continued presence of DL
(10 mM), further addition of either Dapa (10 mM) or Ami (10 mM) significantly attenuated
the recovery time constant of INa(T) evoked following PT stimulation, as summarized in
Table 1.

Additionally, with continued exposure to Tef (10 µM) or DLT (10 µM), further addition
of dapagliflozin (Dap) at a concentration of 10 µM resulted in an attenuation of the drastic
appearance of large inward INa(Tail) following PT stimuli, as demonstrated by a respective
reduction in the recovery time constant of the current to 54 ± 17 ms (n = 8, p < 0.05) or
564 ± 62 ms (n = 8, p < 0.05) estimated during further presence of Dapa (10 µM) (Figure 6B).
Taken together, these results prompted us to reflect that the presence of DLT can act as
a striking slowing the deactivating kinetics of INa(Tail) (or INa(P)) following return to the
holding potential at −80 mV. Therefore, during 1-s PT stimulation, insufficient period
of time was allowed for INa recovery. As a result, particularly during exposure to DLT,
single INa deactivation during PT stimulation presently given (i.e., at a rate of 40 Hz) could
be apparently incomplete, thereby leading to frequency-dependent ‘accumulation’ of the
NaV-channel activated state. Therefore, the response of Tef- and DLT-mediated INa(L) or
INa(Tail) was overly distinguishable. In other words, one (i.e., the Tef presence) is progressive
decay of INa(L) during a train of depolarizing pulses, while the other (i.e., the DLT presence)
exhibits a staircase increase in INa(L). Moreover, upon continued exposure to 10 µM DLT, the
subsequent addition of Dapa (10 µM) could measurably attenuate DLT-mediated increase
INa(Tail) during PT stimuli as well as shortened the recovery time constant of INa(P) following
repetitive depolarizing stimuli (Figure 6A,B).
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Figure 6. Effect of DLT or DLT plus Dapa on INa evoked by PT stimulation identified from GH3 cells.
The PT stimulation was applied in exactly the same way as utilized in Figure 4. (A) Exemplar current
traces obtained in the presence of DLT (10 µM) alone (black color) or DLT (10 µM) plus Dapa (10 µM)
(red color). The upper part shows the voltage-clamp protocol (blue color) given, whereas asterisk
denotes the emergence of the current recovery immediately following PT stimulation. (B) Summary
bar graph demonstrating effects of Tef, DLT, Tef plus Dapa, and DLT plus Dapa on the recovery time
constant of INa following PT stimulation (mean ± SEM; n = 8 for each bar). * Significantly different
from control (p < 0.01), ** significantly different from Tef (10 µM) alone group (p < 0.05), + significantly
different from Tef (10 µM) alone group (p < 0.05), and ++ significantly different from DLT (10 µM)
alone group (p < 0.05).

2.5. Effect of Tef or DLT on the Strength of Voltage-Dependent Hysteresis (Hys(V)) of Persistent INa
(INa(P)) Elicited by an Upright Isosceles-Triangular Ramp Voltage (Vramp)

