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Abstract: Circular RNAs (circRNAs) are a type of long noncoding RNA that are highly abundant
and highly conserved throughout evolution and exhibit differential expression patterns in various
tissue types in multiple diseases, including amyotrophic lateral sclerosis (ALS). The most well-
known function of circRNAs is their ability to act as microRNA (miRNA) sponges. This entails
circRNA binding to miRNA, which would otherwise target and degrade messenger RNA, thus
affecting gene expression. This study analyzed ALS patient samples from three spinal cord regions to
investigate circular transcriptome perturbation and circular RNA–microRNA–mRNA interactions.
Using stringent statistical parameters, we identified 92 differentially expressed circRNAs across the
spinal cord tissues with the aim of identifying specific circRNAs with biomarker potential. We also
found evidence for differential expression of 37 linear RNAs possibly due to miRNA sequestration
by circRNAs, thus revealing their potential as novel biomarkers and therapeutic candidates for ALS.

Keywords: amyotrophic lateral sclerosis; circular RNAs; microRNAs; spinal cord; transcriptome
sequencing

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease that
correlates with multiple pathogenic mechanisms as well as a wide range of clinical mani-
festations and markers of disease progression [1]. ALS has a low median incidence rate
of 5.4 cases per 100,000 in people aged between 58 and 65 [2,3]; however, the very short
life expectancy of 30 months on average from the onset of the first symptoms confers a
dismal prognosis [1]. The symptoms observed are due to degeneration of motor neurons
in the motor cortex and spinal cord and may consist of muscle weakness, cramping and
twitching, progressing to muscle atrophy [4].

There are two main types of ALS: familial ALS, in which the patient inherits disease-
causing mutations, and sporadic ALS, in which no family history of the disease or primary
genetic cause can be identified. The mechanisms by which ALS begins and progresses are
unclear, rendering patient diagnosis difficult and determining viable treatment options
complex. Multiple molecular mechanisms are involved in ALS pathogenesis; however,
there is no distinctive biological pathway to date.

Circular RNAs (circRNAs) are characterized by their covalently closed, circular shape
and resulting lack of 5′ and 3′ ends. Consequently, circRNAs are resistant to exonucleases
that target the ends of RNA strands, causing circRNAs to be very stable, with a half-life of
approximately 48 h [5] compared to the 10 h lifespan of messenger RNA (mRNA) [6]. Due
to their stability, circRNAs are often enriched in exosomes and peripheral blood plasma [7].
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MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in gene expres-
sion regulation, with developmental, maintenance and pathogenic roles. In conjunction
with effector proteins, miRNAs form a miRNA-induced silencing complex [8] that tar-
gets complementary sequences of mRNAs, inhibiting their translation or inducing their
degradation. Furthermore, circRNAs have been found to be miRNA “sponges” in that
their sequences may contain binding sites for complementary seed sequences of miRNAs.
Through binding to these miRNAs, circRNAs significantly affect mRNA stability and
expression [9].

circRNA–miRNA interactions have been shown to contribute to the pathology of
neurodegenerative disorders and cancers. For example, Xu et al. [10] showed that over-
expression of the circRNA circNFIX in glioma tumor samples reduces expression of the
miRNA miR-34a-5p, which targets NOTCH1, consequently promoting glioma progression
through the Notch signaling pathway. In healthy individuals, miRNA-7 binds the circRNA
ciRS-7, allowing UBE2A to coordinate clearance of amyloid peptides. However, in sporadic
Alzheimer’s disease, there is a deficit in ciRS-7 resulting in increased expression of miRNA-7
and subsequent downregulation of UBE2A [11]. This causes amyloid accumulation and
formation of plaque deposits in the brain, contributing to the molecular pathology of
Alzheimer’s disease. Moreover, Sang et al. [12] reported downregulation of a particular
circRNA known to be coexpressed with SNCA during pramipexole treatment in Parkinson’s
disease patients. Downregulation of this circRNA results in upregulation of its sequestered
miRNAs, causing a reduction in apoptosis and promoting autophagy.

Here, we investigate perturbation of the circular transcriptome in ALS, interactions
between significantly differentially expressed (DE) circRNAs and ALS-associated miRNAs,
and consequently the circRNA–miRNA–mRNA network.