The nonlinear Hys(V) behavior residing in INa(P) has been recently disclosed with a
figure-of-eight (i.e., ∞-shaped) configuration as current traces were robustly activated by an
upright double Vramp (i.e., ascending and descending limbs of triangular Vramp) [33]. In this
regard, efforts were made to explore if the existence of Tef or DLT could have any different
adjustments on the Hys(V)’s behavior elicited in response to such upright Vramp. This
separate set of measurements was performed in GH3 cells which were placed in Ca2+-free
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Tyrode’s solution, and we filled up the measuring electrodes with a solution containing
Cs+. The tested cells were maintained at −80 mV and an upright double Vramp ranging
between −80 and +50 mV for a duration of 1 s (i.e., ramp speed of ±0.26 mV/ms) was
afterwards applied to them. As shown in Figure 7A, during cell exposure to Tef (10 µM)
or DLT (10 µM), current traces in response to such triangular Vramp are distinguishable,
although two types of hysteretic loops (i.e., low- and high-threshold loops) became overly
noticeable during the presence of Tef or DLT. In particular, the strength of low-threshold
hysteretic loop during such Vramp became considerably larger in the presence of Tef (10 µM),
as compared with that during exposure to DLT. For example, as cells were continually
exposed to Tef (10 µM), the amplitude of INa(P) at the descending limb of Vramp (i.e., at the
level of −70 mV) resulted in a striking increase by 6.6 folds from 61 ± 9 to 403 ± 24 pA
(n = 8, p < 0.05); conversely, upon the presence of DLT (10 µM), INa(P) amplitude at the
same level was increased only by 1.5 folds (Figure 7C). However, upon cell exposure to
Tef (10 µM) or DLT (10 µM), the INa(P) amplitude at the ascending limb (i.e., at −10 mV)
was increased to 3.6 or 3.7 folds, respectively, which did not differ significantly between
these two compounds. From these data, it was plausible to assume that the strength of
INa(P)’s Hys(V) in response to long-lasting double Vramp was susceptible to being enhanced
during Tef or DLT presence; moreover, the low-threshold loop of Hys(V) appeared to be
more sensitive to augmentation by Tef than that by DLT.
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Figure 7. Modifications by Tef or DLT on the strength of voltage-dependent hysteresis (Hys(V)) in
persistent INa (INa(P)) present in GH3 cells. In this set of whole-cell current recordings, the examined
cell was voltage-clamped at −80 mV and we then delivered the isosceles-triangular ramp voltage
(Vramp) for a duration of 1 s (i.e., a ramp speed of ±0.26 mV/ms) to activate INa(P). (A) Exemplar
current traces obtained in the control period (upper) and in the presence of 10 µM Tef (middle) or
10 µM DLT (lower). The ascending (upsloping) limb is indicated in black color, where the descending
(downsloping) one is in the red color. Inset in the upper part of (A) shows the voltage-clamp protocol
applied, whereas the dashed arrow indicates the direction of potential or current trajectory by which
time goes. In (B) or (C), summary bar graph, respectively, demonstrates the effect of Tef (10 µM), DLT
(10 µM), Tef (10 µM) plus Dapa (10 µM), and DLT (10 µM) plus Dapa (10 µM) on INa(P) amplitude
activated by upsloping (at −10 mV) or downsloping limb (at the level of −70 mV) of double Vramp

(mean ± SEM; n = 8 for each bar). * Significantly different from control (p < 0.05), ** significantly
different from Tef (10 µM) alone group (p < 0.05), and + significantly different from DLT (10 µM)
alone group (p < 0.05).
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3. Discussion

In the current investigations together with previous studies, we provided the evidence
to unveil that the presence of DLT, known to be a type II pyrethroid, was able to exert
stimulatory actions on vastly different types of INa, including INa(T), INa(L), INa(Tail), and
INa(P), seen in pituitary tumor (GH3) cells. It is likely, therefore, that the endocrine disrupt-
ing potential caused by the existence of DLT or other structurally similar pyrethroids, as
demonstrated recently [2,16,20,27,37–41], could be highly linked to the excitatory actions
on varying types of INa presented herein, presuming that similar pharmacological or toxi-
cological actions take place in variable types of endocrine or neuroendocrine cells present
in vivo [2,3,7,11,13,42], although pyrethroids are thought to be around 2250 times more
toxic than mammals [12,13].

Upon cell exposure to DLT, the observed INa(L) activated in response to short depolar-
izing step was noticed to be stimulated to a greater extent than the INa(T). The EC50 values
required for DLT-stimulated INa(T) and INa(L) in GH3 cells were estimated to be 11.2 and
2.5 µM, these values which was noted to differ significantly by 4.5 folds (Figure 1). How-
ever, the further addition of chlorotoxin (ChloroTx), still in continued presence of tefluthrin
(Tef) or DLT, failed to modify Tef- or DLT-stimulated INa(L), although either dapagliflozin
(Dapa) or amiloride could effectively reverse their increase in INa(L) amplitude. Tef is a Type
I pyrethroid insecticide [8,10,26]. The overall steady-state I-V relationship of INa(T) or INa(L)
during exposure to DLT remained unchanged; furthermore, the inactivation time course of
INa(T) during brief step depolarizing did not differ between the absence and presence of
DLT. However, the magnitude of INa(T) following the PT stimulation (i.e., 40-Hz repetitive
depolarizing pulse) tended to be pronouncedly larger as well as its decaying time course
became slowed in the presence of Tef or DLT (Figure 4).

It needs to be mentioned that a large appearance of inward current (i.e., INa(P)) fol-
lowing such PT stimulation clearly emerged during the presence of Tef or DLT, while a
rather small transient current following the same PT stimuli was observed during the
control conditions (i.e., neither Tef nor DLT was present). The larger magnitude of inward
current immediately following PT stimuli by adding DLT was noted as compared to that
by Tef. Furthermore, the exposure to Tef markedly rendered the inactivation time course
of INa(T) during rapid membrane depolarization to become slowed, whereas DLT itself
had minimal interference with the inactivation time constant of the current. However, the
DLT existence, a progressive elevation of INa(L) and INa(Tail) during a train of repetitive
depolarizations; moreover, it induced a larger tail INa following repetitive depolarizations.
The experimental results can be interpreted to mean that, upon continued exposure to
DLT, the INa deactivation elicited during PT stimuli could be apparently incomplete, thus
leading to rate-dependent ‘accumulation’ of the NaV channel activated state. The slowed
inactivation caused by the exposure to Tef thus reflects that the barrier for going from the
open to the inactivated state of the NaV channel tends to be higher during its presence.
The α-cyano-3-phenoxybenzyl group present in the DLT molecule tends to be a notable
structure required preferentially for open/resting state of the channel.

Earlier reports have demonstrated the effectiveness of DLT either in inducing the
raise in Ca2+ transient or exert anti-neoplastic actions in different types of neoplastic cells,
including liver, oral, and prostate cancer cells, and Jurkat-J6 cell cells [43–48]. The functional
expression of NaV channels has also been reported in different neoplastic cells, including
prostate cancer and glioma cells [45,49–52]. As such, whether DLT-mediated modifications
on INa presented herein can be responsible for the actions of DLT or other structurally
similar pyrethroids on intracellular Ca2+ or aberrant growth in neoplastic cells [44] is worth
pursuing further.

Earlier reports have demonstrated the effectiveness of pyrethroids (e.g., DLT, esfen-
valerate, or permethrin) in increasing long-term potentiation recorded in CA1 hippocampal
region [53–56]. Indeed, a brief period of high-frequency electrical activity applied artificially
to a neuronal pathway is expected to enhance the strength of synapses for various periods
of time, which is called long-term potentiation. However, it needs to be stressed that with
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cell exposure to either Tef or DLT, following 1-s PT stimulation from −80 to −10 mV, a
large inward current (i.e., INa(P)) with slowly decaying process was considerably observed
(Figure 4A,B). Under such scenario, the observed induction of long-term potentiation (i.e.,
facilitation of synaptic transmitter [e.g., glutamate] release) evoked during high-frequency
stimulation could have been seriously disturbed or even overestimated by the present
findings showing a large recovery time course of INa emerging following PT stimulation in
situations where cells present in tissue preparations were exposed to either Tef or DLT.

Previous studies have demonstrated that pyrethroids could affect transepithelial ion
transport in the external layers of the skin and the further addition of amiloride could
regulate pyrethroids-mediated change in such transepithelial ion transport [16,57]. In
this study, the subsequent addition of amiloride can attenuate DLT-induced increase in
INa(L) measured from GH3 cells; however, further application of chlorotoxin (ChloroTx)
had no effect on DLT- or Tef-stimulated INa. Moreover, further addition of ChloroTx
failed to modify changes in DLT- or Tef-stimulated INa during PT timulation; however,
subsequent application of either Dapa or amiloride could significantly attenuate DLT and
Tef-stimulated INa by the same stimulation protocol. Therefore, the amiloride-mediated
effect on the modifications by pyrethroids of ion transport through rabbit skin is likely
associated with its direct inhibitory action on INa(L).