2. Results
2.1. Differentially Expressed circRNAs

The circRNAs that were detected by both CIRI2 and CIRCexplorer2 were determined to
be bona fide and therefore utilized in downstream analyses. Statistical analysis determined
that the median variance explained by any of the variables in any of the tissues tested was
<4.5% (Table S1). These variables were thus not included in the differential expression
testing procedure.

There were 1.26 to 1.83 times more circRNAs detected in ALS samples than in control
samples across all tissue types, yet 75% to 90% of circRNAs detected in control samples
were also detected in ALS samples (Table 1). Moreover, 2- to 10-fold more circRNAs were
detected in ALS samples than in control samples; hence, more circRNAs in ALS samples
were specific to the condition and tissue types.

Table 1. Average number of circRNAs detected in different sample types in different tissues.

Tissue Condition Number of Samples
Number of
circRNAs
Detected

Number of Detected
circRNAs Common to ALS

and Control Samples

Number of
circRNAs Unique
to the Condition

Spinal Cord
Cervical

ALS 18 24,259
12,557

11,702
Control 7 15,210 2653

Spinal Cord
Lumbar

ALS 16 24,020
14,044

9976
Control 6 18,262 4218

Spinal Cord
Thoracic

ALS 16 20,581
12,100

8481
Control 6 16,209 4109

t-SNE plots of circRNA isoforms showed clustering among samples, which indicates
that these circRNAs have unique expression profiles in each tissue that do not fully differ-
entiate between ALS and healthy controls (Figure S1a,c,e).
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Expression (in CPM) of all bona fide circRNAs was examined to find the average
expression value for each tissue and condition; this value often fell below 100 CPM, but
some circRNAs were expressed >10,000 CPM. Interestingly, spinal cord thoracic (SCT)
exhibited a difference in circRNA expression distribution patterns compared to spinal cord
cervical (SCC) and spinal cord lumbar (SCL), with higher expression in control samples
than ALS samples.

Analysis of circRNA differential expression indicated 20, 2 and 70 DE circRNAs with
adjusted p values < 0.05 in SCC, SCL and SCT, respectively. With respect to SCC and SCT,
there were 5.7-fold and 1.8-fold more upregulated circRNAs than downregulated circRNAs.
SCL only expressed two DE circRNAs, both of which were downregulated. There were no
overlaps in DE circRNAs between the three tissues.

2.2. Binding Capacity of miRNAs to Differentially Expressed circRNAs

miRNA binding site detection analysis was carried out on the DE circRNAs (adjusted
p values < 0.05) from SCC and SCT tissues. To reduce false positives, all miRNAs utilized
were chosen if they were found to have binding sites in at least ten DE circRNAs; 914 miR-
NAs for each tissue fit this criterion. Overall, the average number of miRNA binding sites
per circRNA was 6.5 and 6.15 for tissues SCC and SCT, respectively.

The mRNA targets of the miRNAs with the highest number of binding sites in up-
regulated circRNAs across both tissues were utilized in gene ontology (GO) enrichment
analysis. GO terms associated with ‘RNA binding’, ‘cellular protein processes’ and ‘cel-
lular components’ were the most prominent among the genes targeted by this subset of
miRNAs (Figure 1).

2.3. Comparison of Differentially Expressed circRNAs and mRNAs

Linear RNA expression analysis was performed to investigate perturbation of the
linear transcriptome in ALS, which was then compared to DE circRNAs and miRNA
binding site patterns. In total, 3556 DE genes were detected, and Table 2 displays the
number of these genes with adjusted p values < 0.05 with respect to their tissue type.

Table 2. Number of DE genes in each tissue type with adjusted p values < 0.05.

Spinal Cord Cervical Spinal Cord Lumbar Spinal Cord Thoracic

Number of DE genes
(adjusted p value < 0.05)

Upregulated 1944 524 242
Downregulated 1052 460 90

Total 2996 984 332
Total genes tested 60,662 60,662 60,662

All tissues showed more upregulated than downregulated DE genes. Interestingly,
SCC harbored the most DE genes, comprising 84% of the 3556 nonredundant DE genes
and indicating a greater degree of condition-specific linear RNA transcriptomic profile
variation in the cervical region of the spinal cord.

t-SNE plots of linear RNA isoforms indicated that linear RNAs have unique expression
profiles in each tissue that are able to differentiate relatively well between ALS and healthy
controls with regard to SCC and SCT tissues but less so for SCL (Figure S1b,d,f).

DE linear RNAs were predominantly expressed at values <5 TPM, a trend that was
consistent across conditions and spinal cord regions.

To assess the ability of upregulated circRNAs to sequester specific miRNAs resulting in
derepression of miRNA-targeted mRNAs, correlations among the three types of molecules
were analyzed. mRNA targets of the miRNAs utilized in the GO analysis were evaluated
for differential expression and log2(fold change) status. There were 37 genes found to be
both miRNA targets and DE, suggesting perturbed mRNA expression in ALS as a result of
increased miRNA sequestering by upregulated circRNAs in ALS. This analysis revealed a
circRNA–miRNA–mRNA interaction network involved in ALS (Figure 2).
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DE gene expression of the 37 genes identified in the circRNA-miRNA-mRNA network,
shown in Figure S2, reveals that all genes are more highly expressed in the ALS SCC and
SCT cohorts compared to their respective control cohorts. This corroborates the hypothe-
sized circRNA-miRNA-mRNA networks proposed in this study whereby circRNAs are
sequestering candidate miRNAs which would otherwise function to control and suppress
mRNA targets.

GO enrichment analysis was performed on the 37 genes to assess the biological func-
tion of genes affected by circRNA–miRNA interactions in ALS disease (Table 3). The most
enriched GO term in this analysis was ‘GO:1901699: Cellular response to nitrogen com-
pound’, with a p value of 2.97× 10−6. Other enriched GO terms relate to positive regulation
of synaptic transmission, cell-cell signaling and cellular response to hormone stimuli.
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Figure 2. Network of circRNA–miRNA–mRNA interactions. A tripartite network graph displaying
DE circRNAs (left), targeted miRNAs (middle) and targeted mRNAs (right), and the interactions
between species. The node size equates to the log2 transformation of the number of interactions
associated with each node, and the interaction line color relates to the associated miRNA. The
green-colored circRNAs originated from SCC tissue, and the blue-colored circRNAs originated from
SCT tissue.
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Table 3. Enriched GO terms from GO analysis of the miRNA-targeted mRNA gene set. The number
of genes (targets of miRNAs sequestered by circRNAs) that correspond to each GO term and the
enriched p value are listed.

GO Accession and Name Number of Genes in Overlap p Value

GO:1901699: Cellular response to nitrogen compound 7 2.97 × 10−6

GO:0198738: Cell-cell signaling by wnt 6 6.94 × 10−6

GO:0050806: Positive regulation of synaptic transmission 4 9.41 × 10−6

GO:1901701: Cellular response to oxygen-containing compound 8 9.67 × 10−6

GO:0071375: Cellular response to peptide hormone stimulus 5 1.16 × 10−5

GO:0001837: Epithelial to mesenchymal transition 4 1.20 × 10−5

GO:0051100: Negative regulation of binding 4 1.39 × 10−5

GO:1905114: cell surface receptor signaling pathway
involved in cell-cell signaling 6 1.88 × 10−5

GO:0032870: Cellular response to hormone stimulus 6 1.98 × 10−5

GO:1901653: Cellular response to peptide 5 2.83 × 10−5

3. Discussion

circRNAs are involved in the pathogenesis of many diseases and have potential as
biomarkers. In particular, circRNAs have been shown to interact with miRNAs in brain
cancers and some neurodegenerative disorders, which has an effect on mRNA target
expression and consequently on disease outcomes [10–12]. This study aimed to investigate
circRNA–miRNA–mRNA interactions in the ALS disease profile and reports novel findings,
enhancing our current understanding of ALS.