The ability of pyrethroids (e.g., DLT) to augment Cl− currents has been previously
demonstrated [14,16]. In our study, the subsequent addition of ChloroTx, an inhibitor
of Cl− currents, failed to modify DLT-stimulated INa(T) or INa(L) in GH3 cells (Figure 2).
However, the further application of dapagliflozin (Dapa) or amiloride can effectively
attenuate DLT-activated INa(L) or INa(P). Dapa was recently demonstrated to ameliorate
Tef-augmented Hys(V) strength of INa(P) activated by double Vramp [33]. Therefore, DLT-
mediated stimulation of INa(T), INa(L), and INa(P) demonstrated herein is unlikely to be
attributed to its activation of Cl− current.

Work in our laboratory has demonstrated the non-equilibrium Hys(V) behavior of
INa(P) activated by the upright isosceles-triangular Vramp [33]. The results indicated that
there was a striking voltage dependence of such Vramp-evoked INa(P) [29,33]. The experi-
mental data also showed two types of Hys(V) loops (i.e., a high-threshold counterclockwise
followed by a low-threshold clockwise loop) with a figure-of-eight (i.e., ∞) configuration,
which is reminiscent of the dynamics of the Lorenz-like motion [58]. Alternatively, with
GH3-cell exposure to Tef or DLT, the Hys(V) motion of INa(P) activated by the upsloping
(ascending) and downsloping (descending) ends of such double Vramp as a function of
time was noticed to move in both counterclockwise and clockwise directions (Figure 7A).
In particular, one activated during the ascending limb of double Vramp is called a high-
threshold counterclockwise loop with a peak of around −10 mV, while the other evoked
by the descending limb of Vramp is a low-threshold clockwise loop with a peak falling at
around −70 mV [33]. Moreover, as compared with the effect of DLT on Hys(V)’s strength
of INa(P), the exposure to Tef could augment Hys(V)’s strength at low-threshold loop to
a greater extent than that observed at high-threshold loop. However, with continued
presence of either Tef or DLT, the further addition of Dapa could attenuate their stimulation
of Hys(V) strength in GH3 cells. Thus, the presence of Tef could slow the inactivation time
course of INa(T) activated by rapid step depolarization as well as augment magnitude of
INa(P)’s low-threshold loop of Hys(V) responding to double Vramp. Conversely, as cells were
exposed to DLT, the INa(T) inactivation time course during step depolarization was found
to remain unchanged, and the increased strength of low-threshold Hys(V) loop during
double Vramp was relatively smaller in its presence. It is therefore plausible to assume that
the low-threshold loop of INa(P)’s Hys(V) activated during the downsloping end of double
Vramp could be closely linked to the extent of the inactivation time course of INa(T).

4. Conclusions

The modifications by DLT and Tef on the magnitude, gating kinetics, frequency
dependence, and Hys(V) strength of INa in electrically excitable cells are noticeably different.



Int. J. Mol. Sci. 2022, 23, 14733 14 of 19

The variable actions of pyrethroids presented here would be of clinical, pharmacological,
and toxicological relevance [3].

5. Materials and Methods
5.1. Chemicals, Drugs, Reagents, and Solution Used in This Work

Deltamethrin (DLT, decamethrin, C22H19Br2NO3, IUPAC name: [(S)-cyano-(3-phenoxy
phenyl)methyl](1R,3R)-3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate,
(S)-α-cyano-3-phenoxybenzyl-cis-(1R,3R)-3(2,2-dibromovinyl)(2,2-dimethyl-cyclopropane-
carboxylate) was acquired from MedChemExpress (Asia Biomed Inc., Taipei, Taiwan), da-
pagliflozin (Dapa, Foxiga®) was from Cayman (Ann Arbo, MI), while amiloride, tetraethy-
lammonium chloride (TEA), tetrodotoxin (TTX), and tefluthrin (Tef) were from Sigma-
Aldrich (Genechain, Kaohsiung, Taiwan). Chlorotoxin was a kind gift from Professor Dr.
Woei-Jer Chuang (Department of Biochemistry, National Cheng Kung University Medical
College, Tainan, Taiwan). Because of a highly nonpolar nature of low water solubility
(Laskowski, 2002), the stock solution of DLT (10 mM) was prepared by dissolving it in
dimethylsulfoxide (DMSO), and it was wrapped in aluminum foil and then kept under
−20 ◦C for long-term storage. Unless specified otherwise, growth media (e.g., Ham’s
F-12 medium), fetal or horse bovine serum, trypsin/EDTA, and L-glutamine were mostly
acquired from HyCloneTM (Thermo Fisher, Kaohsiung, Taiwan), while other chemicals
or reagents were from Sigma-Aldrich or Merck (Genechain), and they were of laboratory
grade and taken from standard sources.