3.1. ALS-Specific Circular Transcriptome

To our knowledge, this body of work is the first to describe circular transcriptome
perturbance in spinal cord tissues in ALS. circRNAs have been identified as potential
biomarkers of ALS disease in peripheral blood [13], with 274 upregulated and 151 down-
regulated DE circRNAs, similar in proportion to our differential expression results (62
upregulated and 30 downregulated DE circRNAs). There are, however, key differences
between the two studies. We analyzed differential expression of circRNAs in spinal cord
tissue areas where ALS pathology originates and performed spatial circRNA expression
analysis, and we provide evidence for functional circRNA–miRNA–mRNA interactions
in ALS.

In this study, 92 circRNAs (nonredundant and adjusted p values < 0.05) were found to
be DE in ALS samples. Variable numbers of DE circRNAs across each spinal cord region
were detected, and none occurred in more than one region. This shows that circRNA expres-
sion is highly spatially regulated within each part of the spinal cord in a disease-specific
manner. Integration of circRNA expression data with patient clinical data may reveal
additional value as prognostic biomarkers if certain circRNA profiles can be correlated with
the clinical features of the disease. Some clinical information is available for the NYGC
dataset; however, analysis of these data was outside the scope of this project. This will
certainly be investigated in future studies.

3.2. circRNA-miRNA-mRNA Interactions

The miRNA sponging effect is the best described function of circRNAs, and there has
been sustained interest in understanding the impact on epigenetic regulation processes.
This study aimed to determine miRNAs potentially ALS-associated and have binding sites
in upregulated circRNAs. The target mRNAs of selected miRNAs were predicted using
the TargetScanHuman database (version 6.0) [14–17] and correlated with the differential
expression of upregulated mRNAs in the tissues of interest in ALS patients. An inference
was made regarding derepression of certain mRNA transcripts in response to competition
of miRNA binding due to upregulation of circRNAs that bind miRNAs.
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The miRNAs selected in this analysis were determined to contain a large number of
binding sites for upregulated DE circRNAs. After ensuring these miRNAs to be biologically
relevant in circRNA and mRNA comparative analysis, they were assessed for GO enrich-
ment of biological processes, and many of the enriched GO terms are associated with ALS
pathways. The ‘RNA binding’ GO category is ALS related, as numerous causative genetic
mutations in RNA-binding proteins have been detected in ALS patients [18]. Furthermore,
many studies have shown that dysfunction of RNA metabolism and cytoplasmic mislo-
calization of RNA-binding proteins may contribute to progression of ALS [18]. Another
significantly enriched GO category was ‘nucleoplasm’, which may be associated with ALS
pathology in that dysfunction in nucleocytoplasmic transport and the consequent mislo-
calization of TDP-43 may contribute to ALS and other neurodegenerative diseases [19].
Furthermore, FUS is a component of the nucleoplasm but becomes mislocalized to the
cytoplasm when certain ALS-causing mutations are present [20]. Other GO categories that
are linked to ALS include ‘protein complex’ [21], ‘mitotic cell cycle’ [22] and ‘TRK receptor
signaling’ [23]. Thus, the miRNAs selected for this analysis were regarded as biologically
relevant through their association with canonical ALS cytopathology and through their
effect on mRNA targets.

For further analysis, potential miRNA target genes were identified and extracted from
linear RNA DE analysis if they were found to be significantly differentially expressed and
upregulated in the disease condition. This comparison revealed 55 genes that fit these
criteria. To further examine the relevance of these genes to the ALS disease profile, they
were subjected to GO analysis utilizing the TarBase database [24], which indicated a high in-
cidence of ALS GO terms such as ‘GO:0198738: cell-cell signaling by wnt’ and ‘GO:0032436:
positive regulation of proteasomal ubiquitin-dependent protein catabolic process’. Wnt
signaling has been shown to be involved in the pathogenesis of ALS, as neurodegeneration
upregulates expression of Wnt2 and Wnt7a, which activate Wnt signaling [25]. Additionally,
the ubiquitin-proteasome system may be disrupted in ALS, leading to studies assessing
therapeutic strategies for neurodegenerative diseases and cancer [26–28].

The present study provides indications for a complex circRNA–miRNA–mRNA in-
teraction network in ALS. However, further validation studies analyzing differential ex-
pression of the highlighted miRNAs and specific interactions between molecules within
the different areas of the transcriptome are essential. It would also be valuable to explore
the correlation between the number of binding sites among the upregulated circRNAs
and the actual degree of consequent derepression of cognate linear RNA transcripts to
fully confirm this mechanism as the primary modality for upregulation of the mRNAs we
identified in this study. Overall, this research reveals a potentially unexplored aspect of
ALS pathogenesis that demands further study. The insight provided by such studies will
aid in the development of new therapeutic strategies for ALS.