The standard extracellular solution (i.e., normal Tyrode’s solution) used in this study
had the ionic compositions containing (in mM): NaCl 136.5, CaCl2 1.8, KCl 5.4, MgCl2
0.53, glucose 5.5, HEPES 5.5, and the solution pH was titrated to 7.4 by adding NaOH. The
composition of Ca2+-free Tyrode’s solution used for the measurement of INa (e.g., INa(T),
INa(L), INa(P), and INa(Tail)) was the same as normal Tyrode’s solution in which CaCl2 was
removed. For the experiments on recording INa, the electrode used was filled up with the
internal pipette solution containing (in mM): Cs-aspartate 130, CsCl 20, KH2PO4 1. MgCl2,
Na2ATP 3, Na2GTP 0.1, and HEPES 5, and the pH was then adjusted to 7.2 with CsOH. The
twice-distilled water used for the experiments was deionized with a Milli-Q ion exchange
and activated carbon cartridge treatment system (Merck, Tainan, Taiwan).

5.2. Cell Preparation

Clonal pituitary (GH3) somatolactotrophs, originally acquired from the Bioresources
Collection and Research Center ([BCRC-60015], http://catalog.bcrc.firdi.org.tw/BcrcCont
ent?bid=60015) (access on 19 September 2022), Hsinchu, Taiwan), were revived and cultured
in Ham’s F-12 growth medium, which was supplemented with 15% heat-inactivated horse
serum (v/v), 2.5 % fetal calf serum (v/v), and 2 mM L-glutamine. They were commonly
incubated at 37 ◦C in monolayer cultures in 50-mL plastic culture flasks in a humidified
environment of 5% CO2/95% air. It was confirmed that this cell line can continually secrete
prolactin. We carried out electrical recordings 5 or 6 days after cells underwent subculture
(60–70% confluence).

5.3. Electrophysiological Measurements (Patch-Clamp Current Recordings)

In the few hours before the experiments, GH3 cells were detached from culture dishes
with a 1% trypsin/EDTA solution, and a few drops of cell suspension (~106/mL) was
rapidly placed in a custom-built chamber mounted on the stage of a DM-IL inverted phase-
contrast microscope (Leica; Major Instruments, Kaohsiung, Taiwan). We bathed cells at
room temperature (20–25 ◦C) in the extracellular solution (i.e., normal Tyrode’s solution),
the ionic compositions of which are described above. Before each experiment, cells were
allowed to settle on the chamber’s bottom. The recording pipettes were pulled from
Kimax®-51 borosilicate glass tube (#DWK34500-99; Kimble®, Merck, Tainan, Taiwan) and
they were then polished to reach the resistances ranging between 3 and 5 MΩ. During each
measurement, the electrode was mounted in an air-tight holder, which had a suction port on

http://catalog.bcrc.firdi.org.tw/BcrcContent?bid=60015
http://catalog.bcrc.firdi.org.tw/BcrcContent?bid=60015


Int. J. Mol. Sci. 2022, 23, 14733 15 of 19

the side, and a silver-chloride wire was used to make good contact with the internal pipette
solution. We recorded varying types of ionic currents (e.g., INa) with the whole-cell mode
of a modified patch-clamp technique by using an RK-400 patch amplifier (Bio-Logic, Claix,
France), as dealt with in our previous works [26,36,59]. All recordings were conducted
inside a noise-proof Faraday cage. The junction potentials that commonly develop when
the compositions of the pipette internal solution are different from those in the bath were
zeroed shortly before giga-Ω formation was made, and the whole-cell data were corrected.
As pulse train (PT) stimulation was applied to the tested cell, we used an Astro-Med Grass
S88X dual output pulse stimulator (Grass; KYS Technology, Tainan, Taiwan).