In conclusion, our report presents, for the first-time, insights into differential circRNA
expression in three distinct regions of the spinal cord of ALS patients. The circular RNA–
microRNA–mRNA interactions analysis suggests modulation of mRNA expression as a
result of miRNA sequestration by differentially expressed circRNAs. Together, circRNAs,
specifically expressed in ALS spinal cord tissue, present a novel target for development of
molecular diagnosis strategies for this pathology.

4. Materials and Methods

All relevant software and scripts utilized the GENCODE comprehensive gene anno-
tation file (version 33) [29] and UCSC reference genome (GRCh38/hg38) package. This
research includes computations using the computational cluster Katana supported by
Research Technology Services at UNSW Sydney [30].

4.1. Dataset Structure and Quality Control

RNA sequencing (RNA-seq) data were retrieved from New York Genome Centre
(NYGC) from deceased patients diagnosed with ALS and deceased patients classified as



Int. J. Mol. Sci. 2022, 23, 14665 8 of 12

‘nonneurological controls’. The FASTQ data files utilized in this study originate from three
tissue types: spinal cord cervical (SCC), spinal cord thoracic (SCT) and spinal cord lumbar
(SCL). The distribution between the number of ALS-affected and healthy patient samples
was approximately 2.6:1 (Table 4). Tissue samples were in some cases collected from the
same patient; the samples originated from 49 patients in total, with 4 patients providing
3 tissue samples and 12 providing 2 tissue samples. NYGC sequenced the samples using
Illumina HiSeq and Ribo-Zero RNA depletion in the library preparation of all samples.

Table 4. Number of spinal cord biological samples utilized in ALS and control conditions.

Tissue No. of Samples in ALS Cohort No. of Samples in Control Cohort

Spinal Cord Cervical 18 7
Spinal Cord Thoracic 16 6
Spinal Cord Lumbar 16 6

The main limitations with regard to the reliability of this project were the RNA integrity
numbers (RINs)—an assessment of RNA quality—and the postmortem intervals (PMIs)—
the number of hours between the patient’s death and sample collection. The ALS samples
utilized in this study had RINs of 37, and most were collected less than 15 h after death.
The control dataset consisted of samples with RIN values of 3.5–7.3, and the majority
of samples were collected within 25 h of death. To determine the effect PMI and RIN
had on the ensuing analyses, circRNAs were filtered using the edgeR (version 3.32.1) [31]
‘filterByExpr’ function such that only circRNAs with at least 10 counts per million mapped
reads (CPM) in at least nine samples were selected; nine samples refer to 70% of the size
of the smallest tissue-type dataset. Read counts were transformed using the variance
stabilizing transformation ‘vst’ function in the DESeq2 package (version 1.30.1) [32]. We
assessed the variance explained by RIN, sex, group and PMI, where group represented
ALS or control, using mixed effects linear models, as implemented in the variancePartition
package (version 1.20.0) [33]. We fitted mixed effects linear models with the following
formula: ~RIN + PMI + (1|sex) + (1|group).

All raw RNA-seq data files were trimmed using Trimmomatic (version 0.38) [34] to
remove poor-quality sequences and technical sequences such as adapters.

To evaluate consistency in read quality and mapping rate, the raw and trimmed reads
were run through FastQC (version 0.11.8) [35], STAR (version 2.7.2b) [36] and HISAT2
(version 2.1.0) [37].

4.2. circRNA Detection and Differential Expression Analysis

circRNA detection was carried out using two workflow pathways, and the outputs
converged to determine which circRNAs were consistently detected using both meth-
ods. This dual-tool approach is considered imperative in reducing false positives, and
the circRNAs detected by both tools are more likely to be bona fide. The first method
consisted of aligning the trimmed reads to the reference genome using the BWA-MEM
algorithm (version 0.7.17) [38]. The outputted SAM-formatted files were then entered
into CIRI (version 2.0.6; CIRI2) [39], producing a list of circRNA candidates. The second
method involved the trimmed reads being mapped to the reference genome using STAR
(version 2.7.2b) [36] with the ‘–sjdbOverhang’ flag specified. Next, the STAR output was
run through CIRCexplorer2′s (version 2.3.0) [40] parse and annotate pipelines, producing
the second list of circRNA candidates. The CIRCexplorer2 output was filtered to select
candidate circRNAs having two or more reads spanning the back-spliced junction. The
circRNAs detected by both CIRI2 and CIRCexplorer2 were determined using inbuilt R
functions (version 3.6.1) [41].

circRNA candidates, in the form of circRNA IDs and averaged read counts from
CIRCexplorer2 and CIRI2 output, were run through R’s differential expression software
packages limma (version 3.46.0) [42] and edgeR (version 3.30.0) [31]. The ‘trimmed mean
of M values’ (TMM) normalization method was utilized.
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4.3. Linear RNA Detection and Differential Expression Analysis

Linear RNA analysis was conducted using the Pertea et al. [43] protocol, in which
HISAT2 (version 2.1.0) [37] and StringTie (version 1.3.4) [44] were employed for alignment
and abundance estimation, respectively. As novel unannotated transcripts were not of
interest in this study, the shortened protocol for linear RNA analysis was utilized. Align-
ment was conducted with reference annotation input followed by StringTie’s estimated
abundance (e) module with the same reference annotation utilized for circRNA detection,
which provides the relative abundance of genes and transcripts. The gene abundance
flag (–A) option of StringTie provided a table of complete gene expression, including the
expression values of all transcripts pertaining to a particular gene; the individual transcript
expression values are otherwise found in the default StringTie.gtf output file.

Differential expression of genes and transcripts was analyzed using R’s limma [42]
and edgeR [31] packages.

4.4. circRNA-miRNA-mRNA Interaction Analysis

miRNA binding sites within each significantly DE circRNA (adjusted p values < 0.05)
sequence were identified using the circRNAprofiler R package (version 1.0.0) [45], in
particular the ‘getMiRsites’ function. Only circRNAs from SCC and SCT samples were
utilized for this analysis, as the SCL samples had very few circRNAs that met the p value
criteria. The miRNA IDs used in this analysis were acquired from miRBase, all with a high
confidence rating. This was achieved using the R packages scrapeR (version 0.1.6) [46],
miRBaseConverter (version 1.14.0) [47] and stringr (version 1.4.0) [48].

The 12 miRNAs with the highest frequency of binding sites among upregulated
circRNAs across both tissues were input into the mirPath online tool (version 3.0) [49]
to determine associated GO terms. The TarBase database [24] option was utilized for all
miRNA-mRNA target predictions.

Using the same 12 miRNAs, we identified conserved miRNA targets and obtained
context ++ scores associated with each miRNA-mRNA target pair by utilizing relevant
TargetScanHuman (version 6.0) [14–17] Perl scripts. These scripts output the mRNA “Gene
ID” as RefSeq mRNA IDs, and hence, it was necessary to convert these IDs to HNGC gene
symbols and Ensembl gene IDs using the R package biomaRt [50,51]. Upregulated DE genes
from the linear RNA differential expression analysis with adjusted p values < 0.05 were
then compared with the previously mentioned list of miRNA-targeted genes to determine
genes that occurred in both lists and consequently may be affected by DE circRNAs via
miRNA sponging. Comparative gene expression analysis of these upregulated DE genes
was performed using CPM values for ALS and control cohorts in a tissue-specific manner.
Differential expression significance (adjusted p-value) was determined using the pipeline
described above in ‘Linear RNA detection and Differential Expression Analysis’. These
potentially affected genes were input into Molecular Signatures Database [52–54] to obtain
a set of GO terms associated with the gene set.

4.5. Data Visualization

t-SNE plots were constructed using the Bioconductor R packages ‘Rtsne’ [55] and
‘edgeR’ [31]. Default parameters were used, except that the perplexity setting was adjusted
to values from 1.7 to 5.0 to improve the resolution of distance and the shape of clusters.
Comparative gene expression plots were created in Prism v9.4.1 as box-and-whisker plots
(min-max).
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