5.4. Data Recordings and Processing

Throughout the recording period, the signal output (i.e., potential and current traces)
was monitored and digitized online at 10 kH or more in an ASUS ExpertBook laptop
computer (Yuan-Dai, Tainan, Taiwan). For analog-to-digital (A/D) and digital-to-analog
(D/A) conversion, a Digidata® 1550B converter equipped with the computer was controlled
by pCLAMPTM 10.6 program run under Microsoft Windows 7 (Redmond, WA, USA).
Current signals were low-pass filtered at 2 kHz by using a FL-4 four-pole Bessel filter
(Dagan, Minneapolis, MN, USA). The voltage-clamp protocols with manifold rectangular
or ramp waveforms were designed, and they were then given to the examined cell through
D/A conversion.

5.5. Data Analyses for Whole-Cell Ionic Currents

To establish concentration-dependent stimulation of DLT on the amplitude of INa(T)
or INa(L), we bathed GH3 cells in Ca2+-free Tyrode’s solution which contained 10 mM
tetraethylammonium chloride (TEA). During the recording period, we voltage-clamped
each cell at −80 mV, and a brief step depolarization to −10 mV for a 20 ms at a rate 0.2 Hz
was applied to evoke INa. The INa(T) magnitude was measured as the peak amplitude
of INa at the beginning of depolarizing pulse was subtracted from the sustained INa (i.e.,
INa(L)), while the INa(L) magnitude was measured at the end of 20-ms depolarizing pulse
in situations where different DLT concentrations were cumulatively given (as indicated
in the right side of Figure 1A). The total amplitude of INa (INa(Tot)) taken from each step
depolarization is equal to INa(T) plus INa(L). The amplitude of INa(L) obtained during
the presence of DLT at a concentration of 100 µM was considered as 100% and we then
compared current magnitudes (i.e., INa(T) and INa(L)) during cell exposure to varying
concentrations of DLT. The concentration-dependent stimulation by DLT of INa(T) or INa(L)
observed in GH3 cells was determined by fitting experimental data set to a modified Hill
function [10,25], which can be given as follows.

percentage increase (%) =
〈
Emax × [DLT]nH

〉
/
〈
ECnH

50 + [DLT]nH
〉

In this equation, [DLT] = the deltamethrin (DLT) concentration given; nH = the Hill
coefficient (i.e., coefficient for cooperativity); EC50 = the concentration required for a 50%
stimulation of INa(T) or INa(L) amplitude activated in response to short depolarizing step
from −80 to −10 mV; and Emax = maximal stimulation of INa(T) or INa(L) produced by the
DLT presence.

5.6. Curve-Fitting Approximations and Statistical Analyses Used in This Work

To determine the model parameters, linear or nonlinear curve-fitting to the experi-
mental data set presently obtained was optimally fitted with least-squares minimization
procedure by using manifold analytical tools, such as the Microsoft “Solver” built in Excel®

2022 (Microsoft) and OriginPro® 2022 program (OriginLab®; Scientific Formosa, Kaoshi-
ung, Taiwan). The experimental results are presented as the mean ± standard error of
the mean (SEM). The size of independent observations (n) is indicated in cell numbers
collected during the measurements. The data distribution obtained presently was found
to satisfy the tests for normality. Paired or unpaired t-tests were used for comparison
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between the two different groups; however, for comparison among more than two groups,
we carried out analysis of variance (for one- or two-way ANOVA) with or without repeated
measure followed by a post hoc Fisher’s least-significance difference test for multiple-range
comparisons. A statistical significance (indicated with *, **, +, or ++ in the figures) was
considered when p < 0.01 or < 0.05.
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Abbreviations

DLT deltamethrin
ChloroTx chlorotoxin
Dapa dapagliflozin
EC50 concentration required for half-maximal stimulation
Hys(V) voltage-dependent hysteresis
I-V relationship current versus voltage relationship
INa voltage-gated Na+ current
INa(L) late Na+ current
INa(P) persistent Na+ current
INa(Tot) total Na+ current (i.e., INa(T) plus INa(L))
INa(Tail) tail Na+ current
NaV channel voltage-gated Na+ channel
PT stimulation pulse train stimulation
Tef tefluthrin
Vramp ramp voltage
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